首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Previous genetic studies have suggested a history of sub-Saharan African gene flow into some West Eurasian populations after the initial dispersal out of Africa that occurred at least 45,000 years ago. However, there has been no accurate characterization of the proportion of mixture, or of its date. We analyze genome-wide polymorphism data from about 40 West Eurasian groups to show that almost all Southern Europeans have inherited 1%-3% African ancestry with an average mixture date of around 55 generations ago, consistent with North African gene flow at the end of the Roman Empire and subsequent Arab migrations. Levantine groups harbor 4%-15% African ancestry with an average mixture date of about 32 generations ago, consistent with close political, economic, and cultural links with Egypt in the late middle ages. We also detect 3%-5% sub-Saharan African ancestry in all eight of the diverse Jewish populations that we analyzed. For the Jewish admixture, we obtain an average estimated date of about 72 generations. This may reflect descent of these groups from a common ancestral population that already had some African ancestry prior to the Jewish Diasporas.  相似文献   

2.
ABSTRACT: BACKGROUND: Populations of the Arabian Peninsula have a complex genetic structure that reflects waves of migrations including the earliest human migrations from Africa and eastern Asia, migrations along ancient civilization trading routes and colonization history of recent centuries. 1 RESULTS: Here, we present a study of genome-wide admixture in this region, using 156 genotyped individuals from Qatar, a country located at the crossroads of these migration patterns. Since haplotypes of these individuals could have originated from many different populations across the world, we have developed a machine learning method "SupportMix" to infer loci-specific genomic ancestry when simultaneously analyzing many possible ancestral populations. Simulations show that SupportMix is not only more accurate than other popular admixture discovery tools but is the first admixture inference method that can efficiently scale for simultaneous analysis of 50-100 putative ancestral populations while being independent of prior demographic information. CONCLUSIONS: By simultaneously using the 55 world populations from the Human Genome Diversity Panel, SupportMix was able to extract the fine-scale ancestry of the Qatar population, providing many new observations concerning the ancestry of the region. For example, as well as recapitulating the three major sub-populations in Qatar, composed of mainly Arabic, Persian, and African ancestry, SupportMix additionally identifies the specific ancestry of the Persian group to populations sampled in Greater Persia rather than from China and the ancestry of the African group to sub-Saharan origin and not Southern African Bantu origin as previously thought.  相似文献   

3.
The frequency distribution of Y-chromosome haplotypes at DNA polymorphism p49/TaqI was studied in a sample of 505 North Africans from Mauritania, Morocco, Algeria, Tunisia, Libya, and Egypt. A particularly high frequency (55.0%) of Y-haplotype 5 (A2, C0, D0, F1, I1) was observed in these populations, with a relative predominance in those of Berber origin. Examination of the relative frequencies of other haplotypes in these populations, mainly haplotype 4 (the "African" haplotype), haplotype 15 (the "European" haplotype), and haplotypes 7 and 8 (the "Near-East" haplotypes), permit useful comparisons with neighboring peoples living in sub-Saharan Africa, Europe, and the Near East.  相似文献   

4.
Drosophila melanogaster spread from sub-Saharan Africa to the rest of the world colonizing new environments. Here, we modeled the joint demography of African (Zimbabwe), European (The Netherlands), and North American (North Carolina) populations using an approximate Bayesian computation (ABC) approach. By testing different models (including scenarios with continuous migration), we found that admixture between Africa and Europe most likely generated the North American population, with an estimated proportion of African ancestry of 15%. We also revisited the demography of the ancestral population (Africa) and found—in contrast to previous work—that a bottleneck fits the history of the population of Zimbabwe better than expansion. Finally, we compared the site-frequency spectrum of the ancestral population to analytical predictions under the estimated bottleneck model.  相似文献   

5.
One of the main findings derived from the analysis of the Neandertal genome was the evidence for admixture between Neandertals and non-African modern humans. An alternative scenario is that the ancestral population of non-Africans was closer to Neandertals than to Africans because of ancient population substructure. Thus, the study of North African populations is crucial for testing both hypotheses. We analyzed a total of 780,000 SNPs in 125 individuals representing seven different North African locations and searched for their ancestral/derived state in comparison to different human populations and Neandertals. We found that North African populations have a significant excess of derived alleles shared with Neandertals, when compared to sub-Saharan Africans. This excess is similar to that found in non-African humans, a fact that can be interpreted as a sign of Neandertal admixture. Furthermore, the Neandertal''s genetic signal is higher in populations with a local, pre-Neolithic North African ancestry. Therefore, the detected ancient admixture is not due to recent Near Eastern or European migrations. Sub-Saharan populations are the only ones not affected by the admixture event with Neandertals.  相似文献   

