首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 82 毫秒
1.
Summary Curvularia lunata was grown in a stirred and aerated reactor for the production of extracellular rifamycin oxidase. Volumetric oxygen transfer coefficients (KLa) were measured for various stirrer speeds, rates of aeration and cell mass concentrations in the reactor. Stirrer speed and aeration rate were optimized and it was found that stirrer speeds of 400–500 rpm and aeration rates of 0.75–1 vvm were optimum for the maximum amount of enzyme production. It was noticed that the increase in cell mass decreased the oxygen transfer coefficient. It was also noticed that the organism formed pellets rather than mycelia when grown on glucose and with an increase in the concentration of glucose in the reactor, there was heavy pellet formation.  相似文献   

2.
The growth and production pattern of phytase by a filamentous fungus, Aspergillus niger van Teighem, were studied in submerged culture at varying agitation rates and controlled and uncontrolled pH conditions. Allowing the initial culture to grow under neutral condition with subsequent decline in pH resulted in increased phytase productivity. A maximum of 141 nkat/mL phytase was obtained when the broth pH was maintained at pH 2.5 as compared to 17 nkat/mL units at controlled pH 5.5. The culture morphology and rheological properties of the fermentation broth significantly varied with the agitation rate. The volumetric oxygen transfer coefficient was determined at different phases of fungal growth during batch fermentation using static gassing out and dynamic gassing out methods. The oxygen transfer coefficient (k(L)a) of the fermenter was found to be 125 h(-)(1) at 500 rpm as compared to 38 h(-)(1) at 200 rpm. The oxygen transfer rates at different phases of growth were significantly affected by cell mass concentration and fungal morphology. During the course of fermentation there was a gradual decline of k(L)a from 97 h(-)(1) on day 2 to 63 h(-)(1) on day 6 of fermentation, after which no significant change was observed. The degree of agitation considerably influenced the culture morphology where shear thinning of filamentous fungus was observed with the increase in agitation.  相似文献   

3.
Lavendamycin methyl ester (LME) is a derivative of a highly functionalized aminoquinone alkaloid lavendamycin and could be used as a scaffold for novel anticancer agent development. This work demonstrated LME production by cultivation of an engineered strain of Streptomyces flocculus CGMCC4.1223 ΔstnB1, while the wild-type strain did not produce. To enhance its production, the effect of shear stress and oxygen supply on ΔstnB1 strain cultivation was investigated in detail. In flask culture, when the shaking speed increased from 150 to 220 rpm, the mycelium was altered from a large pellet to a filamentous hypha, and the LME production was almost doubled, while no significant differences were observed among varied filling volumes, which implied a crucial role of shear stress in the morphology and LME production. To confirm this suggestion, experiments with agitation speed ranging from 400 to 1,000 rpm at a fixed aeration rate of 1.0 vvm were conducted in a stirred tank bioreactor. It was found that the morphology became more hairy with reduced pellet size, and the LME production was enhanced threefolds when the agitation speed increased from 400 to 800 rpm. Further experiments by varying initial k L a value at the same agitation speed indicated that oxygen supply only slightly affected the physiological status of ΔstnB1 strain. Altogether, shear stress was identified as a major factor affecting the cell morphology and LME production. The work would be helpful to the production of LME and other secondary metabolites by filamentous microorganism cultivation.  相似文献   

4.
The impact of different levels of agitation speed, carbondioxide and dissolved oxygen concentration on the key parameters and production of rhG-CSF in Escherichia coli BL21(DE3)PLysS were studied. Lower carbondioxide concentrations as well as higher agitation speeds and dissolved oxygen concentrations led to reduction in the acetate concentrations, and enhanced the cell growth, but inhibited plasmid stability and rhG-CSF expression. Similarly, higher carbondioxide concentrations and lower agitation speeds as well as dissolved oxygen concentrations led to enhanced acetate concentrations, but inhibited the cell growth and protein expression. To address the bottlenecks, a two-stage agitation control strategy (strategy-1) and two-stage dissolved oxygen control strategy (strategy-2) were employed to establish the physiological and metabolic conditions, so as to improve the expression of rhG-CSF. By adopting strategy-1 the yields were improved 1.4-fold over constant speed of 550 rpm, 1.1-fold over constant dissolved oxygen of 45%, respectively. Similarly, using strategy-2 the yields were improved 1.6-fold over constant speed of 550 rpm, 1.3-fold over constant dissolved oxygen of 45%, respectively.  相似文献   

