共查询到20条相似文献,搜索用时 31 毫秒
1.
Successful reproduction is critical to pass genes to the next generation. Seminal proteins contribute to important reproductive processes that lead to fertilization in species ranging from insects to mammals. In Drosophila, the male's accessory gland is a source of seminal fluid proteins that affect the reproductive output of males and females by altering female post-mating behavior and physiology. Protein classes found in the seminal fluid of Drosophila are similar to those of other organisms, including mammals. By using RNA interference (RNAi) to knock down levels of individual accessory gland proteins (Acps), we investigated the role of 25 Acps in mediating three post-mating female responses: egg production, receptivity to remating and storage of sperm. We detected roles for five Acps in these post-mating responses. CG33943 is required for full stimulation of egg production on the first day after mating. Four other Acps (CG1652, CG1656, CG17575, and CG9997) appear to modulate the long-term response, which is the maintenance of post-mating behavior and physiological changes. The long-term post-mating response requires presence of sperm in storage and, until now, had been known to require only a single Acp. Here, we discovered several novel Acps together are required which together are required for sustained egg production, reduction in receptivity to remating of the mated female and for promotion of stored sperm release from the seminal receptacle. Our results also show that members of conserved protein classes found in seminal plasma from insects to mammals are essential for important reproductive processes. 相似文献
2.
Evidence for positive selection on Drosophila melanogaster seminal fluid protease homologs 总被引:1,自引:0,他引:1
Proteins present in the seminal fluid of Drosophila melanogaster (accessory gland proteins Acps) contribute to female postmating behavioral changes, sperm storage, sperm competition, and immunity. Consequently, male-female coevolution and host-pathogen interactions are thought to underlie the rapid, adaptive evolution that characterizes several Acp-encoding genes. We propose that seminal fluid proteases are likely targets of selection due to their demonstrated or potential roles in between-sex interactions and immune processes. We use within- and between-species sequence data for 5 predicted protease-encoding Acp loci to test this hypothesis. Our polymorphism-based analyses find evidence for positive selection at 2 genes, both of which encode predicted serine protease homologs. One of these genes, CG6069, also shows evidence for consistent selection on a subset of codons over a deeper evolutionary time scale. The second gene, CG9997, was previously shown to be essential for normal sperm usage, suggesting that sexual selection may underlie its history of adaptation. 相似文献
3.
Targeted gene deletion and phenotypic analysis of the Drosophila melanogaster seminal fluid protease inhibitor Acp62F 总被引:2,自引:0,他引:2 下载免费PDF全文
Internally fertilizing organisms transfer a complex assortment of seminal fluid proteins, a substantial fraction of which are proteolysis regulators. In mammals, some seminal protease inhibitors have been implicated in male infertility and these same molecular classes of protease inhibitors are also found in Drosophila seminal fluid. Here, we tested the reproductive functions of the Drosophila melanogaster seminal fluid protease inhibitor Acp62F by generating a precise deletion of the Acp62F gene. We did not detect a nonredundant function for Acp62F in modulating the egg laying, fertility, remating frequency, or life span of mated females. However, loss of Acp62F did alter a male's defensive sperm competitive ability, consistent with the localization of Acp62F to sperm storage organs. In addition, the processing of at least one seminal protein, the ovulation hormone ovulin, is slower in the absence of Acp62F. 相似文献
4.
Oliver Lung Uyen Tram Casey M Finnerty Marcie A Eipper-Mains John M Kalb Mariana F Wolfner 《Genetics》2002,160(1):211-224
Drosophila melanogaster seminal fluid proteins stimulate sperm storage and egg laying in the mated female but also cause a reduction in her life span. We report here that of eight Drosophila seminal fluid proteins (Acps) and one non-Acp tested, only Acp62F is toxic when ectopically expressed. Toxicity to preadult male or female Drosophila occurs upon one exposure, whereas multiple exposures are needed for toxicity to adult female flies. Of the Acp62F received by females during mating, approximately 10% enters the circulatory system while approximately 90% remains in the reproductive tract. We show that in the reproductive tract, Acp62F localizes to the lumen of the uterus and the female's sperm storage organs. Analysis of Acp62F's sequence, and biochemical assays, reveals that it encodes a trypsin inhibitor with sequence and structural similarities to extracellular serine protease inhibitors from the nematode Ascaris. In light of previous results demonstrating entry of Acp62F into the mated female's hemolymph, we propose that Acp62F is a candidate for a molecule to contribute to the Acp-dependent decrease in female life span. We propose that Acp62F's protease inhibitor activity exerts positive protective functions in the mated female's reproductive tract but that entry of a small amount of this protein into the female's hemolymph could contribute to the cost of mating. 相似文献
5.
6.
