首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Double-stranded RNA-dependent protein kinase (PKR) plays a critical role in antiviral defence of the host cells. PKR is also involved in cell cycle progression, cell proliferation, cell differentiation, tumorigenesis, and apoptosis. We previously reported that PKR is required for differentiation and calcification of osteoblasts. However, it is unknown about the role of PKR in osteoclast differentiation. A dominant-negative PKR mutant cDNA, in which the amino acid lysine at 296 was replaced with arginine, was transfected into RAW264.7 cells. We have established the cell line that stably expresses the PKR mutant gene (PKR-K/R). Phosphorylation of PKR and α-subunit of eukaryotic initiation factor 2 was not stimulated by polyinosic-polycytidylic acid in the PKR-K/R cells. RANKL stimulated the formation of TRAP-positive multinuclear cells in RAW264.7 cells. However, TRAP-positive multinuclear cells were not formed in the PKR-K/R cells even when the cells were stimulated with higher doses of RANKL. A specific inhibitor of PKR, 2-aminopurine, also suppressed the RANKL-induced osteoclast differentiation in RAW264.7 cells. The expression of macrophage fusion receptor and dendritic cell-specific transmembrane protein significantly decreased in the PKR-K/R cells by real time PCR analysis. The results of RT-PCR revealed that the mRNA expression of osteoclast markers (cathepsin K and calcitonin receptor) was suppressed in the PKR-K/R cells and RAW264.7 cells treated with 2-aminopurine. Expression of NF-κB protein was suppressed in the PKR-K/R cells and 2-aminopurine-treated RAW264.7 cells. The level of STAT1 protein expression was elevated in the PKR-K/R cells compared with that of the wild-type cells. Immunohistochemical study showed that PKR was localized in osteoclasts of metatarsal bone of newborn mouse. The finding that the PKR-positive multinuclear cells should be osteoclasts was confirmed by TRAP-staining. Our present study indicates that PKR plays important roles in the differentiation of osteoclasts.  相似文献   

3.
The molecular basis for induction of apoptosis in melanoma cells by vincristine remains unknown. Here we tested the potential involvement of AMP-activated protein kinase (AMPK) in this process. We found for the first time that vincristine induces AMPK activation (AMPKα, Thr 172) and Acetyl-CoA carboxylase (ACC, Ser 79) (a downstream molecular target of AMPK) phosphorylation in cultured melanoma cells in vitro. Reactive oxygen species (ROS) dependent LKB1 activation serves as the upstream signal for AMPK activation. AMPK inhibitor (compound C) or AMPKα siRNA knockdown inhibits vincristine induced B16 melanoma cell apoptosis, while AMPK activator 5-aminoimidazole-4-carboxamide-1-β-riboside (AICAR) enhances it. AMPK activation is involved in vincristine induced p53 phosphorylation and stabilization, the latter is known to mediate melanoma cell apoptosis. Further, activation of AMPK by vincristine inhibits mTOR Complex 1 (mTORC1) in B16 melanoma cells, which serves as another important mechanism to induce melanoma cell apoptosis. Our study provides new insights into understanding the cellular and molecular mechanisms of vincristine induced cancer cell death/apoptosis. We suggest that combining AMPK activator AICAR with vincristine may have potential to be used as a new therapeutic intervention against melanoma.  相似文献   

4.
These studies explore the molecular effect of arsenicals on MM cells. Freshly isolated cells derived from patients with advanced, chemo-refractory myeloma as well as human myeloma cell lines, ARP-1, RPMI-8226 and H929 were exposed to the organic arsenical melarsoprol and to the inorganic compound AT. Both agents potently induced apoptosis in myeloma cells. Exposure to 1-5 microM AT or melarsoprol for 6 hours suppressed NF-kappa B DNA binding and enhanced of c-Jun kinase (JNK) activity. Arsenic also activated caspase-3 resulting in the cleavage of poly (ADP-ribose) polymerase (PARP) and Fas/TNF alpha related receptor interacting protein (RIP). In contrast to reported observations in acute promyelocytic leukemia, myeloma cell apoptosis was not associated with either the downregulation of Bcl-2 protein or with alterations in the expression of other Bcl-2 family members, Bax, Bak, Bag, and Bcl-xl. This study first shows that arsenic induces apoptotic signaling in MM through the cleavage of TNF alpha related receptor interacting protein (RIP). RIP is a key downstream protein in FasL/ TNF alpha /TRAIL induced apoptosis and a major antiapoptotic adaptor of pathways through NF-kappa B and JNK. RIP has not been previously characterized in myeloma. This study supports the hypothesis that arsenicals share common mediators (RIP, NF-kappa B, PARP, caspase-3) with death receptor induced apoptosis. These studies provide an important insight into the molecular mechanism of AT induced apoptosis and can be used in the development of adjuvant therapy for MM, presently an incurable disease.  相似文献   