5.
The effects of pH, agitation speed, and dissolved oxygen tension (DOT), significant in common fungal fermentations, on the production of polygalacturonase (PG) enzyme and their relation to morphology and broth rheology were investigated using Aspergillus sojae in a batch bioreactor. All three factors were effective on the response parameters under study. An uncontrolled pH increased biomass and PG activity by 27% and 38%, respectively, compared to controlled pH (pH 6) with an average pellet size of 1.69 +/- 0.48 mm. pH did not significantly affect the broth rheology but created an impact on the pellet morphology. Similarly, at constant agitation speed the maximum biomass obtained at 500 rpm and at 30 h was 3.27 and 3.67 times more than at 200 and 350 rpm, respectively, with an average pellet size of 1.08 +/- 0.42 mm. The maximum enzyme productivity of 0.149 U mL-1 h-1 was obtained at 200 rpm with an average pellet size of 0.71 +/- 0.35 mm. Non-Newtonian and pseudoplastic broth rheology was observed at 500 rpm agitation speed, broth rheology exhibited dilatant behavior at the lower agitation rate (200 rpm), and at the medium agitation speed (350 rpm) the broth was close to Newtonian. Furthermore, a DOT range of 30-50% was essential for maximum biomass formation, whereas only 10% DOT was required for maximum PG synthesis. Non-Newtonian shear thickening behavior (n > 1.0) was depicted at DOT levels of 10% and 30%, whereas non-Newtonian shear thinning behavior (n < 1.0) was dominant at 50% DOT. The overall fermentation duration (50-70 h) was considerably shorter compared to common fungal fermentations, revealing the economic feasibility of this particular process. As a result this study not only introduced a new strain with a potential of producing a highly commercially significant enzyme but also provided certain parameters significant in the design and mathematical modeling of fungal bioprocesses.  相似文献   

6.
Effects of pellet morphology on broth rheology are reported for pelleted submerged cultures of the lovastatin producing filamentous fungus Aspergillus terreus, growing in fluidized bed and stirred tank bioreactors. The pellet diameter and compactness were affected by the agitation intensity of the broth; however, the total biomass productivity was not affected. In fluidized beds and stirred tanks with agitation intensity of up to 300 rpm (impeller tip speed of 1.02 m s−1), the fungal pellets were stable at diameters of up to about 2300 μm. In more intensely agitated stirred tanks (≥600 rpm; impeller tip speed of ≥2.03 m s−1), the stable pellet size was only about ≤900 μm. The biomass concentration and the pellet diameter were the main factors that influenced the flow index and the consistency index of the power-law broths. Because the biomass productivity was the same in all experiments in a given type of reactor and the oxygen concentration was kept at ∼400% of air saturation, the pellet size and morphology were not influenced by oxygen mass transfer effects. Pellets were always dense in the core region and no necrosis of the biomass occurred.  相似文献   

7.
Cellulase producing activity of Trichoderma reesei QM9414 was examined under various agitation intensities and at the dissolved oxygen concentration above 3 ppm. The producing activity greatly depended upon the agitation intensity, and the dependence on the agitation was different for each cellulase-constituting component. The maximum producing activities of FPA, CM Case, and beta-glucosidase were obtained under different agitation conditions, 1.0, 0.7, and 1.4 m/s in tip velocity, respectively. Intensive agitation brought about remarkable reduction in all cellulase components. The mycelial transformation through agitation intensity was also observed. Comparatively mild agitation of 0.3-1.0 m/s caused pellet formation as the culture progressed, although the pelletization was delayed with increasing agitation intensity. The behavior of the pelletization did not occur at 1.3 and 1.7 m/s throughout the course of cultivation, and under the latter agitation condition hyphae were broken up into short fragments. The cellulase producing activity is discussed in relation to such morphological changes.  相似文献   