6.
We have analyzed and compared mitochondrial DNA variation of populations from the Near East and Africa and found a very high frequency of African lineages present in the Yemen Hadramawt: more than a third were of clear sub-Saharan origin. Other Arab populations carried approximately 10% lineages of sub-Saharan origin, whereas non-Arab Near Eastern populations, by contrast, carried few or no such lineages, suggesting that gene flow has been preferentially into Arab populations. Several lines of evidence suggest that most of this gene flow probably occurred within the past approximately 2,500 years. In contrast, there is little evidence for male-mediated gene flow from sub-Saharan Africa in Y-chromosome haplotypes in Arab populations, including the Hadramawt. Taken together, these results are consistent with substantial migration from eastern Africa into Arabia, at least in part as a result of the Arab slave trade, and mainly female assimilation into the Arabian population as a result of miscegenation and manumission.  相似文献   

7.
The Siddis (Afro-Indians) are a tribal population whose members live in coastal Karnataka, Gujarat, and in some parts of Andhra Pradesh. Historical records indicate that the Portuguese brought the Siddis to India from Africa about 300-500 years ago; however, there is little information about their more precise ancestral origins. Here, we perform a genome-wide survey to understand the population history of the Siddis. Using hundreds of thousands of autosomal markers, we show that they have inherited ancestry from Africans, Indians, and possibly Europeans (Portuguese). Additionally, analyses of the uniparental (Y-chromosomal and mitochondrial DNA) markers indicate that the Siddis trace their ancestry to Bantu speakers from sub-Saharan Africa. We estimate that the admixture between the African ancestors of the Siddis and neighboring South Asian groups probably occurred in the past eight generations (~200 years ago), consistent with historical records.  相似文献   

8.
Tropical sub-Saharan regions are considered to be the geographical origin of Drosophila melanogaster. Starting from there, the species colonized the rest of the world after the last glaciation about 10 000 years ago. Consistent with this demographic scenario, African populations have been shown to harbour higher levels of microsatellite and sequence variation than cosmopolitan populations. Nevertheless, limited information is available on the genetic structure of African populations. We used X chromosomal microsatellite variation to study the population structure of D. melanogaster populations using 13 sampling sites in North, West and East Africa. These populations were compared to six European and one North American population. Significant population structure was found among African D. melanogaster populations. Using a Bayesian method for inferring population structure we detected two distinct groups of populations among African D. melanogaster. Interestingly, the comparison to cosmopolitan D. melanogaster populations indicated that one of the divergent African groups is closely related to cosmopolitan flies. Low, but significant levels of differentiation were observed for sub-Saharan D. melanogaster populations from West and East Africa.  相似文献   

9.
Electrophoresis in starch gel has been used to study the polymorphism of hordeins encoded by loci Hrd A, Hrd B, and Hrd F in 140 local barley populations from the Near East, including 60, 34, 33, 8, and 5 populations from Syria, Jordan, Iraq, Palestine, and Israel, respectively. Fifty-seven Hrd A, 87 Hrd B, and 5 Hrd F alleles have been found. The alleles of these loci considerably differ in frequencies and distribution in populations from different Near Eastern countries. Cluster analysis of the matrix of the frequencies of hordein locus alleles in barley populations from the Near East, North Africa, Ethiopia, and South Arabia has yielded two clusters. The first cluster includes barley populations from Israel, Palestine, Morocco, Tunisia, Algeria, and Egypt; the second cluster, populations from Iraq, Syria, Jordan, Yemen, and Ethiopia.  相似文献   

