首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The survival and proliferation of Plasmodium falciparum parasites and human cancer cells require de novo pyrimidine synthesis to supply RNA and DNA precursors. Orotate phosphoribosyltransferase (OPRT) is an indispensible component in this metabolic pathway and is a target for antimalarials and antitumor drugs. P. falciparum (Pf) and Homo sapiens (Hs) OPRTs are characterized by highly dissociative transition states with ribocation character. On the basis of the geometrical and electrostatic features of the PfOPRT and HsOPRT transition states, analogues were designed, synthesized, and tested as inhibitors. Iminoribitol mimics of the ribocation transition state in linkage to pyrimidine mimics using methylene or ethylene linkers gave dissociation constants (Kd) as low as 80 nm. Inhibitors with pyrrolidine groups as ribocation mimics displayed slightly weaker binding affinities for OPRTs. Interestingly, p-nitrophenyl riboside 5′-phosphate bound to OPRTs with Kd values near 40 nm. Analogues designed with a C5-pyrimidine carbon–carbon bond to ribocation mimics gave Kd values in the range of 80–500 nm. Acyclic inhibitors with achiral serinol groups as the ribocation mimics also displayed nanomolar inhibition against OPRTs. In comparison with the nucleoside derivatives, inhibition constants of their corresponding 5′-phosphorylated transition state analogues are largely unchanged, an unusual property for a nucleotide-binding site. In silico docking of the best inhibitor into the HsOPRT active site supported an extensive hydrogen bond network associated with the tight binding affinity. These OPRT transition state analogues identify crucial components of potent inhibitors targeting OPRT enzymes. Despite their tight binding to the targets, the inhibitors did not kill cultured P. falciparum.  相似文献   

2.
Autophagy is a catabolic pathway typically induced by nutrient starvation to recycle amino acids, but can also function in removing damaged organelles. In addition, this pathway plays a key role in eukaryotic development. To date, not much is known about the role of autophagy in apicomplexan parasites and more specifically in the human malaria parasite Plasmodium falciparum. Comparative genomic analysis has uncovered some, but not all, orthologs of autophagy-related (ATG) genes in the malaria parasite genome. Here, using a genome-wide in silico analysis, we confirmed that ATG genes whose products are required for vesicle expansion and completion are present, while genes involved in induction of autophagy and cargo packaging are mostly absent. We subsequently focused on the molecular and cellular function of P. falciparum ATG8 (PfATG8), an autophagosome membrane marker and key component of the autophagy pathway, throughout the parasite asexual and sexual erythrocytic stages. In this context, we showed that PfATG8 has a distinct and atypical role in parasite development. PfATG8 localized in the apicoplast and in vesicles throughout the cytosol during parasite development. Immunofluorescence assays of PfATG8 in apicoplast-minus parasites suggest that PfATG8 is involved in apicoplast biogenesis. Furthermore, treatment of parasite cultures with bafilomycin A1 and chloroquine, both lysosomotropic agents that inhibit autophagosome and lysosome fusion, resulted in dramatic morphological changes of the apicoplast, and parasite death. Furthermore, deep proteomic analysis of components associated with PfATG8 indicated that it may possibly be involved in ribophagy and piecemeal microautophagy of the nucleus. Collectively, our data revealed the importance and specificity of the autophagy pathway in the malaria parasite and offer potential novel therapeutic strategies.  相似文献   

3.
Psalmopeotoxin I (PcFK1) is a 33-amino-acid residue peptide isolated from the venom of the tarantula Psalmopoeus cambridgei. It has been recently shown to possess strong antiplasmodial activity against the intra-erythrocyte stage of Plasmodium falciparum in vitro. Although the molecular target for PcFK1 is not yet determined, this peptide does not lyse erythrocytes, is not cytotoxic to nucleated mammalian cells, and does not inhibit neuromuscular function. We investigated the structural properties of PcFK1 to help understand the unique mechanism of action of this peptide and to enhance its utility as a lead compound for rational development of new antimalarial drugs. In this paper, we have determined the three-dimensional solution structure by (1)H two-dimensional NMR means of recombinant PcFK1, which is shown to belong to the ICK structural superfamily with structural determinants common to several neurotoxins acting as ion channels effectors.  相似文献   

