首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.

Background

Helminth co-infection in humans is common in tropical regions of the world where transmission of soil-transmitted helminths such as Ascaris lumbricoides, Trichuris trichiura, and the hookworms Necator americanus and Ancylostoma duodenale as well as other helminths such as Schistosoma mansoni often occur simultaneously.

Methodology

We investigated whether co-infection with another helminth(s) altered the human immune response to crude antigen extracts from either different stages of N. americanus infection (infective third stage or adult) or different crude antigen extract preparations (adult somatic and adult excretory/secretory). Using these antigens, we compared the cellular and humoral immune responses of individuals mono-infected with hookworm (N. americanus) and individuals co-infected with hookworm and other helminth infections, namely co-infection with either A. lumbricoides, Schistosoma mansoni, or both. Immunological variables were compared between hookworm infection group (mono- versus co-infected) by bootstrap, and principal component analysis (PCA) was used as a data reduction method.

Conclusions

Contrary to several animal studies of helminth co-infection, we found that co-infected individuals had a further downmodulated Th1 cytokine response (e.g., reduced INF-γ), accompanied by a significant increase in the hookworm-specific humoral immune response (e.g. higher levels of IgE or IgG4 to crude antigen extracts) compared with mono- infected individuals. Neither of these changes was associated with a reduction of hookworm infection intensity in helminth co-infected individuals. From the standpoint of hookworm vaccine development, these results are relevant; i.e., the specific immune response to hookworm vaccine antigens might be altered by infection with another helminth.  相似文献   

4.
In sub-Saharan Africa, over 22 million people are estimated to be co-infected with both helminths and HIV-1. Several studies have suggested that de-worming individuals with HIV-1 may delay HIV-1 disease progression, and that the benefit of de-worming may vary by individual helminth species. We conducted a systematic review and meta-analysis of the published literature to determine the effect of treatment of individual helminth infections on markers of HIV-1 progression (CD4 count and HIV viral load). There was a trend towards an association between treatment for Schistosoma mansoni and a decrease in HIV viral load (Weighted mean difference (WMD)=-0·10; 95% Confidence interval (CI): -0·24, 0·03), although this association was not seen for Ascaris lumbricoides, hookworm or Trichuris trichiura. Treatment of A. lumbricoides, S. mansoni, hookworm or T. trichiura was not associated with a change in CD4 count. While pooled data from randomized trials suggested clinical benefit of de-worming for individual helminth species, these effects decreased when observational data were included in the pooled analysis. While further trials are needed to confirm the role of anthelmintic treatment in HIV-1 co-infected individuals, providing anthelmintics to individuals with HIV-1 may be a safe, inexpensive and practical intervention to slow progression of HIV-1.  相似文献   

5.
Studies of the mechanisms underlying complex dynamics of ecological systems at various spatial and time scales bring increasing awareness that complexity is an intrinsic feature of ecological functioning. This paper is to investigate the role of such an ecologically significant parameter as the time delay due to maturation processes in the complex plankton dynamics. We show that the time lag T1, associated with the zooplankton maturation period can lead to essential changes in the plankton dynamics. Particularly, we show that the coexistence of limit cycle and chaotic attractor we have recently found to be typical of the system at T1 = 0 [A.B. Medvinsky, I.A. Tikhonova, R.R. Aliev, B.-L. Li, Z.-S. Lin, H. Malchow, Patchy environment as a factor of complex plankton dynamics, Phys. Rev. E 64 (2001) 021915] is replaced by pure chaotic plankton dynamics as T1 becomes more than a critical value. The results obtained imply that chaos is a rather common phenomenon in the plankton functioning.  相似文献   

6.

Background

Enteropathogenic (EPEC) and Enteroaggregative (EAEC) E. coli have similar, but distinct clinical symptoms and modes of pathogenesis. Nevertheless when they infect the gastrointestinal tract, it is thought that their flagellin causes IL-8 release leading to neutrophil recruitment and gastroenteritis. However, this may not be the whole story as the effect of bacterial adherence to IEC innate response(s) remains unclear. Therefore, we have characterized which bacterial motifs contribute to the innate epithelial response to EPEC and EAEC, using a range of EPEC and EAEC isogenic mutant strains.

Methodology

Caco-2 and HEp-2 cell lines were exposed to prototypical EPEC strain E2348/69 or EAEC strain O42, in addition to a range of isogenic mutant strains. E69 [LPS, non-motile, non-adherent, type three secretion system (TTSS) negative, signalling negative] or O42 [non-motile, non-adherent]. IL-8 and CCL20 protein secretion was measured. Bacterial surface structures were assessed by negative staining Transmission Electron Microscopy. The Fluorescent-actin staining test was carried out to determine bacterial adherence.