10.
Thorough assessment of modern genetic diversity and interpopulation affinities within the African continent is essential for understanding the processes that have been at work during the course of worldwide human evolution. Regardless of whether autosomal, Y-chromosome, or mtDNA markers are used, allele- or haplotype-frequency data from African populations are necessary in setting the framework for the construction of global population phylogenies. In the present study we analyze genetic differentiation and population structure in a data set of nine African populations using 12 polymorphic Alu insertions (PAls). Furthermore, to place our findings within a global context, we also examined an equal number of non-African groups. Frequency data from 456 individuals presented for the first time in this work plus additional data obtained from the literature indicate an overall pattern of higher intrapopulation diversity in sub-Saharan populations than in northern Africa, a prominent differentiation between these two locations, an appreciably high degree of transcontinental admixture in Egypt, and significant discontinuity between Morocco and the Iberian peninsula. Moreover, the topologies of our phylogenetic analyses suggest that out of the studied sub-Saharan groups, the southern Bantu population of Sotho/ Tswana presents the highest level of antiquity, perhaps as a result of ancestral or acquired Khoisan genetic signals. Close affinities of eastern sub-Saharan populations with Egypt in the phylogenetic trees may indicate the existence of gene flow along the Nile River.  相似文献   

11.
According to fossil data, the wood mouse arrived in North Africa 7500 ya, while it was present in Europe since Early Pleistocene. Previous molecular studies suggested that its introduction in North Africa probably occurred via the Strait of Gibraltar more than 0.4 Mya ago. In this study, we widely sampled wood mice to get a better understanding of the geographic and demographic history of this species in North Africa and possibly to help resolving the discrepancy between genetic and palaeontological data. Specifically, we wanted to answer the following questions: (1) When and how did the wood mouse arrive in North Africa? and (2) What is its demographic and geographic history in North Africa since its colonization? We collected in the field 438 new individuals and used both mtDNA and six microsatellite markers to answer these questions. Our results confirm that North African wood mice have a south‐western European origin and colonized the Maghreb through the Strait of Gibraltar probably during the Mesolithic or slightly after. They first colonized the Tingitana Peninsula and then expanded throughout North Africa. Our genetic data suggest that the ancestral population size comprised numerous individuals reinforcing the idea that wood mice did not colonize Morocco accidentally through rafting of a few individuals, but via recurrent/multiple anthropogenic translocations. No spatial structuring of the genetic variability was recorded in North Africa, from Morocco to Tunisia.  相似文献   

12.
13.
Saisho D  Purugganan MD 《Genetics》2007,177(3):1765-1776
Barley (Hordeum vulgare ssp. vulgare) was first cultivated 10,500 years ago in the Fertile Crescent and is one of the founder crops of Eurasian agriculture. Phylogeographic analysis of five nuclear loci and morphological assessment of two traits in >250 domesticated barley accessions reveal that landraces found in South and East Asia are genetically distinct from those in Europe and North Africa. A Bayesian population structure assessment method indicates that barley accessions are subdivided into six clusters and that barley landraces from 10 different geographical regions of Eurasia and North Africa show distinct patterns of distribution across these clusters. Using haplotype frequency data, it appears that the Europe/North Africa landraces are most similar to the Near East population (F ST = 0.15) as well as to wild barley (F ST = 0.11) and are strongly differentiated from all other Asian populations (F ST = 0.34-0.74). A neighbor-joining analysis using these F ST estimates also supports a division between European, North African, and Near East barley types from more easterly Asian accessions. There is also differentiation in the presence of a naked caryopsis and spikelet row number between eastern and western barley accessions. The data support the differential migration of barley from two domestication events that led to the origin of barley--one in the Fertile Crescent and another farther east, possibly at the eastern edge of the Iranian Plateau--with European and North African barley largely originating from the former and much of Asian barley arising from the latter. This suggests that cultural diffusion or independent innovation is responsible for the expansion of agriculture to areas of South and East Asia during the Neolithic revolution.  相似文献   

14.
Recent genetic studies based on the distribution of mtDNA of haplogroup U6 have led to subtly different theories regarding the arrival of modern human populations in North Africa. One proposes that groups of the proto-U6 lineage spread from the Near East to North Africa around 40–45 ka (thousands of years ago), followed by some degree of regional continuity. Another envisages a westward human migration from the Near East, followed by further demographic expansion at ∼22 ka centred on the Maghreb and associated with a microlithic bladelet culture known as the Iberomaurusian. In evaluating these theories, we report on the results of new work on the Middle (MSA) and Later Stone (LSA) Age deposits at Taforalt Cave in Morocco. We present 54 AMS radiocarbon dates on bone and charcoals from a sequence of late MSA and LSA occupation levels of the cave. Using Bayesian modelling we show that an MSA non-Levallois flake industry was present until ∼24.5 ka Cal BP (calibrated years before present), followed by a gap in occupation and the subsequent appearance of an LSA Iberomaurusian industry from at least 21,160 Cal BP. The new dating offers fresh light on theories of continuity versus replacement of populations as presented by the genetic evidence. We examine the implications of these data for interpreting the first appearance of the LSA in the Maghreb and providing comparisons with other dated early blade and bladelet industries in North Africa.  相似文献   

