首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have sequenced all mitochondrial tRNA genes from a patient with chronic progressive external ophthalmoplegia (CPEO) and mitochondrial myopathy, who had no detectable large mtDNA deletions. Direct sequencing failed to detect previously reported mutations and showed a heteroplasmic mutation at nucleotide 12,276 in the tRNA(Leu(CUN)) gene, in the dihydrouridine stem, which is highly conserved through the species during evolution. RFLP analyses confirmed that 18% of muscle mtDNA harbored the mutation, while it was absent from DNA of fibroblasts and lymphocytes of the proband and in 110 patients with other encephalomyopathies. To date, besides large and single nucleotide deletions, several point mutations on mitochondrial tRNA genes have been reported in CPEO patients, but only three were in the gene coding for tRNA(Leu(CUN)).  相似文献   

2.
We have sequenced the tRNA genes of mtDNA from patients with chronic progressive external ophthalmoplegia (CPEO) without detectable mtDNA deletions. Four point mutations were identified, located within highly conserved regions of mitochondrial tRNA genes, namely tRNA(Leu)(UAG), tRNA(Ser)(GCU), tRNA(Gly) and tRNA(Lys). One of these mutations (tRNA(Leu)(UAG)) was found in four patients with different forms of mitochondrial myopathy. An accumulation of three different tRNA point mutations (tRNA(Leu)(UAG)), tRNA(Ser)(GCU) and tRNA(Gly) was observed in a single patient, suggesting that mitochondrial tRNA genes represent hotspots for point mutations causing neuromuscular diseases.  相似文献   

3.
The mitochondrial tRNA(Leu(UUR)) gene (MTTL) is a hot spot for pathogenic mutations that are associated with mitochondrial diseases with various clinical features. Among these mutations, the A3243G mutation was associated with various types of mitochondrial multisystem disorders, such as MIDD, MELAS, MERRF, PEO, hypertrophic cardiomyopathy, and a subtype of Leigh syndrome. We screened 128 Tunisian patients for the A3243G mutation in the mitochondrial tRNA(Leu(UUR)) gene. This screening was carried out using PCR-RFLP with the restriction endonuclease ApaI. None of the 128 patients or the 100 controls tested were found to carry the mitochondrial A3243G mutation in the tRNA(Leu(UUR)) gene in homoplasmic or heteroplasmic form. After direct sequencing of the entire mitochondrial tRNA(Leu(UUR)) gene and a part of the mitochondrial NADH dehydrogenase 1, we found neither mutations nor polymorphisms in the MTTL1 gene in the tested patients and controls, and we confirmed the absence of the A3243G mutation in this gene. We also found a T3396C transition in the ND1 gene in one family with NSHL which was absent in the other patients and in 100 controls. Neither polymorphisms nor other mutations were found in the mitochondrial tRNA(Leu(UUR)) gene in the tested patients.  相似文献   

4.
Wolfram syndrome (WFS) is a rare hereditary disorder also known as DIDMOAD (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness). It is a heterogeneous disease and full characterization of all clinical and biological features of this disorder is difficult. The wide spectrum of clinical expression, affecting several organs and tissues, and the similarity in phenotype between patients with Wolfram syndrome and those with certain types of respiratory chain diseases suggests mitochondrial DNA (mtDNA) involvement in Wolfram syndrome patients. We report a Tunisian patient with clinical features of moderate Wolfram syndrome including diabetes, dilated cardiomyopathy and neurological complications. The results showed the presence of the mitochondrial ND1 m.3337G>A mutation in almost homoplasmic form in 3 tested tissues of the proband (blood leukocytes, buccal mucosa and skeletal muscle). In addition, the long-range PCR amplifications revealed the presence of multiple deletions of the mitochondrial DNA extracted from the patient’s skeletal muscle removing several tRNA and protein-coding genes. Our study reported a Tunisian patient with clinical features of moderate Wolfram syndrome associated with cardiomyopathy, in whom we detected the ND1 m.3337G>A mutation with mitochondrial multiple deletions.  相似文献   

5.
We report, for the first time, a patient with an overlap MERRF-NARP syndrome who carries the mutation m.12300G>A in the mitochondrial tRNA(Leu(CUN)) gene. The mutation was heteroplamic and more abundant in her muscle and fibroblast than in blood from her oligosymptomatic mother. Single muscle fiber analysis revealed that the proportion of mutant mtDNA in ragged red fibers was higher than that in normal fibers. Combined defects of mitochondrial respiratory chain complexes were detected in muscle, fibroblasts and transmitochondrial hybrid cells. Significant reduction of total ATP and mitochondrial membrane potential and an increased production of reactive oxygen species were observed.  相似文献   