Results

Previous studies have reported a balance between the host pro-inflammatory response and microbial suppression of this response. In our system an overall balance towards the host pro-inflammatory response is seen with the E69 WT and to a greater extent O42 WT, which is in fit with clinical symptoms. On removal of the external EPEC structures flagella, LPS, BFP, EspA and EspC; and EAEC flagella and AAF, the host inflammatory response is reduced. However, removal of E69 lymphostatin increases the host inflammatory response suggesting involvement in the bacterial mediated anti-inflammatory response.

Conclusion

Epithelial responses were due to combinations of bacterial agonists, with host-bacterial contact a key determinant of these innate responses. Host epithelial recognition was offset by the microbe''s ability to down-regulate the inflammatory response. Understanding the complexity of this host-microbial balance will contribute to improved vaccine design for infectious gastroenteritis.  相似文献   

7.
Nonvascularized xenograft rejection is T cell mediated, but is dependent on initial macrophage (Mphi) infiltration. We developed an i.p. transplant model to define the roles of Mphi and T cells in xenograft rejection. Nonobese diabetic or BALB/c mice were injected i.p. with xenogeneic, allogeneic, or syngeneic cells, and the responding cells in subsequent lavages were assessed by flow cytometry and adoptive transfer. Neutrophils and monocytes/elicited Mphi were rapidly recruited in response to xenogeneic pig (PK15 or spleen) cells and, to a significantly lesser extent, allogeneic cells. These innate responses preceded T cell infiltration and occurred in their absence in SCID mice. Syngeneic cells induced negligible neutrophil or Mphi responses. Neutrophils and Mphi induced by xenogeneic cells in SCID mice stimulated T cell recruitment after transfer to immunocompetent mice. T cells in turn were required for Mphi activation and xenogeneic cell rejection. Thus, Mphi harvested from immunocompetent but not SCID mice injected with xenogeneic cells expressed activation markers and rejected xenogeneic cells when transferred into SCID mice. These findings demonstrate the interdependent roles of Mphi and T cells in xenograft rejection. The requirement for Mphi reflects their ability to mount a rapid, local innate response that stimulates T cell recruitment and, having received T cell help, to act as direct effectors of rejection.  相似文献   

8.
The immune response to intracellular bacterium, Francisella tularensis, which causes tularemia and is proposed to be a potential bioterrorism pathogen, has been studied in mice using the attenuated live vaccine strain (LVS). Here we review this infection model, which provides a convenient means of studying protective immune mechanisms not only for Francisella, but also for the large and important class of intracellular pathogens.  相似文献   

9.
We surveyed the non-mycorrhizal model plant Arabidopsis thaliana microscopically for its ability to form dark septate endophyte (DSE) symbioses in field, greenhouse, and laboratory studies. The laboratory studies were also used to estimate host growth responses to 34 Periconia macrospinosa and four Microdochium sp. isolates. Consistent with broad host range observed in previous experiments, field-, greenhouse-, and laboratory-grown A. thaliana were colonized by melanized inter- and intracellular hyphae and microsclerotia or chlamydospores indicative of DSE symbiosis. Host responses to colonization were variable and depended on the host ecotype. On average, two A. thaliana accessions (Col-0 and Cvi-0) responded negatively, whereas one (Kin-1) was unresponsive, a conclusion consistent with our previous analyses with forbs native to the field site where the fungi originate. Despite the average negative responses, examples of positive responses were also observed, a conclusion also congruent with earlier studies. Our results suggest that A. thaliana has potential as a model for more detailed dissection of the DSE symbiosis. Furthermore, our data suggest that host responses are controlled by variability in the host and endophyte genotypes.  相似文献   

10.
11.
We have previously found that co-immunisation with ovalbumin (OVA) and the body fluid of the helminth Ascaris suum inhibited an OVA-specific delayed type hypersensitivity (DTH) response by reducing OVA-specific CD4+ T lymphocyte proliferation via an IL-4 independent mechanism. In the present study, we determined whether parasite infections themselves could induce similar changes to peripheral immunisation by examining the modulation of OVA-specific immune responses during acute and chronic helminth infections. Surprisingly, an acute infection with Trichinella spiralis, but not a chronic infection with Heligmosomoides polygyrus, inhibited the OVA-specific DTH reaction. Correspondingly, the T helper 1 (Th1) OVA-specific response was decreased in mice infected with T. spiralis, but not with H. polygyrus. Inhibition of the Th1 response may be a result of a shift in the Th1/Th2 balance as although both H. polygyrus and T. spiralis infected mice induced a Th2 OVA-specific response, that exhibited by T. spiralis was more potent. Furthermore, although IL-10 secretion upon OVA restimulation was similarly increased by both infections, production of this immunoregulatory cytokine may play a role in the suppression of immune responses observed with T. spiralis infection depending on the context of its release. Interestingly, analysis of the OVA-specific T lymphocyte division by carboxyfluorescein diacetate succinimidyl ester (CFSE) staining revealed that gastro-intestinal infection with the acute helminth T. spiralis, but not with chronic H. polygyrus, inhibited the systemic immune response by significantly inhibiting the antigen-specific T cell proliferation during the primary response, a mechanism similar to that observed when A. suum parasite extracts were directly mixed with the OVA during immunisation in our previous studies.  相似文献   