15.
Present human populations show a complex network of genetic relationships, which reflects mainly their unique origin and their migration and isolation history since the recent creation of modern man. The scrutiny of their genetic characteristics, according to GM polymorphism, shows that the continuity of the genetic variation between populations from neighbouring continents, assured by intermediate world part populations, is against any attempt to divide present human populations into major groups. GM polymorphism analysis also shows three remarkable levels of genetic differentiation, which would have appeared, respectively, within populations of sub-Saharan Africa, Europe and East Asia. The first small groups of people that split from the common ancestral population gave the sub-Saharan Africans. On the other hand, Asians diverged mainly from Europeans and Near East populations during a later period. The confrontation between the phylogeny and the frequency distribution of GM haplotypes shows that the ancestral population of actual South-Arabia people could be a candidate for a common ancestral population. The first major expansions of modern humans were proposed in a hypothetical scenario, which will open a new track in the research of our geographic origin.  相似文献   

16.
Pygmy populations are among the few hunter-gatherers currently living in sub-Saharan Africa and are mainly represented by two groups, Eastern and Western, according to their current geographical distribution. They are scattered across the Central African belt and surrounded by Bantu-speaking farmers, with whom they have complex social and economic interactions. To investigate the demographic history of Pygmy groups, a population approach was applied to the analysis of 205 complete mitochondrial DNA (mtDNA) sequences from ten central African populations. No sharing of maternal lineages was observed between the two Pygmy groups, with haplogroup L1c being characteristic of the Western group but most of Eastern Pygmy lineages falling into subclades of L0a, L2a, and L5. Demographic inferences based on Bayesian coalescent simulations point to an early split among the maternal ancestors of Pygmies and those of Bantu-speaking farmers (~ 70,000 years ago [ya]). Evidence for population growth in the ancestors of Bantu-speaking farmers has been observed, starting ~ 65,000 ya, well before the diffusion of Bantu languages. Subsequently, the effective population size of the ancestors of Pygmies remained constant over time and ~ 27,000 ya, coincident with the Last Glacial Maximum, Eastern and Western Pygmies diverged, with evidence of subsequent migration only among the Western group and the Bantu-speaking farmers. Western Pygmies show signs of a recent bottleneck 4,000-650 ya, coincident with the diffusion of Bantu languages, whereas Eastern Pygmies seem to have experienced a more ancient decrease in population size (20,000-4,000 ya). In conclusion, the results of this first attempt at analyzing complete mtDNA sequences at the population level in sub-Saharan Africa not only support previous findings but also offer new insights into the demographic history of Pygmy populations, shedding new light on the ancient peopling of the African continent.  相似文献   

17.
We study data on variation in 52 worldwide populations at 377 autosomal short tandem repeat loci, to infer a demographic history of human populations. Variation at di-, tri-, and tetranucleotide repeat loci is distributed differently, although each class of markers exhibits a decrease of within-population genetic variation in the following order: sub-Saharan Africa, Eurasia, East Asia, Oceania, and America. There is a similar decrease in the frequency of private alleles. With multidimensional scaling, populations belonging to the same major geographic region cluster together, and some regions permit a finer resolution of populations. When a stepwise mutation model is used, a population tree based on TD estimates of divergence time suggests that the branches leading to the present sub-Saharan African populations of hunter-gatherers were the first to diverge from a common ancestral population (approximately 71-142 thousand years ago). The branches corresponding to sub-Saharan African farming populations and those that left Africa diverge next, with subsequent splits of branches for Eurasia, Oceania, East Asia, and America. African hunter-gatherer populations and populations of Oceania and America exhibit no statistically significant signature of growth. The features of population subdivision and growth are discussed in the context of the ancient expansion of modern humans.  相似文献   