4.
5.
Inspection of the complete genome of the yeast Yarrowia lipolytica for the presence of genes encoding homologues of known telomere-binding proteins surprisingly revealed no counterparts of typical yeast Myb domain-containing telomeric factors including Rap1 or Taz1. Instead, we identified a gene, YALIOD10923g, encoding a protein containing two Myb domains, exhibiting a high degree of similarity to the Myb domain of human telomeric proteins TRF1 and TRF2 and homologous to an essential fission yeast protein Mug152 whose expression is elevated during meiosis. The protein, which we named Tay1p (telomere-associated in Yarrowia lipolytica 1), was purified for biochemical studies. Using a model Y. lipolytica telomere, we demonstrate that the protein preferentially binds to Y. lipolytica telomeric tracts. Tay1p binds along the telomeric tract as dimers and larger oligomers, and it is able to remodel the telomeric DNA into both looped structures and synaptic complexes of two model telomere DNAs. The ability of Tay1p to induce dimerization of telomeres in vitro goes in line with its oligomeric nature, where each oligomer can employ several Myb domains to form intermolecular telomere clusters. We also provide experimental evidence that Tay1p may be associated with Y. lipolytica telomeres in vivo. Together with its homologues from Schizosaccharomyces pombe and several basidiomycetous fungi (Sánchez-Alonso, P., and Guzman, P. (2008) Fungal Genet. Biol. 45, S54-S62), Tay1p constitutes a novel family of putative telomeric factors whose analysis may be instrumental in understanding the function and evolution of double-stranded DNA telomeric proteins.  相似文献   

6.
P335 lactococcal phages infect the gram(+) bacterium Lactococcus lactis using a large multiprotein complex located at the distal part of the tail and termed baseplate (BP). The BP harbors the receptor-binding proteins (RBPs), which allow the specific recognition of saccharidic receptors localized on the host cell surface. We report here the electron microscopic structure of the phage TP901-1 wild-type BP as well as those of two mutants bppL (-) and bppU(-), lacking BppL (the RBPs) or both peripheral BP components (BppL and BppU), respectively. We also achieved an electron microscopic reconstruction of a partial BP complex, formed by BppU and BppL. This complex exhibits a tripod shape and is composed of nine BppLs and three BppUs. These structures, combined with light-scattering measurements, led us to propose that the TP901-1 BP harbors six tripods at its periphery, located around the central tube formed by ORF46 (Dit) hexamers, at its proximal end, and a ORF47 (Tal) trimer at its distal extremity. A total of 54 BppLs (18 RBPs) are thus available to mediate host anchoring with a large apparent avidity. TP901-1 BP exhibits an infection-ready conformation and differs strikingly from the lactococcal phage p2 BP, bearing only 6 RBPs, and which needs a conformational change to reach its activated state. The comparison of several Siphoviridae structures uncovers a close organization of their central BP core whereas striking differences occur at the periphery, leading to diverse mechanisms of host recognition.  相似文献   

7.
Photosystem II (PSII) is a multiprotein complex that splits water and initiates electron transfer in photosynthesis. The central part of PSII, the PSII core, is surrounded by light-harvesting complex II proteins (LHCIIs). In higher plants, two or three LHCII trimers are seen on each side of the PSII core whereas only one is seen in the corresponding positions in Chlamydomonas reinhardtii, probably due to the absence of CP24, a minor monomeric LHCII. Here, we re-examined the supramolecular organization of the C. reinhardtii PSII-LHCII supercomplex by determining the effect of different solubilizing detergents. When we solubilized the thylakoid membranes with n-dodecyl-β-d-maltoside (β-DM) or n-dodecyl-α-d-maltoside (α-DM) and subjected them to gel filtration, we observed a clear difference in molecular mass. The α-DM-solubilized PSII-LHCII supercomplex bound twice more LHCII than the β-DM-solubilized supercomplex and retained higher oxygen-evolving activity. Single-particle image analysis from electron micrographs of the α-DM-solubilized and negatively stained supercomplex revealed that the PSII-LHCII supercomplex had a novel supramolecular organization, with three LHCII trimers attached to each side of the core.  相似文献   

