首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The localization of V kappa gene regions to chromosome 2, on which the kappa locus is located, and to other chromosomes is described. The V kappa genes that have been transposed to other chromosomes are called orphons. The finding of two new V kappa genes on chromosome 22 is reported. A V kappa II gene of this region and two V kappa I genes of the Chr1 and the cos 118 regions were sequenced. The two V kappa I orphon sequences and two others that had been determined previously were 97.5% identical, indicating that they may have evolved from a common ancestor by amplification. A model of the evolution of the human V kappa orphons is discussed.  相似文献   

2.
The Z family, a group of transposed human immunoglobulin V kappa genes   总被引:3,自引:0,他引:3  
B Straubinger  R Thiebe  M Pech  H G Zachau 《Gene》1988,69(2):209-214
A group of highly homologous transposed human V kappa I genes, which we call the Z family, was characterized. To date four members, ZI-ZIV, comprising about 230 kb, have been analyzed on cosmid clones. The largest region (ZI) has a length of 85 kb. The Z regions show extensive homology to each other according to restriction maps and hybridization data. In each Z region a solitary V kappa I gene was found. No V kappa genes of other subgroups were detected by hybridization. The nucleotide sequence of the ZI gene revealed a non-processed V kappa I pseudogene. Hybridization experiments with DNAs from rodent/human cell hybrids and other experimental data indicate that some and possibly all members of the Z family lie outside of the kappa locus which is located on chromosome 2; they have been transposed to other chromosomes. Because of their separation from the J kappa C kappa gene segment, the Z genes can be classified as pseudogenes independent of their sequences. We postulate that the Z family arose by amplification event(s). The Z regions can also be regarded as a small family of very long repetitive sequences.  相似文献   

3.
Two problems in defining the germline repertoire of immunoglobulin kappa genes were investigated. One concerns putative transposed V kappa genes (orphons), the other one weak hybridization signals which may or may not turn out to be V kappa genes (UHOs). It was shown by sequencing that the three V kappa genes Z2, Z3 and Z4 are very closely related to the Z1 and V118 genes and to two other genes which had been localized on chromosomes 1 and 22, i.e. outside the kappa locus on chromosome 2. It is therefore likely that also the Z2-Z4 genes are orphons and not part of the kappa locus. Two UHOs turned out not to contain V kappa-like structures. This together with previous results makes it likely that we have detected all germline V kappa genes with the available hybridization probes.  相似文献   

4.
We have analyzed the structure of Ig kappa chain genes in B cell lines derived from a human individual who cannot synthesize any kappa chains, and whose Igs all contain lambda chains (1). We have characterized secondary DNA recombination events at two kappa alleles which have undergone misaligned V-J recombinations. One such secondary recombination has joined the flanking sequences of a V kappa and a J kappa 2 gene segment as if it were the reciprocal product of a V-J kappa 2 recombination, and resulted in the displacement of the recombined VJ kappa 1 gene segments from the C kappa locus. The non-rearranged form of the V kappa fragment which had recombined with the J kappa 2 flank was cloned. Nucleotide sequencing of this fragment identified a V kappa gene that differed by at least 38% from all previously sequenced human V kappa genes. The other V-J kappa segment analyzed has undergone a secondary recombination at a different site from that described above, at a site within the intervening sequence between the J kappa and C kappa gene segments, similar to the location of secondary recombinations which have occurred in lambda + B cell lines from mice and humans (2,3). These results prove that multiple recombinations can occur at one J kappa-C kappa locus.  相似文献   

5.
Germ line genes encoding mouse Ig kappa-chains belonging to the V kappa-1 group have been isolated from BALB/c, NZB, and CE, three inbred strains of differing kappa haplotype. The V kappa-1A and V kappa-1C germ line genes isolated from BALB/c (Ig kappa c) were identical to those previously described. These are the two major V kappa-1 germ line genes in BALB/c and together account for 40 of the 53 expressed V kappa-1 sequences that have been reported to date. Allelic differences in a single germ line variable region gene (V kappa-1A) in different strains of mice explain the differences in L chain IEF patterns previously associated with the Ig kappa-Ef2 locus. The rearranged kappa-gene expressed in the BALB/c myeloma MOPC-460 has been isolated and found to represent a V kappa-1A somatic variant differing by three nucleotides from the germ line V kappa-1A gene. Germ line genes isolated from NZB (Ig kappa b) and CE (Ig kappa f) show greater than 95% identity with the BALB/c genes over the 1700 nucleotides compared. Comparison by region indicated the greatest conservation of sequence occurs in and around the leader exon followed by the V-region exon. The NZB gene encodes the amino acid sequence found in the myeloma PC-2205, previously designated V kappa-1B. The V kappa-1 gene isolated from CE is likely an allele of the BALB/c V kappa-1C gene as the two share greater than 96% identity over 1700 nucleotides. The CE gene has been designated V kappa-1Cf. Ancient remnants of LINE-1 repetitive elements were detected approximately 400 bp downstream of all of the V kappa-1 genes. These possess greater homology with repetitive elements found near other kappa genes than they do with the native L1Md sequence.  相似文献   