8.
Strategies for penicillin fermentation in tower-loop reactors   总被引:1,自引:0,他引:1  
Since it has not been possible to produce penicillin in tower-loop reactors with highly viscous filamentous molds of Penicillium chrysogenum which are employed in stirred-tank reactors, a new strategy has been developed to avoid the formation of this morphology and to use the pellet form of the fungi. When employing definite impeller speeds in the subculture in connection with definite inoculum amounts and substrate concentrations in the main culture (bubble column), it is possible to generate a suspension of isolated small pellets, which shows a low broth viscosity up to a sediment content of 45% over the entire fermentation time. Volumetric mass-transfer coefficients k(L)as are by a factor of 4 to 5 higher in these pellet suspensions than in filamentous broths. It was easy to maintain the necessary oxygen supply for penicillin production in these pellet suspensions. Under these conditions the specific penicillin productivities were higher with regard to power input (up to 90%), biomass, and consumed substrate than in the stirred-tank reactors with highly viscous filamentous morphology of the fungi. Under nonoptimized operating conditions the absolute penicillin production in the tower loop was 35% lower than in the stirred-tank reactor due to lower possible biomass concentrations. The separation of the biomass, and therefore the penicillin recovery, is much simpler when employing pellets. It is shown how the particular mass transfer resistances at the gas/liquid and liquid/pellet interfaces and within the pellets change with the pellet diameter. There should be a particular pellet diameter at which penicillin productivity has its maximum. These investigations indicate that the use of tower-loop reactors can, in the future, be an alternative for more economical penicillin production methods.  相似文献   

9.
The growth rate and desulfurization capacity accumulated by the cells during the growth of Pseudomonas putida KTH2 under different oxygen transfer conditions in a stirred and sparged tank bioreactor have been studied. Hydrodynamic conditions were changed using different agitation conditions. During the culture, several magnitudes associated to growth, such as the specific growth rate, the dissolved oxygen concentration and the carbon source consumption have been measured. Experimental results indicate that cultures are influenced by the fluid dynamic conditions into the bioreactor. An increase in the stirrer speed from 400 to 700 rpm has a positive influence on the cell growth rate. Nevertheless, the increase of agitation from 700 to 2000 rpm hardly has any influence on the growth rate. The effect of fluid dynamics on the cells development of the biodesulfurization (BDS) capacity of the cells during growth is different. The activities of the intracellular enzymes involved in the 4S pathway change with dissolved oxygen concentration. The enzyme activities have been evaluated in cells at several growth time and different hydrodynamic conditions. An increase of the agitation from 100 to 300 rpm has a positive influence on the development of the overall BDS capacity of the cells during growth. This capacity shows a decrease for higher stirrer speeds and the activity of the enzymes monooxygenases DszC and DszA decreases dramatically. The highest value of the activity of DszB enzyme was obtained with cells cultured at 100 rpm, while this activity decreases when the stirrer speed was increased higher than this value.  相似文献   

10.
The growth kinetics of Streptomyces noursei NRRL 5126 was investigated under different aeration and agitation combinations in a 5.0 l stirred tank fermenter. Poly-epsilon-lysine biosynthesis, cell mass formation, and glycerol utilization rates were affected markedly by both aeration and agitation. An agitation speed of 300 rpm and aeration rate at 2.0 vvm supported better yields of 1,622.81 mg/l with highest specific productivity of 15 mg/l.h. Fermentation kinetics performed under different aeration and agitation conditions showed poly- epsilon-lysine fermentation to be a growth-associated production. A constant DO at 40% in the growth phase and 20% in the production phase increased the poly-epsilon-lysine yield as well as cell mass to their maximum values of 1,992.35 mg/l and 20.73 g/l, respectively. The oxygen transfer rate (OTR), oxygen utilization rate (OUR), and specific oxygen uptake rates (qO2) in the fermentation broth increased in the growth phase and remained unchanged in the stationary phase.  相似文献   