18.
Technological and cultural innovations as well as climate changes are thought to have influenced the diffusion of major language phyla in sub-Saharan Africa. The most widespread and the richest in diversity is the Niger-Congo phylum, thought to have originated in West Africa ~ 10,000 years ago (ya). The expansion of Bantu languages (a family within the Niger-Congo phylum) ~ 5,000 ya represents a major event in the past demography of the continent. Many previous studies on Y chromosomal variation in Africa associated the Bantu expansion with haplogroup E1b1a (and sometimes its sublineage E1b1a7). However, the distribution of these two lineages extends far beyond the area occupied nowadays by Bantu-speaking people, raising questions on the actual genetic structure behind this expansion. To address these issues, we directly genotyped 31 biallelic markers and 12 microsatellites on the Y chromosome in 1,195 individuals of African ancestry focusing on areas that were previously poorly characterized (Botswana, Burkina Faso, Democratic Republic of Congo, and Zambia). With the inclusion of published data, we analyzed 2,736 individuals from 26 groups representing all linguistic phyla and covering a large portion of sub-Saharan Africa. Within the Niger-Congo phylum, we ascertain for the first time differences in haplogroup composition between Bantu and non-Bantu groups via two markers (U174 and U175) on the background of haplogroup E1b1a (and E1b1a7), which were directly genotyped in our samples and for which genotypes were inferred from published data using linear discriminant analysis on short tandem repeat (STR) haplotypes. No reduction in STR diversity levels was found across the Bantu groups, suggesting the absence of serial founder effects. In addition, the homogeneity of haplogroup composition and pattern of haplotype sharing between Western and Eastern Bantu groups suggests that their expansion throughout sub-Saharan Africa reflects a rapid spread followed by backward and forward migrations. Overall, we found that linguistic affiliations played a notable role in shaping sub-Saharan African Y chromosomal diversity, although the impact of geography is clearly discernible.  相似文献   

19.
Human population movements in North Africa have been mostly restricted to an east-west direction due to the geographical barriers imposed by the Sahara Desert and the Mediterranean Sea. Although these barriers have not completely impeded human migrations, genetic studies have shown that an east-west genetic gradient exists. However, the lack of genetic information of certain geographical areas and the focus of some studies in parts of the North African landscape have limited the global view of the genetic pool of North African populations. To provide a global view of the North African genetic landscape and population structure, we have analyzed ~2,300 North African mitochondrial DNA lineages (including 269 new sequences from Libya, in the first mtDNA study of the general Libyan population). Our results show a clinal distribution of certain haplogroups, some of them more frequent in Western (H, HV0, L1b, L3b, U6) or Eastern populations (L0a, R0a, N1b, I, J) that might be the result of human migrations from the Middle East, sub-Saharan Africa, and Europe. Despite this clinal pattern, a genetic discontinuity is found in the Libyan/Egyptian border, suggesting a differential gene flow in the Nile River Valley. Finally, frequency of the post-LGM subclades H1 and H3 is predominant in Libya within the H sequences, highlighting the magnitude of the LGM expansion in North Africa.  相似文献   

20.
The human genome is characterised by many runs of homozygous genotypes, where identical haplotypes were inherited from each parent. The length of each run is determined partly by the number of generations since the common ancestor: offspring of cousin marriages have long runs of homozygosity (ROH), while the numerous shorter tracts relate to shared ancestry tens and hundreds of generations ago. Human populations have experienced a wide range of demographic histories and hold diverse cultural attitudes to consanguinity. In a global population dataset, genome-wide analysis of long and shorter ROH allows categorisation of the mainly indigenous populations sampled here into four major groups in which the majority of the population are inferred to have: (a) recent parental relatedness (south and west Asians); (b) shared parental ancestry arising hundreds to thousands of years ago through long term isolation and restricted effective population size (N(e)), but little recent inbreeding (Oceanians); (c) both ancient and recent parental relatedness (Native Americans); and (d) only the background level of shared ancestry relating to continental N(e) (predominantly urban Europeans and East Asians; lowest of all in sub-Saharan African agriculturalists), and the occasional cryptically inbred individual. Moreover, individuals can be positioned along axes representing this demographic historic space. Long runs of homozygosity are therefore a globally widespread and under-appreciated characteristic of our genomes, which record past consanguinity and population isolation and provide a distinctive record of the demographic history of an individual's ancestors. Individual ROH measures will also allow quantification of the disease risk arising from polygenic recessive effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号