首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bioluminescence (BL) relies on the enzymatic reaction between luciferase, a substrate conventionally named luciferin, and various cofactors. BL imaging has become a widely used technique to interrogate gene expression and cell fate, both in small and large animal models of research. Recent developments include the generation of improved luciferase–luciferin systems for deeper and more sensitive imaging as well as new caged luciferins to report on enzymatic activity and other intracellular functions. Here, we critically evaluate the emerging tools for BL imaging aiming to provide the reader with an updated compendium of the latest developments (2018–2020) and their notable applications.  相似文献   

2.
Focusing light on infection in four dimensions   总被引:1,自引:0,他引:1  
The fusion of cell biology with microbiology has bred a new discipline, cellular microbiology, in which the primary aim is to understand host-pathogen interactions at a tissue, cellular and molecular level. In this context, we require techniques allowing us to probe infection in situ and extrapolate quantitative information on its spatiotemporal dynamics. To these ends, fluorescent light-based imaging techniques offer a powerful tool, and the state-of-the-art is defined by paradigms using so-called multidimensional (multi-D) imaging microscopy. Multi-D imaging aims to visualize and quantify biological events through time and space and, more specifically, refers to combinations of: three (3D, volume), four (4D, time) and five (5D, multiwavelength)-dimensional recordings. Successful multi-D imaging depends upon understanding the available technologies and their limitations. This is especially true in the field of microbiology where visualization of infectious/pathogenic activities inside living host systems presents particular technical challenges. Thus, as multi-D imaging rapidly becomes a common bench tool to the cellular microbiologist, this review provides the new user with some of the necessary technical insight required to get the best from these methods.  相似文献   

3.
Watching biological molecules provides clues to their function and regulation. Some of the most powerful methods of labeling proteins for imaging use genetically encoded fluorescent fusion tags. There are four standard genetic methods of covalently tagging a protein with a fluorescent probe for cellular imaging. These use (i) autofluorescent proteins, (ii) self-labeling enzymes, (iii) enzymes that catalyze the attachment of a probe to a target sequence, and (iv) biarsenical dyes that target tetracysteine motifs. Each of these techniques has advantages and disadvantages. In this review, we cover new developments in these methods and discuss practical considerations for their use in imaging proteins inside living cells.  相似文献   

4.
Hydroxamic acid-based histone deacetylase inhibitors (HDACi) are a class of epigenetic agents with potentially broad therapeutic application to several disease states including post angioplasty mediated neointimal hyperplasia (NIH). Precise spatiotemporal control over the release of HDACi at the target blood vessel site is required for the safe and successful therapeutic use of HDACi in the setting of drug eluting balloon catheter (DEBc) angioplasty treatment of NIH. We aimed to develop and characterise a novel photoactive HDACi, as a potential coating agent for DEBc.Metacept-3 1 was caged with a photo-labile protecting group (PPG) to synthesise a novel UV365nm active HDACi, caged metacept-3 15. Conversion of caged metacept-3 15 to active/native metacept-3 1 by UV365nm was achievable in significant quantities and at UV365nm power levels in the milliwatt (mW) range.In vitro evaluation of the biological activity of pre and post UV365nm activation of caged metacept-3 15 identified significant HDACi activity in samples exposed to short duration, mW range UV365nm. Toxicity studies performed in human umbilical vein endothelial cells (HUVEC’s) identified significantly reduced toxicity of caged metacept-3 15 pre UV365nm exposure compared with native metacept-3 1 and paclitaxel (PTX).Taken together these findings identify a novel photo-activated HDACi, caged metacept-3 15, with pharmacokinetic activation characteristics and biological properties which may make it suitable for evaluation as a novel coating for targeted DEBc angioplasty interventions.  相似文献   

5.
《Biotechnology advances》2017,35(7):889-904
One of the unmet challenges in nanotechnology is to understand and establish the relationship between physicochemical properties of nanoparticles (NPs) and its biological interactions (bio-nano interactions). However, we are still far from assessing the biofate of NPs in a clear and unquestionable manner. Recent developments in the area of bio-nano interface and the understanding of protein corona (PC) has brought new insight in predicting biological interactions of NPs. PC refers to the spontaneous formation of an adsorbed layer of biomolecules on the surface of NPs in a biological environment. PC formation involves the spatiotemporal interplay of an intricate network of biological, environmental and particle characteristics. NPs with its PC can be viewed as a biological entity, which interacts with cells and barriers in a biological system. Recent studies on the bio-nano interface have revealed biological signatures that participate in cellular and physiological bioprocesses and control the biofate and toxicity of NPs. The ability of in-vitro derived parameters to forecast in-vivo consequences by developing a mathematical model forms the basis of in-vitro in-vivo correlation (IVIVC). Understanding the effect of bio-nano interactions on the biological consequences of NPs at the cellular and physiological level can have a direct impact on the translation of future nanomedicines and can lead to the ultimate goal of developing a mathematical IVIVC model. The review summarizes the emerging paradigms in the field of bio-nano-interface which clearly suggests an urgent need to revisit existing protocols in nanotechnology for defining the physicochemical correlates of bio-nano interactions.  相似文献   