11.
The effect of agitation speeds on the performance of producing pyruvate by a multi-vitamin auxotrophic yeast, Torulopsis glabrata, was investigated in batch fermentation. High pyruvate yield on glucose (0.797 g g(-1)) was achieved under high agitation speed (700 rpm), but the glucose consumption rate was rather low (1.14 g l(-1) h(-1)). Glucose consumption was enhanced under low agitation speed (500 rpm), but the pyruvate yield on glucose decreased to 0.483 g g(-1). Glycerol production was observed under low agitation speed and decreased with increasing agitation speed. Based on process analysis and carbon flux distribution calculation, a two-stage oxygen supply control strategy was proposed, in which the agitation speed was controlled at 700 rpm in the first 16 h and then switched to 500 rpm. This was experimentally proven to be successful. Relatively high concentration of pyruvate (69.4 g l(-1)), high pyruvate yield on glucose (0.636 g g(-1)), and high glucose consumption rate (1.95 g l(-1)h(-1)) were achieved by applying this strategy. The productivity (1.24 g l(-1) h(-1)) was improved by 36%, 23% and 31%, respectively, compared with fermentations in which agitation speeds were kept constant at 700 rpm, 600 rpm, and 500 rpm. Experimental results indicate that the difference between the performances for producing pyruvate under a favorable state of oxygen supply (dissolved oxygen concentration >50%) was caused by the different regeneration pathways of NADH generated from glycolysis.  相似文献   

12.
An attempt was made to find out the optimum aeration and agitation rates on the production of bacterial rennet from Bacillus sublilis K-26 using 5% wheat bran medium in a 13 liter fermentor. The enzyme activity and the growth rate were shown to increase with an increase in the rate of agitation. The fermentation experiments carried out at an agitation rate of 400 rpm showed an approximate threefold increase in enzyme activity with a considerable decrease in the fermentation time over those agitated at 200 and 300 rpm. The beneficial effect of a higher oxygen rate was observed for enzyme production occurring at a lower agitation rate. The inoculum activity and the varying amounts of antifoam agent which were added showed no apparent effect either on the total incubation time or on the final enzyme activity. It has been suggested that an agitation rate of 400 rpm with an aeration level of 3000 cc/min are the optimum values for the efficient production of bacterial rennet from B. subtilis K-26 using 5% wheat bran medium in a 13 liter fermentor.  相似文献   

13.
Summary A simple staining procedure, associated with image analysis, was used to discriminate two zones (the filamentous zones and the compacted cores) in aggregates of fungal biomass according to their accessibility for an agent of the medium. The application of the method to batch fermentations of Schizophyllum commune showed a higher proportion of loosely entangled particles (clumps) and thinner filamentous outer zones obtained at a high agitation speed (500 rpm) compared to low agitation speeds (120–200 rpm).  相似文献   

14.
Unusual composition of an exopolymer (EP) from an obligate halophilic bacterium Chromohalobacter canadensis 28 has triggered an interest in development of an effective bioreactor process for its production. Its synthesis was investigated in 2‐L bioreactor at agitation speeds at interval 600‐1000 rpm, at a constant air flow rate of 0.5 vvm; aeration rates of 0.5, 1.0, and 1.5 vvm were tested at constant agitation rate of 900 rpm. EP production was affected by both, agitation and aeration. As a result twofold increase of EP yield was observed and additionally increased up to 3.08 mg/mL in a presence of surfactants. For effective scale‐up of bioreactors mass transfer parameters were estimated and lowest values of KLa obtained for the highest productivity fermentation was established. Emulsification activity of EP exceeded that of trade hydrocolloids xanthan, guar gum, and cellulose. A good synergism between EP and commercial cellulose proved its potential exploration as an enhancer of emulsifying properties of trade emulsions. A pronounced lipophilic effect of EP was established toward olive oil and liquid paraffin. Cultivation of human keratinocyte cells (HaCaT) with crude EP and purified γ‐polyglutamic acid (PGA) showed higher viability than control group.  相似文献   