6.
The entire mitochondrial genome was sequenced in a prostriate tick, Ixodes hexagonus, and a metastriate tick, Rhipicephalus sanguineus. Both genomes encode 22 tRNAs, 13 proteins, and two ribosomal RNAs. Prostriate ticks are basal members of Ixodidae and have the same gene order as Limulus polyphemus. In contrast, in R. sanguineus, a block of genes encoding NADH dehydrogenase subunit 1 (ND1), tRNA(Leu)(UUR), tRNA(Leu)(CUN), 16S rDNA, tRNA(Val), 12S rDNA, the control region, and the tRNA(Ile) and tRNA(Gln) have translocated to a position between the tRNA(Glu) and tRNA(Phe) genes. The tRNA(Cys) gene has translocated between the control region and the tRNA(Met) gene, and the tRNA(Leu)(CUN) gene has translocated between the tRNA(Ser)(UCN) gene and the control region. Furthermore, the control region is duplicated, and both copies undergo concerted evolution. Primers that flank these rearrangements confirm that this gene order is conserved in all metastriate ticks examined. Correspondence analysis of amino acid and codon use in the two ticks and in nine other arthropod mitochondrial genomes indicate a strong bias in R. sanguineus towards amino acids encoded by AT-rich codons.   相似文献   

7.
8.
The nucleotide sequences of the D-loop region and its flanking genes of the mitochondrial DNA (mtDNA) from Japanese pond frogs were determined by the methods of PCR, cloning, and sequencing. The frogs belonged to two species, one subspecies, and one local race. The gene arrangements adjacent to the D-loop region were analyzed. The frogs shared a unique mitochondrial gene order that was found in Rana catesbeiana; i.e., cyt b--D-loop region--tRNA(Leu(CUN))--tRNA(Thr)--tRNA(Pro)--tRNA(Phe)--12S rRNA. The arrangements of the three tRNA genes of these frogs were different from those of X. laevis, a species which has the same overall structure as in mammals. Highly repetitive sequences with repeat units (16-bp or 17-bp sequence specific for each taxon) were found in the D-loop region. The length of repetitive sequences varied from 0.6 kbp to 1.2 kbp, and caused the extensive size variation in mtDNA. Several short sequence elements such as putative TAS, OH, CSB-1, and CSB-2 were found in the D-loop region of these frogs. The sequences of these short regulatory elements were conserved in R. catesbeiana, X. laevis, and also in human. The comparison of sequence divergences of the D-loop region and its adjacent genes among various taxa revealed that the rates of nucleotide substitutions depend on genes. The nucleotide sequences of the 3'-side segment of the D-loop region were the most variable among taxa, whereas those of the tRNA and 12S rRNA genes were the most conservative.  相似文献   

9.
Mutations of human mitochondrial transfer RNA (tRNA) are implicated in a variety of multisystemic diseases. The most prevalent pathogenic mitochondrial mutation is the A3243G substitution within the gene for tRNA(Leu(UUR)). Here we describe the pronounced structural change promoted by this mutation. The A3243G mutation induces the formation of a tRNA dimer that strongly self-associates under physiological conditions. The dimerization interface in the mutant tRNA is a self-complementary hexanucleotide in the D-stem, a particularly weak structural element within tRNA(Leu(UUR)). Aminoacylation of the A3243G mutant is significantly attenuated, and mutational studies indicate that dimerization is partially responsible for the observed loss of function. The disruption of a conserved tertiary structural contact also contributes to the functional defect. The pathogenic mutation is proposed to interfere with the cellular function of human mitochondrial tRNA(Leu(UUR)) by destabilizing the native structure and facilitating the formation of a dimeric complex with low biological activity.  相似文献   