Reduced defense against infection is commonly observed as a consequence of reproductive activity, but little is known about how post-mating immunosuppression occurs. In this work, we use Drosophila melanogaster as a model to test the role of seminal fluid components and egg production in suppressing post-mating immune defense. We also evaluate whether systemic immune system activity is altered during infection in mated females. We find that post-mating reduction in female defense depends critically on male transfer of sperm and seminal fluid proteins, including the accessory gland protein known as "sex peptide." However, the effect of these male factors is dependent on the presence of the female germline. We find that mated females have lower antimicrobial peptide gene expression than virgin females in response to systemic infection, and that this lower expression correlates with higher systemic bacterial loads. We conclude that, upon receipt of sperm and seminal fluid proteins, females experience a germline-dependent physiological shift that directly or indirectly reduces their overall ability to defend against infection, at least in part through alteration of humoral immune system activity. 相似文献
7.
Functions and analysis of the seminal fluid proteins of male Drosophila melanogaster fruit flies 总被引:6,自引:0,他引:6
The study of insect seminal fluid proteins provides a unique window upon adaptive evolution in action. The seminal fluid of Drosophila melanogaster contains over 80 proteins and peptides, which are transferred together with sperm by mating males. The functions of many of these substances are not yet known. However, those that have been characterized have marked effects on the reproductive success of males and females. For example, seminal fluid proteins and peptides can decrease female receptivity, can increase egg production and can increase sperm storage, and are necessary for sperm transfer and success in sperm competition. In this review we focus on the currently known functions of seminal fluid molecules and on new technologies and approaches that are enabling novel questions about their form and function to be addressed. We discuss how techniques for disrupting the production of seminal fluid proteins, such as homologous recombination and RNA interference, along with the use of microarrays and yeast two hybrid systems, should allow us to address ever more sophisticated questions about seminal fluid protein function. These and similar techniques promise to reveal the function of naturally-occurring variants of these proteins and hence the evolutionary significance of genetic variation for them. 相似文献
8.
The seminal fluid that is transferred along with sperm during mating acts in many ways to maximize a male's reproductive success. Here, we use transgenic Drosophila melanogaster males deficient in the seminal fluid proteins derived from the accessory gland (Acps) to investigate the role of these proteins in the fate of sperm transferred to females during mating. Competitive PCR assays were used to show that while Acps contribute to the efficiency of sperm transfer, they are not essential for the transfer of sperm to the female. In contrast, we found that Acps are essential for storage of sperm by females. Direct counts of stored sperm showed that 10% of normal levels are stored by females whose mates transfer little or no Acps along with sperm. 相似文献
9.
The calcium-dependent proteolytic system calpain-calpastatin in Drosophila melanogaster. 总被引:1,自引:0,他引:1 下载免费PDF全文
Ca2+-dependent proteolytic activity was detected at pH 7.5 in head extracts of the fruit fly Drosophila melanogaster. This activity was abolished by iodoacetate, but was unaffected by phenylmethanesulphonyl fluoride. These properties resemble those of the Ca2+-dependent thiol-proteinase calpain. The activity appeared at Mr 280,000 on Sepharose CL-6B gel chromatography. DEAE-cellulose chromatography revealed two activity peaks, with elution positions corresponding to vertebrate calpains I and II. The fly head enzymes were inhibited by a heat-stable and trypsin-sensitive component of the fly head extract, which also inhibited calpains from rat kidney. The inhibitor emerged from Sepharose CL-6B columns at Mr 310,000 and from DEAE-cellulose at a position corresponding to the protein inhibitor calpastatin from other sources. It is concluded that Drosophila heads comprise the Ca2+-dependent calpain-calpastatin proteolytic system. 相似文献
10.
Sarah M. Short Brian P. Lazzaro 《Proceedings. Biological sciences / The Royal Society》2010,277(1700):3649-3657
Post-mating reduction in immune defence is common in female insects, and a trade-off between mating and immunity could affect the evolution of immunity. In this work, we tested the capacity of virgin and mated female Drosophila melanogaster to defend against infection by four bacterial pathogens. We found that female D. melanogaster suffer post-mating immunosuppression in a pathogen-dependent manner. The effect of mating was seen after infection with two bacterial pathogens (Providencia rettgeri and Providencia alcalifaciens), though not after infection with two other bacteria (Enterococcus faecalis and Pseudomonas aeruginosa). We then asked whether the evolution of post-mating immunosuppression is primarily a ‘female’ or ‘male’ trait by assaying for genetic variation among females for the degree of post-mating immune suppression they experience and among males for the level of post-mating immunosuppression they elicit in their mates. We also assayed for an interaction between male and female genotypes to test the specific hypothesis that the evolution of a trade-off between mating and immune defence in females might be being driven by sexual conflict. We found that females, but not males, harbour significant genetic variation for post-mating immunosuppression, and we did not detect an interaction between female and male genotypes. We thus conclude that post-mating immune depression is predominantly a ‘female’ trait, and find no evidence that it is evolving under sexual conflict. 相似文献
11.
