首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gut-homing of donor T cells is causative for the development of intestinal GvHD in recipients of allogeneic hematopoietic stem cell transplantation (HSCT). Expression of the gut-specific homing receptors integrin-α4β7 and chemokine receptor CCR9 on T cells is imprinted in gut-associated lymphoid tissues (GALT) under the influence of the vitamin A metabolite retinoic acid. Here we addressed the role of vitamin A deficiency in HSCT-recipients for donor T cell migration in the course of experimental GvHD. Vitamin A-deficient (VAD) mice were prepared by feeding them a vitamin A-depleted diet. Experiments were performed in a C57BL/6 into BALB/c model of acute GvHD. We found that expression of integrin-α4β7 and CCR9 in GALT was reduced in VAD recipients after HSCT. Competitive in vivo homing assays showed that allogeneic T cells primed in VAD mice did not home as efficiently to the intestine as T cells primed in mice fed with standard diet (STD). The course of GvHD was ameliorated in VAD HSCT-recipients and, consequently, their survival was prolonged compared to recipients receiving STD. However, VAD-recipients were not protected and died of clinical GvHD. We found reduced numbers of donor T cells in the intestine but increased cell counts and tissue damage in other organs of VAD-recipients. Furthermore, we observed high IFN-γ(+)CD4(+) and low FoxP3(+)CD4(+) frequencies of total donor CD4(+) T cells in VAD as compared to STD recipients. Taken together, these results indicate that dietary vitamin A deficiency in HSCT-recipients changed target organ tropism in GvHD but also resulted in fatal inflammation after HSCT.  相似文献   

2.
Graft-versus-host disease (GvHD) is a key contributor to the morbidity and mortality after allogeneic hematopoetic stem cell transplantation (HSCT). Regulatory Foxp3+ CD4+ T cells (Treg) suppress conventional T cell activation and can control GvHD. In our previous work, we demonstrate that a basic mechanism of Treg mediated suppression occurs by the transfer of cyclic adenosine monophosphate (cAMP) to responder cells. Whether this mechanism is relevant for Treg mediated suppression of GvHD is currently unknown. To address this question, bone marrow and T cells from C57BL/6 mice were transferred into lethally irradiated BALB/c recipients, and the course of GvHD and survival were monitored. Transplanted recipients developed severe GvHD that was strongly ameliorated by the transfer of donor Treg cells. Towards the underlying mechanisms, in vitro studies revealed that Treg communicated with DCs via gap junctions, resulting in functional inactivation of DC by a metabolic pathway involving cAMP that is modulated by the phosphodiesterase (PDE) 4 inhibitor rolipram. PDE2 or PDE3 inhibitors as well as rolipram suppressed allogeneic T cell activation, indirectly by enhancing Treg mediated suppression of DC activation and directly by inhibiting responder T cell proliferation. In line with this, we observed a cooperative suppression of GvHD upon Treg transfer and additional rolipram treatment. In conclusion, we propose that an important pathway of Treg mediated control of GvHD is based on a cAMP dependent mechanism. These data provide the basis for future concepts to manipulate allogeneic T cell responses to prevent GvHD.  相似文献   

3.
Le NT  Chen BJ  Chao NJ 《Cytotherapy》2005,7(2):126-133
Allogeneic stem cell transplantation (alloSCT), especially in the mismatched setting, carries a high risk of life-threatening GvHD because of activation of donor T cells by Ag present on host cells. Removal of mature donor T cells can prevent GvHD but leads to delayed immune reconstitution, and an increased incidence of opportunistic infections and disease relapse. These findings demonstrate the vital role of donor T cells in providing graft-versus-tumor (GvT) and anti-pathogen effects as well as facilitating immune reconstitution. It has been well documented that GvHD can be separated from GvT effects, making it possible potentially to eliminate GvHD while preserving the immunotherapeutic benefits of donor T cells. Over the past decade, major attempts have been made to reduce GvHD incidence without loss of GvT effect, especially in the haplo-identical setting. Novel techniques to deplete host-reactive donor T cells selectively have been explored. This review focuses on the use of the photodynamic cell purging (PDP) process and of sorting memory T cells for the selective elimination of alloreactivity. Minimizing the threat of GvHD while maximizing the beneficial GvT effect would broaden the scope and effectiveness of alloSCT.  相似文献   