8.
The radical S-adenosylmethionine (AdoMet) enzyme superfamily is remarkable at catalyzing chemically diverse and complex reactions. We have previously shown that NosL, which is involved in forming the indole side ring of the thiopeptide nosiheptide, is a radical AdoMet enzyme that processes L-Trp to afford 3-methyl-2-indolic acid (MIA) via an unusual fragmentation-recombination mechanism. We now report the expansion of the MIA synthase family by characterization of NocL, which is involved in nocathiacin I biosynthesis. EPR and UV-visible absorbance spectroscopic analyses demonstrated the interaction between L-Trp and the [4Fe-4S] cluster of NocL, leading to the assumption of nonspecific interaction of [4Fe-4S] cluster with other nucleophiles via the unique Fe site. This notion is supported by the finding of the heterogeneity in the [4Fe-4S] cluster of NocL in the absence of AdoMet, which was revealed by the EPR study at very low temperature. Furthermore, a free radical was observed by EPR during the catalysis, which is in good agreement with the hypothesis of a glycyl radical intermediate. Combined with the mutational analysis, these studies provide new insights into the function of the [4Fe-4S] cluster of radical AdoMet enzymes as well as the mechanism of the radical-mediated complex carbon chain rearrangement catalyzed by MIA synthase.  相似文献   

9.
Bioinformatic analyses of gene homologues have revealed functionally conserved epitopes between human and rodent malaria parasites. Here, we present experimental evidence for the presence of functionally and antigenically conserved domains between Plasmodium falciparum and Plasmodium yoelii asexual blood-stages. Merozoite released soluble proteins (MRSPs) from both P. falciparum and P. yoelii bound to heterologous mouse or human red blood cells, respectively. The presence of conserved antigenic epitopes between the two species of parasites was evident by the inhibitory effect of antibodies, developed against P. yoelii in convalescent mice, on P. falciparum growth and merozoite reinvasion in vitro. Furthermore, mice immunized with P. falciparum MRSPs were protected from infection by a P. yoelii challenge. These data indicate that different species of Plasmodium contain antigenically conserved interspecies domains, which are immunogenic and, thus constitute a potential novel antigen source for vaccine development and testing using a mouse model.  相似文献   

10.
Trypanosoma brucei BILBO1 (TbBILBO1) is an essential component of the flagellar pocket collar of trypanosomes. We recently reported the high resolution structure of the N-terminal domain of TbBILBO1. Here, we provide further structural dissections of its other three constituent domains: EF-hand, coiled coil, and leucine zipper. We found that the EF-hand changes its conformation upon calcium binding, the central coiled coil forms an antiparallel dimer, and the C-terminal leucine zipper appears to contain targeting information. Furthermore, interdimer interactions between adjacent leucine zippers allow TbBILBO1 to form extended filaments in vitro. These filaments were additionally found to condense into fibers through lateral interactions. Based on these experimental data, we propose a mechanism for TbBILBO1 assembly at the flagellar pocket collar.  相似文献   

11.
We have isolated an enzyme classified as chlorogenate: glucarate caffeoyltransferase (CGT) from seedlings of tomato (Solanum lycopersicum) that catalyzes the formation of caffeoylglucarate and caffeoylgalactarate using chlorogenate (5-O-caffeoylquinate) as acyl donor. Peptide sequences obtained by trypsin digestion and spectrometric sequencing were used to isolate the SlCGT cDNA encoding a protein of 380 amino acids with a putative targeting signal of 24 amino acids indicating an entry of the SlCGT into the secretory pathway. Immunogold electron microscopy revealed the localization of the enzyme in the apoplastic space of tomato leaves. Southern blot analysis of genomic cDNA suggests that SlCGT is encoded by a single-copy gene. The SlCGT cDNA was functionally expressed in Nicotiana benthamiana leaves and proved to confer chlorogenate-dependent caffeoyltransferase activity in the presence of glucarate. Sequence comparison of the deduced amino acid sequence identified the protein unexpectedly as a GDSL lipase-like protein, representing a new member of the SGNH protein superfamily. Lipases of this family employ a catalytic triad of Ser-Asp-His with Ser as nucleophile of the GDSL motif. Site-directed mutagenesis of each residue of the assumed respective SlCGT catalytic triad, however, indicated that the catalytic triad of the GDSL lipase is not essential for SlCGT enzymatic activity. SlCGT is therefore the first example of a GDSL lipase-like protein that lost hydrolytic activity and has acquired a completely new function in plant metabolism, functioning in secondary metabolism as acyltransferase in synthesis of hydroxycinnamate esters by employing amino acid residues different from the lipase catalytic triad.  相似文献   