6.
Intracellular calcium signaling is a universal,evolutionary conserved and versatile regulator of cell biochemistry.The complexity of calcium signaling and related cell machinery can be investigated by the use of experimental strategies,as well as by computational approaches.Vascular endothelium is a fascinating model to study the specific properties and roles of calcium signals at multiple biological levels.During the past 20 years,live cell imaging,patch clamp and other techniques have allowed us to detect and interfere with calcium signaling in endothelial cells(ECs),providing a huge amount of information on the regulation of vascularization(angiogenesis) in normal and tumoral tissues.These data range from the spatiotemporal dynamics of calcium within different cell microcompartments to those in entire multicellular and organized EC networks.Beside experimental strategies,in silico endothelial models,specifically designed for simulating calcium signaling,are contributing to our knowledge of vascular physiol-ogy and pathology.They help to investigate and predict the quantitative features of proangiogenic events moving through subcellular,cellular and supracellular levels.This review focuses on some recent developments of computational approaches for proangiogenic endothelial calcium signaling.In particular,we discuss the creation of hybrid simulation environments,which combine and integrate discrete Cellular Potts Models.They are able to capture the phenomenological mechanisms of cell morphological reorganization,migration,and intercellular adhesion,with single-cell spatiotemporal models,based on reaction-diffusion equations that describe the agonist-induced intracellular calcium events.  相似文献   

7.
Live-cell imaging technology using fluorescent proteins (green fluorescent protein and its homologues) has revolutionized the study of cellular dynamics. But tools that can quantitatively analyse complex spatiotemporal processes in live cells remain lacking. Here we describe a new technique--fast multi-colour four-dimensional imaging combined with automated and quantitative time-space reconstruction--to fill this gap. As a proof of principle, we apply this method to study the re-formation of the nuclear envelope in live cells. Four-dimensional imaging of three spectrally distinct fluorescent proteins is used to simultaneously visualize three different cellular compartments at high speed and with high spatial resolution. The highly complex data, comprising several thousand images from a single cell, were quantitatively reconstructed in time-space by software developed in-house. This analysis reveals quantitative and qualitative insights into the highly ordered topology of nuclear envelope formation, in correlation with chromatin expansion - results that would have been impossible to achieve by manual inspection alone. Our new technique will greatly facilitate study of the highly ordered dynamic architecture of eukaryotic cells.  相似文献   

8.
9.
Proteomics and cellomics clearly benefit from the molecular insights in cellular biochemical events that can be obtained by advanced quantitative microscopy techniques like fluorescence lifetime imaging microscopy and F?rster resonance energy transfer imaging. The spectroscopic information detected at the molecular level can be combined with cellular morphological estimators, the analysis of cellular localization, and the identification of molecular or cellular subpopulations. This allows the creation of powerful assays to gain a detailed understanding of the molecular mechanisms underlying spatiotemporal cellular responses to chemical and physical stimuli. This work demonstrates that the high content offered by these techniques can be combined with the high throughput levels offered by automation of a fluorescence lifetime imaging microscope setup capable of unsupervised operation and image analysis. Systems and software dedicated to image cytometry for analysis and sorting represent important emerging tools for the field of proteomics, interactomics, and cellomics. These techniques could soon become readily available both to academia and the drug screening community by the application of new all-solid-state technologies that may results in cost-effective turnkey systems. Here the application of this screening technique to the investigation of intracellular ubiquitination levels of alpha-synuclein and its familial mutations that are causative for Parkinson disease is shown. The finding of statistically lower ubiquitination of the mutant alpha-synuclein forms supports a role for this modification in the mechanism of pathological protein aggregation.  相似文献   