4.
Although engraftment following in utero stem cell transplantation can readily be achieved, a major limitation is the low level of donor chimerism. We hypothesized that a lack of space for donor cells in the recipient marrow was one of the primary reasons for failure to achieve significant engraftment, and that donor T cells could make space in an allogeneic mismatched setting. We found that 3 x 10(5) C57BL/6 (B6) naive CD3(+) cells coinjected with B6 T cell-depleted bone marrow (TCDBM) into 14- to 15-day-old BALB/c fetuses resulted in multilineage engraftment (median, 68.3%) associated with severe graft-vs-host disease (GvHD; 62 vs 0% with TCDBM alone). When 1.5 x 10(5) CD4(+) or CD8(+) cells were used, low levels of engraftment were seen vs recipients of 1.5 x 10(5) CD3(+) cells (2.4 +/- 1.1 and 6.6 +/- 3.9 vs 20.4 +/- 10.4%, respectively). To test the hypothesis that proliferation of T cells in response to alloantigen resulted in GvHD and increased engraftment, we pretreated naive T cells with photochemical therapy (PCT) using S-59 psoralen and UVA light to prevent proliferation. GvHD was reduced (60-0%), but was also associated with a significant reduction in engrafted donor cells (53.4 +/- 4.2 to 1.7 +/- 0.5%). However, when B6 T cells were sensitized to BALB/c splenocytes, treated with PCT, and coinjected with TCDBM, there was a partial restoration of engraftment (13.3 +/- 2.4% H2Kb(+) cells) with only one of nine animals developing mild to moderate GvHD. In this study we have shown that PCT-treated T cells that are cytotoxic but nonproliferative can provide an engraftment advantage to donor cells, presumably by destroying host hemopoietic cells without causing GvHD.  相似文献   

5.
Elimination of alloreactive T cells using photodynamic therapy   总被引:4,自引:0,他引:4  
Boumédine RS  Roy DC 《Cytotherapy》2005,7(2):134-143
GvHD, the most important cause of morbidity and mortality after allogeneic stem cell transplantation, depends primarily on the ability of a donor T-cell subset to react to immunogenic host Ag. Recently developed culture conditions and treatment strategies may bring us closer to the selective elimination of such alloreactive T cells, often considered the holy grail of transplantation. Among the various therapeutic modalities, photodynamic therapy (PDT) offers a biological and global approach to the eradication of unwanted allo-activated T cells by combining mitochondrial targeting, P-glycoprotein inhibition and reactive oxygen species production. Indeed, the high potency of PDT against malignant cells has been harnessed to exert selective and extensive elimination of alloreactive T-cell subsets mediating GvHD, while preserving resting T cells with the ability to reconstitute the immune system for GvL activity and prevent or suppress viruses and fungi. The present paper reviews the basis of the PDT strategy, and the methodology employed. In vitro and in vivo studies that formed the proof of principle as a basis for human studies to investigate the clinical potential of PDT in the context of GvHD will be presented together with insights into future clinical applications of this versatile treatment platform.  相似文献   

6.
In haplo-identical hematopoietic transplantation, donor vs. recipient natural killer (NK) cell alloreactivity derives from a mismatch between donor NK clones bearing inhibitory killer cell Ig-like receptors (KIR) for self-HLA class I molecules and their HLA class I ligands (KIR ligands) on recipient cells. When faced with mismatched allogeneic targets, these NK clones sense the missing expression of self-HLA class I alleles and mediate alloreactions. KIR ligand mismatches in the GvH direction trigger donor vs. recipient NK cell alloreactions, which improve engraftment, do not cause GvHD and control relapse in AML patients . The mechanism whereby alloreactive NK cells exert their benefits in transplantation has been elucidated in mouse models. The infusion of alloreactive NK cells ablates (i) leukemic cells, (ii) recipient T cells that reject the graft and (iii) recipient DC that trigger GvHD, thus protecting from GvHD.  相似文献   