12.
The self-assembly of the tubulin homologue FtsZ at the mid-cell is a critical step in bacterial cell division. We introduce dynamic light scattering (DLS) spectroscopy as a new method to study the polymerization kinetics of FtsZ in solution. Analysis of the DLS data indicates that the FtsZ polymers are remarkably monodisperse in length, independent of the concentrations of GTP, GDP, and FtsZ monomers. Measurements of the diffusion coefficient of the polymers demonstrate that their length is remarkably stable until the free GTP is consumed. We estimated the mean size of the FtsZ polymers within this interval of stable length to be between 9 and 18 monomers. The rates of FtsZ polymerization and depolymerization are likely influenced by the concentration of GDP, as the repeated addition of GTP to FtsZ increased the rate of polymerization and slowed down depolymerization. Increasing the FtsZ concentration did not change the size of FtsZ polymers; however, it increased the rate of the depolymerization reaction by depleting free GTP. Using transmission electron microscopy we observed that FtsZ forms linear polymers in solutions which rapidly convert to large bundles upon contact with surfaces at time scales as short as several seconds. Finally, the best studied small molecule that binds to FtsZ, PC190723, had no stabilizing effect on Caulobacter crescentus FtsZ filaments in vitro, which complements previous studies with Escherichia coli FtsZ and confirms that this class of small molecules binds Gram-negative FtsZ weakly.  相似文献   

13.
Cystic fibrosis affects about 1 in 2500 live births and involves loss of transmembrane chloride flux due to a lack of a membrane protein channel termed the cystic fibrosis transmembrane conductance regulator (CFTR). We have studied CFTR structure by electron crystallography. The data were compared with existing structures of other ATP-binding cassette transporters. The protein was crystallized in the outward facing state and resembled the well characterized Sav1866 transporter. We identified regions in the CFTR map, not accounted for by Sav1866, which were potential locations for the regulatory region as well as the channel gate. In this analysis, we were aided by the fact that the unit cell was composed of two molecules not related by crystallographic symmetry. We also identified regions in the fitted Sav1866 model that were missing from the map, hence regions that were either disordered in CFTR or differently organized compared with Sav1866. Apart from the N and C termini, this indicated that in CFTR, the cytoplasmic end of transmembrane helix 5/11 and its associated loop could be partly disordered (or alternatively located).  相似文献   

14.
Prompt and accurate diagnosis of malaria is the key to prevent disease morbidity and mortality. This study was carried out to evaluate diagnostic performance of 3 commercial rapid detection tests (RDTs), i.e., Malaria Antigen Pf/Pan™, Malaria Ag-Pf™, and Malaria Ag-Pv™ tests, in comparison with the microscopic and PCR methods. A total of 460 blood samples microscopically positive for Plasmodium falciparum (211 samples), P. vivax (218), mixed with P. falciparum and P. vivax (30), or P. ovale (1), and 124 samples of healthy subjects or patients with other fever-related infections, were collected. The sensitivities of Malaria Ag-Pf™ and Malaria Antigen Pf/Pan™ compared with the microscopic method for P. falciparum or P. vivax detection were 97.6% and 99.0%, or 98.6% and 99.0%, respectively. The specificities of Malaria Ag-Pf™, Malaria Ag-Pv™, and Malaria Antigen Pf/Pan™ were 93.3%, 98.8%, and 94.4%, respectively. The sensitivities of Malaria Ag-Pf™, Malaria Antigen Pf/Pan™, and microscopic method, when PCR was used as a reference method for P. falciparum or P. vivax detection were 91.8%, 100%, and 96.7%, or 91.9%, 92.6%, and 97.3%, respectively. The specificities of Malaria Ag-Pf™, Malaria Ag-Pv™, Malaria Antigen Pf/Pan™, and microscopic method were 66.2%, 92.7%, 73.9%, and 78.2%, respectively. Results indicated that the diagnostic performances of all the commercial RDTs are satisfactory for application to malaria diagnosis.  相似文献   