10.
Collagen is a major structural component of the extracellular matrix that supports tissue formation and maintenance. Although collagen remodeling is an integral part of normal tissue renewal, excessive amount of remodeling activity is involved in tumors, arthritis, and many other pathological conditions. During collagen remodeling, the triple helical structure of collagen molecules is disrupted by proteases in the extracellular environment. In addition, collagens present in many histological tissue samples are partially denatured by the fixation and preservation processes. Therefore, these denatured collagen strands can serve as effective targets for biological imaging. We previously developed a caged collagen mimetic peptide (CMP) that can be photo-triggered to hybridize with denatured collagen strands by forming triple helical structure, which is unique to collagens. The overall goals of this procedure are i) to image denatured collagen strands resulting from normal remodeling activities in vivo, and ii) to visualize collagens in ex vivo tissue sections using the photo-triggered caged CMPs. To achieve effective hybridization and successful in vivo and ex vivo imaging, fluorescently labeled caged CMPs are either photo-activated immediately before intravenous injection, or are directly activated on tissue sections. Normal skeletal collagen remolding in nude mice and collagens in prefixed mouse cornea tissue sections are imaged in this procedure. The imaging method based on the CMP-collagen hybridization technology presented here could lead to deeper understanding of the tissue remodeling process, as well as allow development of new diagnostics for diseases associated with high collagen remodeling activity.  相似文献   

11.
12.
A new caged proton, 1-(2-nitrophenyl)ethyl sulfate (caged sulfate), is characterized by infrared spectroscopy and compared with a known caged, proton 2-hydroxyphenyl 1-(2-nitrophenyl)ethyl phosphate (caged HPP). In contrast to caged HPP, caged sulfate can induce large pH jumps and protonate groups that have pK values as low as 2.2. The photolysis mechanism of caged sulfate is analogous to that of P(3)-[1-(2-nitrophenyl)ethyl] ATP (caged ATP), and the photolysis efficiency is similar. The utility of this new caged compound for biological studies was demonstrated by its ability to drive the acid-induced conformational change of metmyoglobin. This transition from the native conformation to a partially unfolded form takes place near pH 4 and was monitored by near-UV absorption spectroscopy.  相似文献   

13.
A new form of super-resolution fluorescence microscopy has emerged in recent years, based on the high accuracy localization of individual photo-switchable fluorescent labels. Image resolution as high as 20 nm in the lateral dimensions and 50 nm in the axial direction has been attained with this concept, representing an order of magnitude improvement over the diffraction limit. The demonstration of multicolor imaging with molecular specificity, three-dimensional (3D) imaging of cellular structures, and time-resolved imaging of living cells further illustrates the exciting potential of this method for biological imaging at the nanoscopic scale.  相似文献   

14.
Many biological functions of microRNA (miRNA) have been identified in the past decade. However, a single miRNA can regulate multiple gene targets, thus it has been a challenge to elucidate the specific functions of each miRNA in different locations and times. New chemical tools make it possible to modulate miRNA activity with higher spatiotemporal resolution. Here, we describe light-activated (caged) constructs for switching let-7 miRNA ‘on’ or ‘off’ with 365 nm light in developing zebrafish embryos.  相似文献   

15.
Jones SA  Shim SH  He J  Zhuang X 《Nature methods》2011,8(6):499-508
We report super-resolution fluorescence imaging of live cells with high spatiotemporal resolution using stochastic optical reconstruction microscopy (STORM). By labeling proteins either directly or via SNAP tags with photoswitchable dyes, we obtained two-dimensional (2D) and 3D super-resolution images of living cells, using clathrin-coated pits and the transferrin cargo as model systems. Bright, fast-switching probes enabled us to achieve 2D imaging at spatial resolutions of ~25 nm and temporal resolutions as fast as 0.5 s. We also demonstrated live-cell 3D super-resolution imaging. We obtained 3D spatial resolution of ~30 nm in the lateral direction and ~50 nm in the axial direction at time resolutions as fast as 1-2 s with several independent snapshots. Using photoswitchable dyes with distinct emission wavelengths, we also demonstrated two-color 3D super-resolution imaging in live cells. These imaging capabilities open a new window for characterizing cellular structures in living cells at the ultrastructural level.  相似文献   

16.
Functional heterogeneity within stem and progenitor cells has been shown to influence cell fate decisions. Similarly, intracellular signaling activated by external stimuli is highly heterogeneous and its spatiotemporal activity is linked to future cell behavior. To quantify these heterogeneous states and link them to future cell fates, it is important to observe cell populations continuously with single cell resolution. Live cell imaging in combination with fluorescent biosensors for signaling activity serves as a powerful tool to study cellular and molecular heterogeneity and the long-term biological effects of signaling. Here, we describe these methodologies, their advantages over classical approaches, and we illustrate how they could be applied to improve our understanding of the importance of heterogeneous cellular and molecular responses to external signaling cues.  相似文献   