6.
The genes encoding the variable, joining and constant regions of human immunoglobulin light chains have been localized to the short arm of chromosome 2. However, several VK genes lie outside of the locus: a single copy cluster of five VK genes is located on chromosome 22; an isolated but amplified VkI gene is found on chromosome 1; and several isolated VkI genes are on as-yet-unidentified chromosomes other than chromosome 2. Vk genes not contained within the kappa locus are termed orphons. We have attempted to gain insight into the mechanism of transposition of both the chromosome 22 cluster and the several amplified VkI genes by searching in the kappa locus for a parent copy of the former, and by analyzing the junctions between transposed VKI-containing segments and adjacent non-amplified regions. The chromosome 22 orphon cluster must have been non-duplicatively transposed. Sequence features at the junctions of this and other orphon regions are direct and inverted repeats, and, in one case, an Alu repeat. These unusual features may have predisposed the orphon regions to transposition by serving as target sites for enzymes involved in recombination.  相似文献   

7.
The VK gene segments that have been transposed from the kappa locus on the short arm of chromosome 2 at 2p11-12 to other chromosomal sites are called orphons. The 18 VK orphons sequenced up to now carry defects and are to be considered pseudogenes. We now describe the VKI gene segment V108 whose sequence is without any defects and which was localized to the long arm of chromosome 2 at 2q12-14 by in situ hybridization. The V108 region may have been transposed from the short to the long arm of chromosome 2 by a pericentric inversion. Possible reasons for the conservation of its sequence are discussed. In spite of its bona fide sequence V108 is considered to be an unlikely candidate for a VK-JK rearrangement and subsequent functional expression.  相似文献   

8.
Evolution of a group of transposed human V kappa genes   总被引:2,自引:0,他引:2  
Eleven V kappa genes within a genomic region which has been transposed from the short to the long arm of chromosome 2 have been characterized by sequence analyses. Nine of the analysed genes exist within the genome in three highly homologous copies each. Sequence comparisons of the triplicated genes make it very likely that the three copies of a given gene were produced at different times during evolution. A chain of events which led to a stepwise amplification of precursor genes is discussed.  相似文献   

9.
An 80,000 base-pair region from the gene locus encoding the variable regions of the human immunoglobulins of the kappa type (V kappa genes) was cloned and analysed. The region comprises five V kappa sequences of subgroup I and one interspersed V kappa pseudogene of subgroup II. The six genes and pseudogenes are arranged at different distances but in the same orientation. The organization of the cluster can be explained by a series of amplification steps; the existence of a V kappa II pseudogene in a V kappa I gene cluster may have been the result of a transposition event; a final duplication step led to a second closely related copy of the cluster. From sequence data for altogether 16,000 base-pairs it appears that gene conversion-like events and subsequent selection contribute to both homogeneity and diversity of the V kappa repertoire.  相似文献   

10.
The kappa immunoglobulin (Ig) genes from rat kidney and from rat myeloma cells were cloned and analyzed. In kidney DNA one C kappa species is observed by Southern blotting and cloning in phage vectors; this gene most likely represents the embryonic configuration. In the IR52 myeloma DNA two C kappa species are observed: one in the same configuration seen in kidney and one which has undergone a rearrangement. This somatic rearrangement has brought the expressed V region to within 2.7 kb 5' of the C kappa coding region; the rearrangement site is within the J kappa cluster which we have mapped. The rat somatic Ig rearrangement, therefore, closely resembles that seen in mouse Ig genes. In the rat embryonic fragment two J kappa segments were mapped at 2 and 4.3 kb 5' from the C kappa coding region. Therefore, the rat J kappa cluster extends over about 2.3 kb, a region much longer than the 1.4 kb of the mouse and human J kappa clusters. In the region between C kappa and the expressed J kappa of IR52 myeloma DNA, and XbaI site present in the embryonic kappa gene has been lost. A somatic mutation has therefore occurred in the intervening sequence DNA approx. 0.7 kb 3' from the V/J recombination site. Southern blots of rat kidney DNA hybridized with different rat V kappa probes showed non-overlapping sets of bands which correspond to different subgroups, each composed of 8-10 closely related V kappa genes.  相似文献   