5.
The double-stranded RNA-dependent protein kinase (PKR) is one of the key mediators of interferon (IFN) action against certain viruses. PKR also plays an important role in signal transduction and immunomodulation. Understanding the regulation of PKR activity is important for the use of PKR as a tool to discover and develop novel therapeutics for viral infections, cancer and immune dysfunction. We found that phorbol 12-myristate 13-acetate (PMA), a potent activator of protein kinase C (PKC), decreased the level of autophosphorylated PKR in a dose- and time-dependent manner in IFN-treated mouse fibroblast cells. Polyinosinic-polycytidylic acid (poly I:C) treatment enhanced the activity of PKR induced by IFN, but did not overcome the PMA-induced reduction of PKR autophosphorylation. Western blot analysis with a monoclonal antibody to mouse PKR revealed that the decrease of PKR autophosphorylation in cells by PMA was a result of PKR protein degradation. Selective PKC inhibitors blocked the degradation of PKR stimulated by PMA, indicating that PKC activity was required for the effect. Furthermore, we also found that proteasome inhibitors prevented PMA-induced down regulation of PKR, indicating that an active proteasome is required. Our results identify a novel mechanism for the post-translational regulation of PKR.  相似文献   

6.
AMP-activated protein kinase (AMPK) stimulates energy production via glucose and lipid metabolism, whereas it inhibits energy consuming functions, such as protein and cholesterol synthesis. Increased cytoplasmic AMP and Ca(2+) levels are the major activators of neuronal AMPK signaling. Interestingly, Alzheimer's disease (AD) is associated with several abnormalities in neuronal energy metabolism, for example, decline in glucose uptake, mitochondrial dysfunctions and defects in cholesterol metabolism, and in addition, with problems in maintaining Ca(2+) homeostasis. Epidemiological studies have also revealed that many metabolic and cardiovascular diseases are risk factors for cognitive impairment and sporadic AD. Emerging studies indicate that AMPK signaling can regulate tau protein phosphorylation and amyloidogenesis, the major hallmarks of AD. AMPK is also a potent activator of autophagic degradation which seems to be suppressed in AD. All these observations imply that AMPK is involved in the pathogenesis of AD. However, the responses of AMPK activation are dependent on stimulation and the extent of activating stress. Evidently, AMPK signaling can repress and delay the appearance of AD pathology but later on, with increasing neuronal stress, it can trigger detrimental effects that augment AD pathogenesis. We will outline the potential role of AMPK function in respect to various aspects affecting AD pathogenesis.  相似文献   

7.
Zhu X  Lee HG  Raina AK  Perry G  Smith MA 《Neuro-Signals》2002,11(5):270-281
Given the critical role of mitogen-activated protein kinase (MAPK) pathways in regulating cellular processes that are affected in Alzheimer's disease (AD), the importance of MAPKs in disease pathogenesis is being increasingly recognized. All MAPK pathways, i.e., the extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 pathways, are activated in vulnerable neurons in patients with AD suggesting that MAPK pathways are involved in the pathophysiology and pathogenesis of AD. Here we review recent findings implicating the MAPK pathways in AD and discuss the relationship between these pathways and the prominent pathological processes, i.e., tau phosphorylation and amyloid-beta deposition, as well as the functional association to amyloid beta protein precursor. We suggest that regulation of these pathways may be a central facet to any potential treatment for the disease.  相似文献   