12.
A model of the humoral immune response, proposed by Dibrov, Livshits and Volkenstein (1977b), in which the antibody production by a constant target cell population depends on the antigenic stimulation at earlier times, is considered from an analytic standpoint. A method of approximation based on a consideration of the asymptotic limit of large delay in the antibody response is shown to be applicable, and to give results similar to those obtained numerically by the above authors. The relevance of this type of approximation to other systems exhibiting outbreak phenomena is discussed.  相似文献   

13.
A study was carried out with 425 children aged 0-14 yr residing in Bolifamba, Cameroon, to investigate the effect of Plasmodium falciparum malaria and intestinal helminth coinfection on anemia and to identify significant predictors of anemia in the community. Blood was collected by finger prick to determine malaria parasitemia and packed cell volume (PCV). The Kato-Katz technique was used to assess the prevalence and egg load of intestinal helminths. The prevalence of P. falciparum malaria, intestinal helminth infections, and coinfection was 64.2%, 38.3%, and 24.7%, respectively. Coinfections in which heavy helminth loads were detected had corresponding high mean P. falciparum parasite loads >5,000/microl compared with coinfections involving light helminth burden. The overall prevalence of anemia was 30.8%. Anemia prevalence increased significantly with P. falciparum parasite load >5,000/microl compared with lower densities (chi2 = 6.734, P = 0.034). Anemia prevalence was significantly higher in febrile children compared with nonfebrile children (chi2 = 6.041, P = 0.014). Children infected exclusively with P. falciparum recorded the highest prevalence of anemia compared with uninfected children, those with coinfections, and those harboring only helminths. This difference in prevalence was significant (chi2 = 6.734, P = 0.031). Multiple regression analysis exposed fever (P > 0.001) and age (P = 0.004) as significant predictors of anemia.  相似文献   

14.
A modification of the 51Cr cytotoxic test has made it possible to assess under the same conditions not only cytotoxic serum antibodies, and cell-mediated immunity, but also cells releasing cytotoxic antibody. The measurement of these antibody-releasing cells was carried out with nucleated target cells, both normal and leukemic, across θ or H-2 antigenic differences. This test was found to be specific. The release of 51Cr from the labeled target cells was proportional to the ratio of immune cells to target cells, and for a given ratio to the incubation time, 60 min usually being the optimum time at ratios of 50–100 to 1. The test was not affected by treatment of the effector cells with an anti-θ serum; however, pretreatment of these cells with an anti-IgM serum, even without complement, inhibited the test with cells taken during primary responses. Both cytotoxic IgM and IgG antibodies were detected by the assay directly without the addition of enhancing serum; discrimination between these two γ-globulins can be made by suppressing the cytotoxicity due to either Ig class consequent to the addition of the appropriate specific anti-globulin serum during the incubation.  相似文献   

15.
Summary Using a direct Monte Carlo simulation, population growth of helper T-cells (N H) and viral cells (N v) is studied for an immune response model with an enhanced spatial inter-cellular interaction relevant to HIV as a function of viral mutation. In the absence of cellular mobility (P mob=0), the helper T-cells grow nonmonotonically before reaching saturation and the viral population grows monotonically before reaching a constant equilibrium. Cellular mobility (P mob=1) enhances the viral growth and reduces the stimulative T-cell growth. Below a mutation threshold (P c), the steady-state density of helper T-cell (p H) is larger than that of the Virus (p v); the density difference Δp o(=pV−pH) remains a constant at P mob=1 while −Δp o→0 as P mutP c at P mob=0. Above the mutation threshold, the difference Δp o in cell density, grows with ΔP=P mutP c monotonically: ΔP o ∞ (ΔP)β ≃ with β≈0.574±0.016 in absence of mobility, while Δp o≈6(ΔP) with P mob=1.  相似文献   