11.
Regulation of the immunoglobulin gene transcription   总被引:2,自引:0,他引:2  
  相似文献   

12.
As part of the ongoing work in our laboratory on the structural organization of the human V kappa locus we screened cosmid libraries with V kappa gene probes and obtained numerous V kappa gene-containing cosmid clones. Several genomic regions of the V kappa locus were reconstructed from overlapping cosmid inserts and were extended by one step of chromosomal walking. The regions that are called Wa, Wb, Oa, Ob and Ob' comprise about 370 kb (10(3) bases) of DNA and contain 24 V kappa genes and pseudogenes. The V kappa genes belong to the three dominant subgroups (V kappa I, V kappa II, V kappa III) and are arranged to form mixed clusters with members of the different subgroups being intermingled with each other. The distances between the genes range from 1 to 15 kb. Three genes of the Wa and Wb regions that were sequenced turned out to be pseudogenes. Terminal parts of the regions Wa and Ob that do not contain V kappa genes of one of the known subgroups may represent extended spacer regions within the V kappa locus. Wa and Wb are duplicated regions located at different positions of the locus. Region Wb was found to comprise inversely repeated sections of at least 14 kb each that contain V kappa genes oriented in opposite polarity. This finding is consistent with inversion-deletion models of V-J joining; it also shows that the V kappa locus contains not only unique and duplicated but also triplicated parts. The data on the W and O regions are discussed together with those on the L regions and on other regions established in our laboratory. Although the picture of the human V kappa locus with, to date, about 70 different non-allelic V kappa genes is still incomplete, some general features with respect to the organization of the genes and the limited duplication of genomic regions have emerged.  相似文献   

13.
We have shown before that the Ac element from the maize bz-m2(Ac) allele, located in the short arm of chromosome 9 (9S), transposes preferentially to sites that are linked to the bz donor locus. Yet, about half of the Ac transpositions recovered from bz-m2(Ac) are in receptor sites not linked to the donor locus. In this study, we have analyzed the distribution of those unlinked receptor sites. Thirty-seven transposed Ac (trAc) elements that recombined independently of the bz locus were mapped using a set of wx reciprocal translocations. We found that the distribution of unlinked receptor sites for trAs was not random. Ten trAcs mapped to 9L, i.e., Ac had transposed to sites physically, if not genetically, linked to the donor site. Among chromosomes other than 9, the Ac element of bz-m2(Ac) appeared to have transposed preferentially to certain chromosomes, such as 5 and 7, but infrequently to others, such as 1, the longest chromosome in the maize genome. The seven trAc elements in chromosome 5 were mapped relative to markers in 5S and 5L and localized to both arms of 5. We also investigated the transposition of Ac to the homolog of the donor chromosome. We found that Ac rarely transposes from bz-m2(Ac) to the homologous chromosome 9. The clustering of Ac receptor sites around the donor locus has been taken to mean that a physical association between the donor site and nearby receptor sites occurs during transposition. The preferential occurrence of 9L among chromosomes harboring unlinked receptor sites would be expected according to this model, since sites in 9L would tend to be physically closer to 9S than sites in other chromosomes. The nonrandom pattern seen among the remaining chromosomes could reflect an underlying nuclear architecture, i.e., an ordering of the chromosomes in the interphase nucleus, as suggested from previous cytological observations.  相似文献   

14.
We transposed Dissociation (Ds) elements from three start loci on chromosome 5 in Arabidopsis (Nossen ecotype) by using a local transposition system. We determined partial genomic sequences flanking the Ds elements and mapped the elements' insertion sites in 1,173 transposed lines by comparison with the published genomic sequence. Most of the lines contained a single copy of the Ds element. One-half of the lines contained Ds on chromosome 5; in particular, insertion "hot spots" near the three start loci were clearly observed. In the other lines, the Ds elements were transposed across chromosomes. We found other insertion hot spots at the tops of chromosomes 2 and 4, near nucleolus organizer regions 2 and 4, respectively. Another characteristic feature was that the Ds elements tended to transpose near the chromosome ends and rarely transposed near centromeres. The distribution patterns differed among the three start loci, even though they possessed the same Ds construct. More than one-half of the Ds elements were inserted irregularly into the genome; that is, they did not retain the perfect inverted repeat sequence of Ds nor leave perfect target site duplications. This precise analysis of distribution patterns will contribute to a comprehensive understanding of the transposing mechanism. From these Ds insertion sites, we have constructed a database for screening gene-knockout mutants in silico. In 583 of the 1,173 lines, the Ds elements were inserted into protein-coding genes, which suggests that these lines are gene-knockout mutants. The database and individual lines will be available freely for academic use from the RIKEN Bio-Resource Center (http://www.brc.riken.go.jp/Eng/index.html).  相似文献   