8.
p38 kinase is activated in the Alzheimer's disease brain   总被引:19,自引:0,他引:19  
The p38 mitogen-activated protein kinase is a stress-activated enzyme responsible for transducing inflammatory signals and initiating apoptosis. In the Alzheimer's disease (AD) brain, increased levels of phosphorylated (active) p38 were detected relative to age-matched normal brain. Intense phospho-p38 immunoreactivity was associated with neuritic plaques, neuropil threads, and neurofibrillary tangle-bearing neurons. The antibody against phosphorylated p38 recognized many of the same structures as an antibody against aberrantly phosphorylated, paired helical filament (PHF) tau, although PHF-positive tau did not cross-react with the phospho-p38 antibody. These findings suggest a neuroinflammatory mechanism in the AD brain, in which aberrant protein phosphorylation affects signal transduction elements, including the p38 kinase cascade, as well as cytoskeletal components.  相似文献   

9.
The interferon-inducible, double-stranded RNA (dsRNA)-dependent protein kinase which phosphorylates an endogenous HeLa 69 kilodalton polypeptide or exogenous initiation factor eIF2 was inhibited during vaccinia virus infection. High interferon doses (20,000 reference units per ml) did not prevent this inhibition. The inhibition required protein synthesis but not viral DNA synthesis during infection, suggesting that an early vaccinia virus gene function was responsible. An active dsRNA-dependent protein kinase could be recovered from an inactive extract by purification on polyinosinate X polycytidylate-cellulose. An inhibitor of the protein kinase, therefore, must be present in the inactive extract. Similar results have been obtained with mouse L929 cells. At early time points of infection, the protein kinase in cell extracts required exogenous dsRNA for activity. This argues against endogenous viral dsRNA and activation of the kinase in the intact cell. At late time points of infection (when vaccinia virus dsRNA was almost certainly formed), the inhibitor of the kinase is present. Accordingly, it seems unlikely that the kinase played any role in the interferon-mediated inhibition of virus growth observed in these cells under these particular conditions.  相似文献   

10.
Lee ES  Yoon CH  Kim YS  Bae YS 《FEBS letters》2007,581(22):4325-4332
Sustained ER stress leads to apoptosis. However, the exact mechanism still remains to be elucidated. Here, we demonstrate that the double strand RNA-dependent protein kinase (PKR) is involved in the ER stress-mediated signaling pathway. ER stress rapidly activated PKR, inducing the phosphorylation of eIF2alpha, followed by the activation of the ATF4/CHOP pathway. ER-stress-mediated eIF2alpha/ATF4/CHOP signaling and associated cell death was markedly reduced by PKR knockdown. We also found that PKR activation was mediated by PACT, the expression of which was elevated by ER-stress. These results indicate that the ER-stress-mediated eIF2alpha/ATF4/CHOP/cell death pathway is, to some degree, dependent on PACT-mediated PKR activation apart from the PERK pathway.  相似文献   

11.
Double-strand RNA dependent protein kinase (PKR) plays an important role in control of cell death. We previously reported that activation of PKR is associated with hippocampal neuronal loss in Alzheimer's disease (AD). Recent studies have reported that Parkinson's (PD) and Huntington's (HD) disease brains displayed progressive hippocampal neuronal loss in extrastriatal degeneration. However, association between PKR and hippocampal neuronal loss in PD and HD brains is not known. In this report, brain tissues from patients with PD and HD displayed strong induction of phosphorylated-PKR (p-PKR) in hippocampal neurons. Immunoblotting analysis also demonstrated that levels of nuclear p-PKR in the hippocampus affected by these diseases were increased compared with age-matched disease controls. These results suggest that a close association exists between PKR and extrastriatal degeneration in PD and HD pathology.  相似文献   