15.
Factorial design and response surface analyses were used to optimize the production of inulinase (2,1-β-d-fructan fructanohydrolase, EC 3.2.1.7) by Kluyveromyces marxianus ATCC 16045, using sucrose as carbon source. Effects of aeration, agitation and type of impeller (disk turbine, marine, pitched blade) were studied in a batch stirred reactor. Two factorial designs 22 were carried out. Agitation speed varied from 50 to 550 rpm (revolution per minute), aeration rate from 0.5 to 2.0 vvm (air volume/broth volume·minute). It has been shown that the enzyme production was strongly influenced by mixing conditions, while aeration rate was shown to be less significant. Additionally, the increase in the agitation speed is limited by the death rate, which increases drastically at high speeds, lowering the enzyme production. Also, the impeller type has significant influence in the production, the disk impeller at 450 rpm and aeration at 1.0 vvm led to an activity of 121 UI/mL, while the pitched blade was shown to be the best impeller for this process, leading to the best production, 176 UI/mL, at 450 rpm and 1.0 vvm. The maximum shear stress for inulinase production was about 0.22 Pa, since higher values cause higher cell death rates, affecting the enzyme production. The same results were confirmed with another microorganism, which was also sensible to shear stress. Therefore, it has been concluded that in some cases, mainly when the microorganism is sensible to shear stress, the interaction between mass transfer and mechanical stress should be considered in scale up processes.  相似文献   

16.
The effects of agitation and aeration upon synthesis and molecular weight of the biopolymer gellan were systematically investigated in batch fermenter cultures of the bacterium, Sphingomonas paucimobilis. High aeration rates and vigorous agitation enhanced growth of S. paucimobilis. Although gellan formation occurred mainly in parallel with cell growth, the increase in cells able to synthesise gellan did not always lead to high gellan production. For example, at very high agitation rates (1000 rpm) growth was stimulated at the expense of biopolymer synthesis.Maximal gellan concentration was obtained at 500 rpm agitation and either 1 or 2 vvm aeration (12.3 and 12.4 g/l gellan, respectively). An increase in aeration (from 1 to 2 vvm) enhanced gellan synthesis only at low agitation rates (250 rpm). However, high aeration or dissolved oxygen was not necessary for high gellan synthesis, in fact oxygen limitation always preceded the phase of maximum gellan production and probably enhanced polysaccharide biosynthesis.Some gellan was formed even after glucose exhaustion. This was attributed to the intracellular accumulation of polyhydroxyalkanoates, (such as polyxydroxybutyrate) which were found in S. paucimobilis cells indicating the existence of a carbon storage system, which may contribute to gellan biosynthesis under glucose-limiting conditions.The autolysis of the culture, which occurred at the late stages of the process, seemed to be triggered mainly by limitations in mass (nutrient) transfer, due to the highly viscous process fluid that gradually develops. Rheological measurements generally gave a very good near real time estimate of maximum biopolymer concentration offering the possibility of improved process control relative to time consuming gravimetric assay methods.While mechanical depolymerisation of gellan did not occur, high aeration rates (2 vvm) led to production of gellan of low molecular weight (at either 250 or 500 rpm). This effect of aeration rate upon gellan molecular weight is reported here for the first time, and is important for the properties and applications of gellan. Mechanisms which may have led to this are discussed, but control of molecular weight of the biopolymers is clearly an area needing further research.  相似文献   

17.
Dissolved oxygen is one of the most important bioprocess parameters that could affect cell growth and product formation, and it is easy to control by changing agitation speed. In this work, the effects of agitation speed on the performance of riboflavin production by recombinant Bacillus subtilis RF1 was investigated in fed-batch fermentation. The lower agitation speed (600 rpm) was beneficial for cell growth and riboflavin biosynthesis in the initial phase of fermentation process. While, during the later phase, higher agitation speed (900 rpm) was favor for cell growth and riboflavin biosynthesis. Thus, a two-stage agitation speed control strategy was proposed based on kinetic analysis, in which the agitation speed was controlled at 600 rpm in the first 26 h and then switched to 900 rpm to maintain high μ for cell growth and high q p for riboflavin production during the entire fermentation process. However, it was observed that a sharp increase of agitation speed resulted in an adverse effect on cell growth and riboflavin synthesis within a short time. To avoid this phenomenon, a multi-stage agitation speed control strategy was set up based on the two-stage control strategy, the maximum concentration of riboflavin reached 9.4 g l?1 in 48 h with the yield of 0.051 g g?1 by applying this strategy, which were 20.5 and 21.4 % over the best results controlled by constant agitation speeds.  相似文献   