15.
16.
Evolution of human immunoglobulin kappa J region genes   总被引:54,自引:0,他引:54  
Immunoglobulin kappa chain variable region genes are assembled from two discontinuous DNA segments, a V and a J gene. The J region genes, in addition to encoding amino acid positions 96-108 of the kappa polypeptide chain, also provide sequences required for both DNA and RNA splicing reactions. For purposes of evolutionary comparison and to establish the complexity of the kappa J region locus in man, we have determined an approximately 3000 basepair nucleotide sequence in a cloned human DNA fragment that encodes the germline distinct J region segments. Significant blocks of homology have been tightly maintained between this region and an analogous segment of the mouse genome. In particular, the short sequences, GGTTTTTGT and CACTGTG, thought to be involved in V-J recombination, are the most highly conserved regions (97% homology). In addition, from heteroduplex data and computer analysis of the nucleotide sequences, it is clear that the mouse J3 sequence, a pseudogene, is not present in the human cluster. This can be explained by a duplication event in the mouse J region gene cluster that may have been the result of unequal crossing over between homologous chromosomes.  相似文献   

17.
Evolution of a multigene family of V kappa germ line genes   总被引:10,自引:2,他引:8       下载免费PDF全文
We have isolated a series of related V kappa germ line genes from a BALB/c sperm DNA library. DNA sequence analysis of four members of this V kappa 24 multigene family implies that three V kappa genes are functional whereas the fourth one (psi V kappa 24) is a pseudogene. The prototype gene (V kappa 24) encodes the variable region gene segment expressed in an immune response against phosphorylcholine. The other two functional genes (V kappa 24A and V kappa 24B) may be expressed against streptococcal group A carbohydrate. The time of divergence of the four genes was estimated by the rate of synonymous nucleotide changes. This implies that an ancestral gene has duplicated approximately 33-35 million years ago and a subsequent gene duplication event has occurred approximately 23 million years ago.  相似文献   

18.
Han MV  Hahn MW 《Genetics》2012,190(2):813-825
Gene transposition puts a new gene copy in a novel genomic environment. Moreover, genes moving between the autosomes and the X chromosome experience change in several evolutionary parameters. Previous studies of gene transposition have not utilized the phylogenetic framework that becomes possible with the availability of whole genomes from multiple species. Here we used parsimonious reconstruction on the genomic distribution of gene families to analyze interchromosomal gene transposition in Drosophila. We identified 782 genes that have moved chromosomes within the phylogeny of 10 Drosophila species, including 87 gene families with multiple independent movements on different branches of the phylogeny. Using this large catalog of transposed genes, we detected accelerated sequence evolution in duplicated genes that transposed when compared to the parental copy at the original locus. We also observed a more refined picture of the biased movement of genes from the X chromosome to the autosomes. The bias of X-to-autosome movement was significantly stronger for RNA-based movements than for DNA-based movements, and among DNA-based movements there was an excess of genes moving onto the X chromosome as well. Genes involved in female-specific functions moved onto the X chromosome while genes with male-specific functions moved off the X. There was a significant overrepresentation of proteins involving chromosomal function among transposed genes, suggesting that genetic conflict between sexes and among chromosomes may be a driving force behind gene transposition in Drosophila.  相似文献   

19.
We have produced transgenic mice which synthesize chimeric mouse-rabbit immunoglobulin (Ig) kappa light chains following in vivo recombination of an injected unrearranged kappa gene. The exogenous gene construct contained a mouse germ-line kappa variable (V kappa) gene segment, the mouse germ-line joining (J kappa) locus including the enhancer, and the rabbit b9 constant (C kappa) region. A high level of V-J recombination of the kappa transgene was observed in spleen of the transgenic mice. Surprisingly, a particularly high degree of variability in the exact site of recombination and the presence of non germ-line encoded nucleotides (N-regions) were found at the V-J junction of the rearranged kappa transgene. Furthermore, unlike endogenous kappa genes, rearrangement of the exogenous gene occurred in T-cells of the transgenic mice. These results show that additional sequences, other than the heptamer-nonamer signal sequences and the promoter and enhancer elements, are required to obtain stage- and lineage- specific regulation of Ig kappa light chain gene rearrangement in vivo.  相似文献   

20.
We have cloned and determined the nucleotide sequence of the Ig VH and VL region genes of an IgM kappa mAb that binds to denatured DNA and myelin from a patient (POP) with chronic lymphocytic leukemia and peripheral neuropathy. Sequence analysis indicates that the V region of the kappa L chain gene (PopVK) has 99% homology to a V kappa IIIa germ-line gene and the V region of the mu H chain gene (PopVH) has 96% homology to the VH26 germ-line gene that is a member of the VH3 gene family. It is likely the V kappa and VH genes arose from these respective germ-line genes via somatic mutation or from closely related genes. V kappa III genes have frequently been used by other IgMk mAb especially those with rheumatoid factor activity, and the VH26 gene with no somatic mutation has been used by several anti-DNA antibodies, suggesting the possibility of preferential association of these or related germ-line genes with autoantibodies. The minor differences between the sequences of POP's VH and V kappa genes and sequences used by other autoantibodies, may be responsible for this antibody's crossreactivity with myelin and, as a result, the autoimmune neuropathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号