12.
Hypoglycemia and neuroglucopenia stimulate AMP-activated protein kinase (AMPK) activity in the hypothalamus and this plays an important role in the counterregulatory responses, i.e. increased food intake and secretion of glucagon, corticosterone and catecholamines. Several upstream kinases that activate AMPK have been identified including Ca(2+)/Calmodulin-dependent protein kinase kinase (CaMKK), which is highly expressed in neurons. However, the involvement of CaMKK in neuroglucopenia-induced activation of AMPK in the hypothalamus has not been tested. To determine whether neuroglucopenia-induced AMPK activation is mediated by CaMKK, we tested whether STO-609 (STO), a CaMKK inhibitor, would block the effects of 2-deoxy-D-glucose (2DG)-induced neuroglucopenia both ex vivo on brain sections and in vivo. Preincubation of rat brain sections with STO blocked KCl-induced α1 and α2-AMPK activation but did not affect AMPK activation by 2DG in the medio-basal hypothalamus. To confirm these findings in vivo, STO was pre-administrated intracerebroventricularly (ICV) in rats 30 min before 2DG ICV injection (40 μmol) to induce neuroglucopenia. 2DG-induced neuroglucopenia lead to a significant increase in glycemia and food intake compared to saline-injected control rats. ICV pre-administration of STO (5, 20 or 50 nmol) did not affect 2DG-induced hyperglycemia and food intake. Importantly, activation of hypothalamic α1 and α2-AMPK by 2DG was not affected by ICV pre-administration of STO. In conclusion, activation of hypothalamic AMPK by 2DG-induced neuroglucopenia is not mediated by CaMKK.  相似文献   

13.

Background

Alzheimer''s disease (AD) involves loss of cholinergic neurons and Tau protein hyper-phosphorylation. Here, we report that overexpression of an N-terminally extended “synaptic” acetylcholinesterase variant, N-AChE-S is causally involved in both these phenomena.

Methodology and Principal Findings

In transfected primary brain cultures, N-AChE-S induced cell death, morphological impairments and caspase 3 activation. Rapid internalization of fluorescently labeled fasciculin-2 to N-AChE-S transfected cells indicated membranal localization. In cultured cell lines, N-AChE-S transfection activated the Tau kinase GSK3, induced Tau hyper-phosphorylation and caused apoptosis. N-AChE-S-induced cell death was suppressible by inhibiting GSK3 or caspases, by enforced overexpression of the anti-apoptotic Bcl2 proteins, or by AChE inhibition or silencing. Moreover, inherent N-AChE-S was upregulated by stressors inducing protein misfolding and calcium imbalances, both characteristic of AD; and in cortical tissues from AD patients, N-AChE-S overexpression coincides with Tau hyper-phosphorylation.

Conclusions

Together, these findings attribute an apoptogenic role to N-AChE-S and outline a potential value to AChE inhibitor therapeutics in early AD.  相似文献   

14.
阿尔采末病相关基因与细胞凋亡   总被引:5,自引:0,他引:5  
Wang X  Zhang D 《生理科学进展》2001,32(4):307-311
阿尔采末病(Alzheimer‘s disease,AD)是最常见的一种老年期痴呆综合征,痴呆的发生与神经元的凋亡密切相关,AD相关基因编码蛋白APP,PS1及PS2的突变体均对细胞凋亡有调节作用,同时亦有越来越多的凋亡调节因子参与AD神经元退行性病变,该领域的研究对深入探讨AD的发病机制以及研究其防治措施均有重要意义,本综述将着重对这些基因与细胞凋亡之间的相互关系及其相互作用做一简要概述。  相似文献   

15.
The RNA-dependent protein kinase (PKR) is an interferon-induced serine/threonine protein kinase that phosphorylates the alpha subunit of the eukaryotic initiation factor 2 in response to viral infection. Classical genetic approaches for studying the role of PKR in cell signaling have their limitations due to overlapping but non-redundant pathways. Small molecule inhibitors of PKR will be useful in this regard. We report here, the discovery of a small molecule inhibitor of the kinase reaction of PKR. The inhibitor was discovered by screening a library of 26 different ATP-binding site directed inhibitors of varying structure. We also describe the development of a high-throughput assay for screening a large number of compounds for a PKR inhibitor using a rabbit reticulocyte lysate system and luciferase mRNA. The assay takes advantage of the fact that the reticulocyte lysate is rich in components of the translational machinery, of which PKR is an integral part. This assay can be carried out with added exogenous human PKR to study the effect of various compounds in their ability to rescue the translational block imposed by human PKR.  相似文献   