12.
Chapman T Herndon LA Heifetz Y Partridge L Wolfner MF 《Proceedings. Biological sciences / The Royal Society》2001,268(1477):1647-1654
Drosophila melanogaster male accessory gland proteins (Acps) that are transferred in the ejaculate with sperm mediate post-mating competition for fertilizations between males. The actions of Acps include effects on oviposition and ovulation, receptivity and sperm storage. Two Acps that modulate egg production are Acp26Aa (ovulin) and Acp70A (the sex peptide). Acp26Aa acts specifically on the process of ovulation (the release of mature eggs from the ovaries), which is initiated 1.5 h after mating. In contrast, sperm storage can take as long as 6-9 h to complete. Initial ovulations after matings by virgin females will therefore occur before all sperm are fully stored and the extra eggs initially laid as a result of Acp26Aa transfer are expected to be inefficiently fertilized. Acp26Aa-mediated release of existing eggs should not cause a significant energetic cost or lead to a decrease in female lifespan assuming, as seems likely, that the energetic cost of egg laying comes from de novo egg synthesis (oogenesis) rather than from ovulation. We tested these predictions using Acp26Aa(1) mutant males that lack Acp26Aa but are normal for other Acps and Acp26Aa(2) males that transfer a truncated but fully functional Acp26Aa protein. Females mating with Acp26Aa(2) (truncation) males that received functional Acp26Aa produced significantly more eggs following their first matings than did mates of Acp26Aa(1) (null) males. However, as predicted above, these extra eggs, which were laid as a result of Acp26Aa transfer to virgin females, showed significantly lower egg hatchability. Control experiments indicated that this lower hatchability was due to lower rates of fertilization at early post-mating times. There was no drop in egg hatchability in subsequent non-virgin matings. In addition, as predicted above, females that did or did not receive Acp26Aa did not differ in survival, lifetime fecundity or lifetime progeny, indicating that Acp26Aa transfer does not represent a significant energetic cost for females and does not contribute to the survival cost of mating. Acp26Aa appears to remove a block to oogenesis by causing the clearing out of existing mature eggs and, thus, indirectly allowing oogenesis to be initiated immediately after mating. The results show that subtle processes coordinate the stimulation of egg production and sperm storage in mating pairs. 相似文献
13.
14.
Fan Y Rafaeli A Moshitzky P Kubli E Choffat Y Applebaum SW 《Insect biochemistry and molecular biology》2000,30(8-9):805-812
Sex peptide (SP) and Ductus ejaculatorius peptide (Dup) 99B are synthesized in the retrogonadal complex of adult male Drosophila melanogaster, and are transferred in the male seminal fluid to the female genital tract during mating. They have been sequenced and shown to exhibit a high degree of homology in the C-terminal region. Both affect subsequent mating and oviposition by female D. melanogaster. SP also increases in vitro juvenile hormone (JH) biosynthesis in excised corpora allata (CA) of D. melanogaster and Helicoverpa armigera. We herein report that the partial C-terminal peptides SP(8-36) and SP(21-36) of D. melanogaster, and the truncated N-terminal SP(6-20) do not stimulate JH biosynthesis in vitro in CA of both species. Both of these C-terminal peptides reduce JH-III biosynthesis significantly. Dup99B, with no appreciable homology to SP in the N-terminal region, similarly lacks an effect on JH production by H. armigera CA. In contrast, the N-terminal peptides - SP(1-11) and SP(1-22) - do significantly activate JH biosynthesis of both species in vitro. We conclude that the first five N-terminal amino acid residues at the least, are essential for allatal stimulation in these disparate insect species. We have previously shown that the full-length SP(1-36) depresses pheromone biosynthesis in H. armigera in vivo and in vitro. We now show that full-length Dup99B and the C-terminal partial sequence SP(8-36) at low concentrations strongly depress (in the range of 90% inhibition) PBAN-stimulated pheromone biosynthesis of H. armigera. In addition, the N-terminal peptide SP(1-22), the shorter N-terminal peptide SP(1-11) and the truncated N-terminal SP(6-20) strongly inhibit pheromone biosynthesis at higher concentrations. 相似文献
15.
16.