18.
Hydrogen may be considered a potential fuel for the future since it is carbon-free and oxidized to water as a combustion product. Bioconversion of synthesis gas (syngas) to hydrogen was demonstrated in continuous stirred tank bioreactor (CSTBR) utilizing acetate as a carbon source. An anaerobic photosynthetic bacterium, Rhodospirillum rubrum catalyzed water-gas shift reaction which was applied for the bioconversion of syngas to hydrogen. The continuous fermentation of syngas in the bioreactor was continuously operated at various gas flow rates and agitation speeds, for the period of two months. The gas flow rates were varied from 5 to 14 ml/min. The agitation speeds were increasingly altered in the range of 150-500 rpm. The pH and temperature of the bioreactor was set at 6.5 and 30 degrees C. The liquid flow rate was kept constant at 0.65 ml/min for the duration of 60 days. The inlet acetate concentration was fed at 4 g/l into the bioreactor. The hydrogen production rate and yield were 16+/-1.1 mmol g(-1)cell h(-1) and 87+/-2.4% at fixed agitation speed of 500 rpm and syngas flow rate of 14 ml/min, respectively. The mass transfer coefficient (KLa) at this condition was approximately 72.8h(-1). This new approach, using a biocatalyst was considered as an alternative method of conventional Fischer-Tropsch synthetic reactions, which were able to convert syngas into hydrogen.  相似文献   

19.
We previously reported that, although agitation conditions strongly affected mycelial morphology, such changes did not lead to different levels of recombinant protein production in chemostat cultures of Aspergillus oryzae (Amanullah et al., 1999). To extend this finding to another set of operating conditions, fed-batch fermentations of A. oryzae were conducted at biomass concentrations up to 34 g dry cell weight/L and three agitation speeds (525, 675, and 825 rpm) to give specific power inputs between 1 and 5 kWm(-3). Gas blending was used to control the dissolved oxygen level at 50% of air saturation except at the lowest speed where it fell below 40% after 60-65 h. The effects of agitation intensity on growth, mycelial morphology, hyphal tip activity, and recombinant protein (amyloglucosidase) production in fed-batch cultures were investigated. In the batch phase of the fermentations, biomass concentration, and AMG secretion increased with increasing agitation intensity. If in a run, dissolved oxygen fell below approximately 40% because of inadequate oxygen transfer associated with enhanced viscosity, AMG production ceased. As with the chemostat cultures, even though mycelial morphology was significantly affected by changes in agitation intensity, enzyme titers (AGU/L) under conditions of substrate limited growth and controlled dissolved oxygen of >50% did not follow these changes. Although the measurement of active tips within mycelial clumps was not considered, a dependency of the specific AMG productivity (AGU/g biomass/h) on the percentage of extending tips was found, suggesting that protein secretion may be a bottle-neck in this strain during fed-batch fermentations.  相似文献   

20.
The effects of agitation on fragmentation of a recombinant strain of Aspergillus oryzae and its consequential effects on protein production have been investigated. Constant mass, 5.3-L chemostat cultures at a dilution rate of 0.05 h-1 and a dissolved oxygen level of 75% air saturation, have been conducted at 550, 700, and 1000 rpm. These agitation speeds were chosen to cover a range of specific power inputs (2.2 to 12 kW m-3) from realistic industrial levels to much higher values. The use of a constant mass chemostat linked to a gas blender allowed variation of agitation speed and hence gas hold-up without affecting the dilution rate or the concentration of dissolved oxygen. The morphology of both the freely dispersed mycelia and clumps was characterized using image analysis. Statistical analysis showed that it was possible to obtain steady states with respect to morphology. The mean projected area at each steady state under growing conditions correlated well with the 'energy dissipation/circulation" function, [P/(kD3tc)], where P is the power input, D the impeller diameter, tc the mean circulation time, and k is a geometric constant for a given impeller. Rapid transients of morphological parameters in response to a speed change from 1000 to 550 rpm probably resulted from aggregation. Protein production (alpha-amylase and amyloglucosidase) was found to be independent of agitation speed in the range 550 to 1000 rpm (P/V = 2.2 and 12.6 kW m-3, respectively), although significant changes in mycelial morphology could be measured for similar changes in agitation conditions. This suggests that mycelial morphology does not directly affect protein production (at a constant dilution rate and, therefore, specific growth rate). An understanding of how agitation affects mycelial morphology and productivity would be valuable in optimizing the design and operation of large-scale fungal fermentations for the production of recombinant proteins. Copyright 1999 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号