16.
17.
Endoplasmic reticulum (ER) stress activates unfolded protein responses (UPRs), such as promoting protein folding under the control of specific gene expression. Our previous study showed that ER stress induced by ER stress inducers such as tunicamycin (Tm), an inhibitor of N-linked glycan synthesis, causes ectopic lignin deposition in Arabidopsis roots, but the relationship between UPR and ectopic lignin deposition remains unclear. The receptor-like kinase THESEUS1 (THE1) has been shown to sense cell wall damage (CWD) induced in Arabidopsis by cellulose synthase inhibitors such as isoxaben (ISO) and to activate ectopic lignin deposition. In this study, we assessed the involvement of THE1 in ectopic lignin deposition caused by the ER stress inducer Tm. The loss-of-function mutation of THE1, the1-3, suppressed Tm-induced root growth inhibition and ectopic lignin deposition, revealing that THE1 is involved in root growth defects and ectopic lignin deposition caused by ER stress. Similarly, ISO treatment induced ectopic lignin deposition as well as the expression of the UPR marker genes binding protein 3 (BiP3) and ER-localized DnaJ 3b (ERdj3b). Conversely, in the the1-3 mutant, ISO-induced ectopic lignin deposition and the expression of BiP3 and ERdj3b were suppressed. These results showed that THE1 is involved in not only root growth inhibition and ectopic lignin deposition caused by ER stress but also CWD-induced UPR.  相似文献   

18.
In this study we describe the identification and structure-function analysis of a novel death-associated protein (DAP) kinase-related protein, DRP-1. DRP-1 is a 42-kDa Ca(2+)/calmodulin (CaM)-regulated serine threonine kinase which shows high degree of homology to DAP kinase. The region of homology spans the catalytic domain and the CaM-regulatory region, whereas the remaining C-terminal part of the protein differs completely from DAP kinase and displays no homology to any known protein. The catalytic domain is also homologous to the recently identified ZIP kinase and to a lesser extent to the catalytic domains of DRAK1 and -2. Thus, DAP kinase DRP-1, ZIP kinase, and DRAK1/2 together form a novel subfamily of serine/threonine kinases. DRP-1 is localized to the cytoplasm, as shown by immunostaining and cellular fractionation assays. It binds to CaM, undergoes autophosphorylation, and phosphorylates an exogenous substrate, the myosin light chain, in a Ca(2+)/CaM-dependent manner. The truncated protein, deleted of the CaM-regulatory domain, was converted into a constitutively active kinase. Ectopically expressed DRP-1 induced apoptosis in various types of cells. Cell killing by DRP-1 was dependent on two features: the status of the catalytic activity, and the presence of the C-terminal 40 amino acids shown to be required for self-dimerization of the kinase. Interestingly, further deletion of the CaM-regulatory region could override the indispensable role of the C-terminal tail in apoptosis and generated a "superkiller" mutant. A dominant negative fragment of DAP kinase encompassing the death domain was found to block apoptosis induced by DRP-1. Conversely, a catalytically inactive mutant of DRP-1, which functioned in a dominant negative manner, was significantly less effective in blocking cell death induced by DAP kinase. Possible functional connections between DAP kinase and DRP-1 are discussed.  相似文献   

19.
The aggregation of amyloid-β (Aβ) peptides into oligomers and fibrils is a key pathological feature of Alzheimer''s disease (AD). An increasing amount of evidence suggests that oligomeric Aβ might be the major culprit responsible for various neuropathological changes in AD. Death-associated protein kinase 1 (DAPK1) is abnormally elevated in brains of AD patients and plays an important role in modulating tau homeostasis by regulating prolyl isomerase Pin1 phosphorylation. However, it remains elusive whether and how Aβ species influence the function of DAPK1, and whether this may further affect the function and phosphorylation of tau in neurons. Herein, we demonstrated that Aβ aggregates (both oligomers and fibrils) prepared from synthetic Aβ42 peptides were able to upregulate DAPK1 protein levels and thereby its function through heat shock protein 90 (HSP90)-mediated protein stabilization. DAPK1 activation not only caused neuronal apoptosis, but also phosphorylated Pin1 at the Ser71 residue, leading to tau accumulation and phosphorylation at multiple AD-related sites in primary neurons. Both DAPK1 knockout (KO) and the application of a specific DAPK1 inhibitor could effectively protect primary neurons against Aβ aggregate-induced cell death and tau dysregulation, corroborating the critical role of DAPK1 in mediating Aβ aggregation-induced neuronal damage. Our study suggests a mechanistic link between Aβ oligomerization and tau hyperphosphorylation mediated by DAPK1, and supports the role of DAPK1 as a promising target for early intervention in AD.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号