10.
To clarify the importance of deleted protein and tRNA genes on the impairment of mitochondrial function, we performed a quantitative analysis of biochemical, genetic and morphological findings in skeletal muscles of 16 patients with single deletions and 5 patients with multiple deletions of mtDNA. Clinically, all patients showed chronic progressive external ophthalmoplegia (CPEO). The size of deletions varied between 2.5 and 9 kb, and heteroplasmy between 31% and 94%. In patients with single deletions, the citrate synthase (CS) activity was nearly doubled. Decreased ratios of pyruvate- and succinate-dependent respiration were detected in fibers of all patients in comparison to controls. Inverse and linear correlations without thresholds were established between heteroplasmy and (i) CS referenced activities of the complexes of respiratory chain, (ii) CS referenced maximal respiratory rates, (iii) and cytochrome-c-oxidase (COX) negative fibers. In patients with single and multiple deletions, all respiratory chain complexes as well as the respiratory rates were decreased to a similar extent. All changes detected in patients with single deletions were independent of deletion size. In one patient, only genes of ND5, ND4L as well as tRNA(Leu(CUN)), tRNA(Ser(AGY)), and tRNA(His) were deleted. The pronounced decrease in COX activity in this patient points to the high pathological impact of these missing tRNA genes. The activity of nuclear encoded SDH was also significantly decreased in patients, but to a lesser extent. This is an indication of secondary disturbances of mitochondria at CPEO.In conclusion, we have shown that different deletions cause mitochondrial impairments of the same phenotype correlating with heteroplasmy. The missing threshold at the level of mitochondrial function seems to be characteristic for large-scale deletions were tRNA and protein genes are deleted.  相似文献   

11.
12.
Mutations in human mitochondrial DNA are often associated with incurable human neuromuscular diseases. Among these mutations, an important number have been identified in tRNA genes, including 29 in the gene MT-TL1 coding for the tRNA(Leu(UUR)). The m.3243A>G mutation was described as the major cause of the MELAS syndrome (mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes). This mutation was reported to reduce tRNA(Leu(UUR)) aminoacylation and modification of its anti-codon wobble position, which results in a defective mitochondrial protein synthesis and reduced activities of respiratory chain complexes. In the present study, we have tested whether the mitochondrial targeting of recombinant tRNAs bearing the identity elements for human mitochondrial leucyl-tRNA synthetase can rescue the phenotype caused by MELAS mutation in human transmitochondrial cybrid cells. We demonstrate that nuclear expression and mitochondrial targeting of specifically designed transgenic tRNAs results in an improvement of mitochondrial translation, increased levels of mitochondrial DNA-encoded respiratory complexes subunits, and significant rescue of respiration. These findings prove the possibility to direct tRNAs with changed aminoacylation specificities into mitochondria, thus extending the potential therapeutic strategy of allotopic expression to address mitochondrial disorders.  相似文献   

13.
14.
Using RNase protection analysis, we found a novel C to G mutation at nucleotide position 3093 of mitochondrial DNA (mtDNA) in a previously reported 35-year-old woman exhibiting clinical features of mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome together with diabetes mellitus, hyperthyroidism and cardiomyopathy. The patient also had an A3243G mutation in the tRNA(Leu(UUR)) gene and a 260-base pair duplication in the D-loop of mtDNA. The fibroblasts of the patient were cultured and used for the construction of cybrids using cytoplasmic transfer of the patient's mtDNA to the mtDNA-less rho(0) cells. RNA isolated from the cybrids was subjected to RNase protection analysis, and a C3093G transversion at the 16S rRNA gene and a MELAS-associated A3243G mutation of mtDNA were detected. The novel C3093G mutation together with the A3243G transition were found in muscle biopsies, hair follicles and blood cells of this patient and also in her skin fibroblasts and cybrids. The proportion of the C3093G mutant mtDNA in muscle biopsies of the patient was 51%. In contrast, the mutation was not detected in three sons of the proband. To characterize the impact of the mtDNA mutation-associated defects on mitochondrial function, we determined the respiratory enzyme activities of the primary culture of fibroblasts established from the proband, her mother and her three sons. The proportions of mtDNA with the C3093G transversion and the A3243G transition in the fibroblasts of the proband were 45 and 58%, respectively. However, the fibroblasts of the proband's mother and children harbored lower levels of mtDNA with the A3243G mutation but did not contain the C3093G mutation. The complex I activity in the proband's fibroblasts was decreased to 47% of the control but those of the fibroblasts of the mother and three sons of the proband were not significantly changed. These findings suggest that the C3093G transversion together with the A3243G transition of mtDNA impaired the respiratory function of mitochondria and caused the atypical MELAS syndrome associated with diabetes mellitus, hyperthyroidism and cardiomyopathy in this patient.  相似文献   