16.
The innate immune system, acting as the first line of host defense, senses and adapts to foreign challenges through complex intracellular and intercellular signaling networks. Endotoxin tolerance and priming elicited by macrophages are classic examples of the complex adaptation of innate immune cells. Upon repetitive exposures to different doses of bacterial endotoxin (lipopolysaccharide) or other stimulants, macrophages show either suppressed or augmented inflammatory responses compared to a single exposure to the stimulant. Endotoxin tolerance and priming are critically involved in both immune homeostasis and the pathogenesis of diverse inflammatory diseases. However, the underlying molecular mechanisms are not well understood. By means of a computational search through the parameter space of a coarse-grained three-node network with a two-stage Metropolis sampling approach, we enumerated all the network topologies that can generate priming or tolerance. We discovered three major mechanisms for priming (pathway synergy, suppressor deactivation, activator induction) and one for tolerance (inhibitor persistence). These results not only explain existing experimental observations, but also reveal intriguing test scenarios for future experimental studies to clarify mechanisms of endotoxin priming and tolerance.  相似文献   

17.
Filamentous bacteriophage are commonly used as immunogenic carriers for peptides and proteins displayed on the phage surface. Previously, we showed that immunization with phage to which peptides had been chemically conjugated can elicit a focused anti-peptide antibody response compared with traditional carrier molecules bearing the same peptide, perhaps due to the low surface complexity of the phage. The regularity of its surface also gives the phage other advantages as a carrier, including immunological simplicity and thousands of well-defined sites for chemical conjugation. More recently, we showed that focusing of antibody responses against 'target' peptides was enhanced when the phage's molecular surface was simplified by removal of immunodominant B-cell epitopes present on the minor coat protein, pIII. The pIII-truncated variant elicits an antibody response that is largely restricted to the exposed N-terminus of the major coat protein, pVIII, and to phage-associated bacterial lipopolysaccharide, and a significant fraction of this response cross-reacts with a 12-residue peptide covering the surface-exposed region of pVIII. This allows one to track antibody responses against the phage (and any associated haptens) as they develop over time, and characterize them using a combination of serological, flow cytometric, cellular and immunogenetic assays. The filamentous phage thus provides an excellent model system for studying various aspects of the antibody response, all with the goal of targeting antibody production against weakly immunogenic peptides, proteins and carbohydrates.  相似文献   

18.
Clara cell secretory protein (CCSP) has been shown to have anti-inflammatory and immunomodulatory functions in the lung. Respiratory syncytial virus (RSV) is the most common cause of respiratory infection in infants and young children. RSV usually infects small airways and likely interacts with the Clara cells of bronchioles. To determine a possible role for CCSP during acute RSV infection, CCSP-deficient (CCSP(-/-)) and wild-type (WT) mice were intratracheally infected with RSV and the lung inflammatory and immune responses to RSV infection were assessed. RSV-F gene expression was increased in the lungs of CCSP(-/-) mice as compared with WT mice following RSV infection, consistent with increased viral persistence. Lung inflammation was significantly increased in CCSP(-/-) mice as compared with WT mice after infection. Moreover, although the levels of Th1 cytokines were similar, the levels of Th2 cytokines and neutrophil chemokines were increased in the lungs of CCSP(-/-) mice following infection. Physiologic endpoints of exacerbated lung disease, specifically airway reactivity and mucus production, were increased in CCSP(-/-) mice after RSV infection. Importantly, restoration of CCSP in the airways of CCSP(-/-) mice abrogated the increased viral persistence, lung inflammation, and airway reactivity. These findings suggest a role for CCSP and Clara cells in regulating lung inflammatory and immune responses to RSV infection.  相似文献   

19.
The use of BCG (Bacille Calmette-Guerin) as an adjuvant is well-established for vaccination against leprosy and tuberculosis. Dominique Frommel and Phillippe Lagrange discuss the effects of BCG in the control of parasite infections, particularly leishmaniasis, and the possibility of the development of anti-parasite recombinant BCG vaccines.  相似文献   

20.
Respiratory syncytial virus (RSV) is a common cause of respiratory tract infections in infants and the elderly. Like many other pH-independent enveloped viruses, RSV is thought to enter at the cell surface, independently of common endocytic pathways. We have used a targeted small interfering RNA (siRNA) library to identify key cellular genes involved in cytoskeletal dynamics and endosome trafficking that are important for RSV infection. Surprisingly, RSV infection was potently inhibited by siRNAs targeting genes associated with clathrin-mediated endocytosis, including clathrin light chain. The important role of clathrin-mediated endocytosis was confirmed by the expression of well-characterized dominant-negative mutants of genes in this pathway and by using the clathrin endocytosis inhibitor chlorpromazine. We conclude that, while RSV may be competent to enter at the cell surface, clathrin function and endocytosis are a necessary and important part of a productive RSV infection, even though infection is strictly independent of pH. These findings raise the possibility that other pH-independent viruses may share a similar dependence on endocytosis for infection and provide a new potential avenue for treatment of infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号