17.
Chan DD  Neu CP 《PloS one》2012,7(3):e33463
Characterization of spatiotemporal deformation dynamics and material properties requires non-destructive methods to visualize mechanics of materials and biological tissues. Displacement-encoded magnetic resonance imaging (MRI) has emerged as a noninvasive and non-destructive technique used to quantify deformation and strains. However, the techniques are not yet applicable to a broad range of materials and load-bearing tissues. In this paper, we visualize transient and internal material deformation through the novel synchrony of external mechanical loading with rapid displacement-encoded MRI. We achieved deformation measurements in silicone gel materials with a spatial resolution of 100 μm and a temporal resolution (of 2.25 ms), set by the repetition time (TR) of the rapid MRI acquisition. Displacement and strain precisions after smoothing were 11 μm and 0.1%, respectively, approaching cellular length scales. Short (1/2 TR) echo times enabled visualization of in situ deformation in a human tibiofemoral joint, inclusive of multiple variable T(2) biomaterials. Moreover, the MRI acquisitions achieved a fivefold improvement in imaging time over previous technology, setting the stage for mechanical imaging in vivo. Our results provide a general approach for noninvasive and non-destructive measurement, at high spatial and temporal resolution, of the dynamic mechanical response of a broad range of load-bearing materials and biological tissues.  相似文献   

18.
There is considerable interest in creating a precise and sensitive strategy for in situ visualizing and profiling intracellular miRNA. Present here is a novel photocaged amplified FRET nanoflare (PAFN), which spatiotemporal controls of mRNA-powered nanomachine for precise and sensitive miRNA imaging in live cells. The PAFN could be activated remotely by light, be triggered by specific low-abundance miRNA and fueled by high-abundance mRNA. It offers high spatiotemporal control over the initial activity of nanomachine at desirable time and site, and a ‘one-to-more’ ratiometric signal amplification model. The PAFN, an unprecedented design, is quiescent during the delivery process. However, upon reaching the interest tumor site, it can be selectively activated by light, and then be triggered by specific miRNA, avoiding undesirable early activation and reducing nonspecific signals, allowing precise and sensitive detection of specific miRNA in live cells. This strategy may open new avenues for creating spatiotemporally controllable and endogenous molecule-powered nanomachine, facilitating application at biological and medical imaging.  相似文献   

19.
《Cell calcium》2014,55(4):183-190
Infrared neural stimulation (INS) is a promising neurostimulation technique that can activate neural tissue with high spatial precision and without the need for exogenous agents. However, little is understood about how infrared light interacts with neural tissue on a cellular level, particularly within the living brain. In this study, we use calcium sensitive dye imaging on macroscopic and microscopic scales to explore the spatiotemporal effects of INS on cortical calcium dynamics. The INS-evoked calcium signal that was observed exhibited a fast and slow component suggesting activation of multiple cellular mechanisms. The slow component of the evoked signal exhibited wave-like properties suggesting network activation, and was verified to originate from astrocytes through pharmacology and 2-photon imaging. We also provide evidence that the fast calcium signal may have been evoked through modulation of glutamate transients. This study demonstrates that pulsed infrared light can induce intracellular calcium modulations in both astrocytes and neurons, providing new insights into the mechanisms of action of INS in the brain.  相似文献   

20.
The virtues and limitations of SIMS ion microscopy are compared with other spectroscopic techniques applicable to biological microanalysis, with a special emphasis on techniques for elemental localization in biological tissue (electron, X-ray, laser, nuclear, ion microprobes). Principal advantages of SIMS include high detection sensitivity, high depth resolution, isotope specificity, and possibilities for three-dimensional imaging. Current limitations, especially in comparison to X-ray microanalysis, center on lateral spatial resolution and quantification. Recent SIMS instrumentation advances involving field emission liquid metal ion sources and laser post-ionization will help to minimize these limitations in the future. The molecular surface analysis capabilities of static SIMS, especially with the new developments in commercial time-of-flight spectrometers, are promising for application to biomimetic, biomaterials, and biological tissue or cell surfaces. However, the direct microchemical imaging of biomolecules in tissue samples using SIMS will be hindered by limited concentrations, small analytical volumes, and the inefficiencies of converting surface molecules to structurally significant gas phase ions. Indirect detection using elemental or isotopically tagged molecules, however, shows considerable promise for molecular imaging studies using SIMS ion microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号