15.
16.
Zheng J  Ji Y  Guan MX 《Mitochondrion》2012,12(3):406-413
Mitochondrial tRNA mutations are one of the important causes of both syndromic and non-syndromic deafness. Of those, syndromic deafness-associated tRNA mutations such as tRNA(Leu(UUR)) 3243A>G are often present in heteroplasmy, while non-syndromic deafness-associated tRNA mutations including tRNA(Ser(UCN)) 7445A>G often occur in homplasmy or in high levels of heteroplasmy. These tRNA mutations are the primary mutations leading to hearing loss. However, other tRNA mutations such as tRNA(Thr) 15927G>A and tRNA(Ser(UCN)) 7444G>A may act in synergy with the primary mitochondrial DNA mutations, modulating the phenotypic manifestation of the primary mitochondrial DNA mutations. Theses tRNA mutations cause structural and functional alteration. A failure in tRNA metabolism caused by these tRNA mutations impaired mitochondrial translation and respiration, thereby causing mitochondrial dysfunctions responsible for deafness. These data offer valuable information for the early diagnosis, management and treatment of maternally inherited deafness.  相似文献   

17.
The total sequences of mitochondrial DNA were determined in two patients with juvenile-onset mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) due to Complex I deficiency. Patients 1 and 2 had three and two unique point mutations, respectively, causing replacement of phylogenically conserved amino acids. A transition from G to A was found at nucleotide position 5601 in the alanine tRNA gene of Patient 2, and a transition from A to G was found at 3243 in the leucine (UUR) tRNA gene of both patients. The latter mutation located at the phylogenically conserved 5' end of the dihydrouridine loop of the tRNA molecule, and was present in two patients with adult-onset MELAS and absent in controls. These results indicate that a mass of mtDNA mutations including the A-to-G transition in the tRNA(Leu) gene is a genetic cause of MELAS.  相似文献   

18.
Amplification and sequencing of mitochondrial DNA regions corresponding to three major clusters of transfer RNA genes from a variety of species representing major groups of birds and reptiles revealed some new variations in tRNA gene organization. First, a gene rearrangement from tRNA(His)-tRNA(Ser)(AGY)-tRNA(Leu)(CUN) to tRNA(Ser)(AGY)- tRNA(His)tRNA(Leu)(CUN) occurs in all three crocodilians examined (alligator, caiman, and crocodile). In addition an exceptionally long spacer region between the genes for NADH dehydrogenase subunit 4 and tRNA(Ser)(AGY) is found in caiman. Second, in congruence with a recent finding by Seutin et al., a characteristic stem-and-loop structure for the putative light-strand replication origin located between tRNA(Asn) and tRNA(Cys) genes is absent for all the birds and crocodilians. This stem-and-loop structure is absent in an additional species, the Texas blind snake, whereas the stem-and-loop structure is present in other snakes, lizards, turtles, mammals, and a frog. The disappearance of the stem-and-loop structure in the blind snake most likely occurred independently of that on the lineage leading to birds and crocodilians. Finally, the blind snake has a novel type of tRNA gene arrangement in which the tRNA(Gln) gene moved from one tRNA cluster to another. Sequence substitution rates for the tRNA genes appeared to be somewhat higher in crocodialians than in birds and mammals. As regards the controversial phylogenetic relationship among the Aves, Crocodilia, and Mammalia, a sister group relationship of birds and crocodilians relative to mammals, as suggested from the common loss of the stem-and- loop structure, was supported with statistical significance by molecular phylogenetic analyses using the tRNA gene sequence data.   相似文献   

19.
We report here the characterization of a four-generation Han Chinese family with maternally transmitted diabetes mellitus. Six (two males/four females) of eight matrilineal relatives in this family exhibited diabetes. The age of onset in diabetes varies from 15 years to 33 years, with an average of 26 years. Two of affected matrilineal relatives also exhibited hearing impairment. Molecular analysis of mitochondrial DNA (mtDNA) showed the presence of heteroplasmic tRNA(Lue(UUR)) A3243G mutation, ranging from 35% to 58% of mutations in blood cells of matrilineal relatives. The levels of heteroplasmic A3243G mutation seem to be correlated with the severity and age-at-onset of diabetes in this family. Sequence analysis of the complete mitochondrial genome in this pedigree revealed the presence of the A3243G mutation and 38 other variants belonging to the Eastern Asian haplogroup M7C. However, none of other mtDNA variants are evolutionarily conserved and implicated to have significantly functional consequence. Thus, the A3243G mutation is the sole pathogenic mtDNA mutation associated with diabetes in this Chinese family.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号