Wade E. Winterhalter Kenneth M. Fedorka 《Proceedings. Biological sciences / The Royal Society》2009,276(1659):1109-1117
Ecological immunology attempts to explain variation in immune function. Much of this work makes predictions about how potential hosts should invest in overall immunity. However, this ‘overall’ perspective under-emphasizes other critical aspects, such as the specificity, inducibility and timing of an immune response. Here, we investigate these aspects by examining gene regulation across several immune system components in both male and female Drosophila melanogaster prior to and after mating. To elucidate potentially important temporal dynamics, we also assayed several genes over time. We found that males and females emphasized different components of their immune system, however overall investment was similar. Specifically, the sexes emphasized different gene paralogues within major gene families, and males tended to invest more in gram-negative defence. By contrast, the inducibility of the immune response was both transient (lasting approx. 24 hours) and equal between the sexes. Furthermore, mating tended to induce humoral gene upregulation, while cell-mediated genes were unaffected. Within the humoral system, gram-negative bacterial defence genes exhibited a greater inducibility than those associated with fungal or gram-positive bacterial defence. Our results suggest that variation in the effectiveness of the immune response between the sexes may be driven by differences in emphasis rather than overall investment. 相似文献
17.
The adenylate cyclase/cAMP signaling pathway and adult mushroom bodies (MBs) have been shown to play an important role in sleep regulation in Drosophila. The amnesiac (amn) gene, encodes a neuropeptide that is homologous with vertebrate pituitary adenylate cyclase-activating peptide (PACAP), is expressed in dorsal paired medial (DPM) neurons and is required for the middle-term memory (MTM) in flies. However, the role of amn on regulation of sleep is as yet unknown. Here we provide evidence that amn plays a major role on sleep maintenance and onset in Drosophila. Flies with the amnesiac allele, loss-of-function amnX8 mutation, showed a fragmented sleep pattern and short sleep latency. Moreover, homeostatic regulation was disrupted in amnX8 mutants after sleep deprivation. Sleep maintenance was also influenced by disruption of neurotransmission in DPM neurons with increased sleep bout number and decreased sleep bout length. Furthermore, age-related sleep fragmentation and initiation were inhibited in amnX8 mutant flies. These data suggest that amn is required in initiation and maintenance of sleep. 相似文献
18.
Fricke C Bretman A Chapman T 《Evolution; international journal of organic evolution》2008,62(12):3170-3177
Explanations for the maintenance of variation in reproductive traits influenced by seminal fluid accessory gland proteins (Acps) in male Drosophila melanogaster include nontransitivity in the outcome of sperm competition and/or condition dependence of the traits involved. We investigated the effects of adult male nutrition (five diets) on the expression of Acp- and sperm- mediated traits. We found novel, nonlinear effects, with females showing lower levels of refractoriness to remating after mating with males held on the lowest and highest yeast diets. There were no significant effects of adult male nutrition on male paternity share, but there was a striking, nonlinear effect on second male progeny production, with males kept on intermediate yeast diets fathering the highest number of offspring. Such "bell shaped" responses of life-history traits to nutrition have only previously been reported for longevity. Consistent with previous reports, males maintained on low protein diets had lower premating success and gained fewer rematings with nonvirgins. We show novel and body size independent effects of adult male nutrition on traits influenced by Acps and sperm, which do not fit current condition-dependent handicap models and can affect the strength of sexual selection acting upon such fitness-related traits. 相似文献
19.
A protein from Drosophila melanogaster which inhibits bovine alpha-chymotrypsin activity was purified using an extensive extraction procedure. SP-Sephadex column chromatography and affinity column chromatography. The inhibitor has an estimated molecular weight of approx. 12 000 and is extremely pH and heat stable. It did not exhibit any inhibitory activity against trypsin from numerous sources nor mosquito larval chymotrypsin but did inhibit adult mosquito chymotrypsin. Chymotrypsin-like activity has not been found in Drosophila and therefore the function of the inhibitor is unknown. Preliminary work indicates that it effectively inhibits cathepsin D activity from a nematode parasite and rabbit liver. 相似文献
20.
Post-mating, prefertilization inbreeding avoidance (PPIA) is well established in plants but not in animals. Support for animal PPIA comes from sperm competition studies showing success of a male's gametes declining with his relatedness to the multiply mated female; however, such studies confound female-male and male-male interaction. To avoid this problem, we investigated offspring productivity of singly mated Drosophila melanogaster females using flies from four different genetic backgrounds. Our experiments established that intrapopulation crosses using highly related parents (within-strain) were significantly less productive than intrapopulation crosses using unrelated individuals from the same population (between-strain). Furthermore, we showed that these effects were not due to inbreeding depression. The average decrease in offspring productivity of within-strain crosses relative to between-strain crosses was 18.3% [nonlaboratory populations: Zimbabwe 20.3%, Riverside 11.4%, neither of which showed inbreeding depression; and temperature-adapted laboratory populations, uncorrected (corrected) for nonsignificant inbreeding depression: 18 degrees C, 26.5% (24.2%) and 29 degrees C, 20.1% (9.5%)]. The significant reduction of within-cross productivity demonstrates PPIA in the absence of multiple mating. 相似文献