15.
The type VII secretion system ESX-5 is a major pathway for export of PE and PPE proteins in pathogenic mycobacteria. These mycobacteria-specific protein families are characterized by conserved N-terminal domains of 100 and 180 amino acids, which contain the proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) motifs after which they are named. Here we investigated secretion of the triacylglycerol lipase LipY, which in fast-growing mycobacteria contains a signal sequence, but in slow-growing species appears to have replaced the signal peptide with a PE or PPE domain. Selected LipY homologues were expressed in wild-type Mycobacterium marinum and its corresponding ESX-5 mutant, and localization of the proteins was investigated by immunoblotting and electron microscopy. Our study shows that Mycobacterium tuberculosis PE-LipY (LipY(tub)) and M. marinum PPE-LipY (LipY(mar)) are both secreted to the bacterial surface in an ESX-5-dependent fashion. After transport, the PE/PPE domains are removed by proteolytic cleavage. In contrast, Mycobacterium gilvum LipY, which has a signal sequence, is not transported to the cell surface. Furthermore, we show that LipY(tub) and LipY(mar) require their respective PE and PPE domains for ESX-5-dependent secretion. The role of the PE domain in ESX-5 secretion was confirmed in a whole cell lipase assay, in which wild-type bacteria expressing full-length LipY(tub), but not LipY(tub) lacking its PE domain, were shown to hydrolyze extracellular lipids. In conclusion, both PE and PPE domains contain a signal required for secretion of LipY by the ESX-5 system, and these domains are proteolytically removed upon translocation.  相似文献   

16.
17.
We present here a study of a eukaryotic trans-prenylsynthase from the malaria pathogen Plasmodium vivax. Based on the results of biochemical assays and contrary to previous indications, this enzyme catalyzes the production of geranylgeranyl pyrophosphate (GGPP) rather than farnesyl pyrophosphate (FPP). Structural analysis shows that the product length is constrained by a hydrophobic cavity formed primarily by a set of residues from the same subunit as the product as well as at least one other from the dimeric partner. Furthermore, Plasmodium GGPP synthase (GGPPS) can bind nitrogen-containing bisphosphonates (N-BPs) strongly with the energetically favorable cooperation of three Mg(2+), resulting in inhibition by this class of compounds at IC(50) concentrations below 100 nM. In contrast, human and yeast GGPPSs do not accommodate a third magnesium atom in the same manner, resulting in their insusceptibility to N-BPs. This differentiation is in part attributable to a deviation in a conserved motif known as the second aspartate-rich motif: whereas the aspartates at the start and end of the five-residue motif in FFPP synthases and P. vivax GGPPSs both participate in the coordination of the third Mg(2+), an asparagine is featured as the last residue in human and yeast GGPPSs, resulting in a different manner of interaction with nitrogen-containing ligands.  相似文献   

18.
Merozoite surface protein-1 (MSP-1) and merozoite surface protein-2 (MSP-2) were used to develop vaccines and to investigate the genetic diversity in Plasmodium falciparum malaria in Iran. Nested polymerase chain reaction amplification was used to determine polymorphisms of block 2 of the MSP-1 and the central domain of MSP-2 genes. A total of 67 microscopically positive P. falciparum infected individuals from a major endemic region, southeast Iran, were included in this trial. Nine alleles of MSP-1 and 11 alleles of MSP-2 were identified. The results showed that amplified product from these surface antigen genes varied in size and there was specific pattern for each isolate. Besides, regarding this pattern, 23 multiple infections with at least 2 alleles were observed. While the endemic regions of malaria in Iran is classified in low to moderate group, but extensive polymorphism was observed for each marker and the MSP-2 central repeat was the most diverse that could be considered in designing malaria vaccine.  相似文献   

19.
20.
Proteins containing the DHHC motif have been shown to function as palmitoyl transferases. The palmitoylation of proteins has been shown to play an important role in the trafficking of proteins to the proper subcellular location. Herein, we describe a protein containing both ankyrin domains and a DHHC domain that is present in the Golgi of late schizonts of P. falciparum. The timing of expression as well as the location of this protein suggests that it may play an important role in the sorting of proteins to the apical organelles during the development of the asexual stage of the parasite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号