7.
In leukemic mice, the native host's explicit and well-defined immune reactions to the leukemia virus (a strong exogenous antigen) and to leukemia cells (pretending in their native hosts to be protected "self" elements) are extinguished and replaced in GvHD (graft-versus-host disease) by those of the immunocompetent donor cells. In many cases, the GvHD-inducer donors display genetically encoded resistance to the leukemia virus. In human patients only antileukemia and anti-tumor cell immune reactions are mobilized; thus, patients are deprived of immune reactions to a strong exogenous antigen (the elusive human leukemia-sarcoma retroviruses). The innate and adaptive immune systems of mice have to sustain the immunosuppressive effects of leukemia-inducing retroviruses. Human patients due to the lack of leukemiainducing retroviral pathogens (if they exist, they have not as yet been discovered), escape such immunological downgrading. After studying leukemogenic retroviruses in murine and feline (and other mammalian) hosts, it is very difficult to dismiss retroviral etiology for human leukemias and sarcomas. Since no characterized and thus recognized leukemogenic-sarcomagenic retroviral agents are being isolated from the vast majority of human leukemias-sarcomas, the treatment for these conditions in mice and in human patients vastly differ. It is immunological and biological modalities (alpha interferons; vaccines; adoptive lymphocyte therapy) that dominate the treatment of murine leukemias, whereas combination chemotherapy remains the main remission-inducing agent in human leukemias-lymphomas and sarcomas (as humanized monoclonal antibodies and immunotoxins move in). Yet, in this apparently different backgrounds in Mus and Homo, GvHD, as a treatment modality, appears to work well in both hosts, by replacing the hosts' anti-leukemia and anti-tumor immune faculties with those of the donor. The clinical application of GvHD in the treatment of human leukemias-lymphomas and malignant solid tumors remains a force worthy of pursuit, refinement and strengthening. Graft engineering and modifications of the inner immunological environment of the recipient host by the activation or administration of tumor memory T cells, selected Treg cells and natural killer (NKT) cell classes and cytokines, and the improved pharmacotherapy of GvHD without reducing its antitumor efficacy, will raise the value of GvHD to the higher ranks of the effective antitumor immunotherapeutical measures. Clinical interventions of HCT/HSCT (hematopoietic cell/stem cell transplants) are now applicable to an extended spectrum of malignant diseases in human patients, being available to elderly patients, who receive non-myeloablative conditioning, are re-enforced by post-transplant donor lymphocyte (NK cell and immune T cell) infusions and post-transplant vaccinations, and the donor cells may derive from engineered grafts, or from cord blood with reduced GvHD, but increased GvL/GvT-inducing capabilities (graft-versus leukemia/tumor). Post-transplant T cell transfusions are possible only if selected leukemia antigen-specific T cell clones are available. In verbatim quotation: "Ultimately, advances in separation of GvT from GvHD will further enhance the potential of allogeneic HCT as a curative treatment for hematological malignancies" (Rezvani, A.R. and Storb, R.F., Journal of Autoimmunity 30:172-179, 2008 (see in the text)). It may be added: for cure, a combination of the GvL/T effects with new targeted therapeutic modalities, as elaborated on in this article, will be necessary.  相似文献   

8.
We have recently reported that interferon gamma receptor deficient (IFNγR−/−) allogeneic donor T cells result in significantly less graft-versus-host disease (GvHD) than wild-type (WT) T cells, while maintaining an anti-leukemia or graft-versus-leukemia (GvL) effect after allogeneic hematopoietic stem cell transplantation (allo-HSCT). We demonstrated that IFNγR signaling regulates alloreactive T cell trafficking to GvHD target organs through expression of the chemokine receptor CXCR3 in alloreactive T cells. Since IFNγR signaling is mediated via JAK1/JAK2, we tested the effect of JAK1/JAK2 inhibition on GvHD. While we demonstrated that pharmacologic blockade of JAK1/JAK2 in WT T cells using the JAK1/JAK2 inhibitor, INCB018424 (Ruxolitinib), resulted in a similar effect to IFNγR−/− T cells both in vitro (reduction of CXCR3 expression in T cells) and in vivo (mitigation of GvHD after allo-HSCT), it remains to be determined if in vivo administration of INCB018424 will result in preservation of GvL while reducing GvHD. Here, we report that INCB018424 reduces GvHD and preserves the beneficial GvL effect in two different murine MHC-mismatched allo-HSCT models and using two different murine leukemia models (lymphoid leukemia and myeloid leukemia). In addition, prolonged administration of INCB018424 further improves survival after allo-HSCT and is superior to other JAK1/JAK2 inhibitors, such as TG101348 or AZD1480. These data suggest that pharmacologic inhibition of JAK1/JAK2 might be a promising therapeutic approach to achieve the beneficial anti-leukemia effect and overcome HLA-barriers in allo-HSCT. It might also be exploited in other diseases besides GvHD, such as organ transplant rejection, chronic inflammatory diseases and autoimmune diseases.  相似文献   

9.
Background aimsGraft-versus-host disease (GvHD) remains a major complication after allogeneic hematopoietic cell transplantation (HCT). Recent literature demonstrates a potential benefit of human mesenchymal stromal cells (MSC) for the treatment of refractory GvHD; however, the optimal dose remains uncertain. We set out to develop an animal model that can be used to study the effect of MSC on GvHD.MethodsA GvHD mouse model was established by transplanting C3H/he donor bone marrow (BM) cells and spleen cells into lethally irradiated BALB/c recipient mice. MSC were obtained from C3H/he mice and the C3H/10T1/2 murine MSC line.ResultsThe mRNA expression of Foxp3 in regional lymph nodes (LN) localized with T cells was markedly increased by the addition of C3H10T1/2 cells in a real-time polymerase chain reaction (PCR). Using a mixed lymphocyte reaction, we determined the optimal splenocyte proliferation inhibition dose (MSC:splenocyte ratios 1:2 and 1:1). Three different C3H10T1/2 cell doses (low, 0.5 × 106, intermediate, 1 × 106, and high, 2 × 106) with a consistent splenocyte dose (1 × 106) were evaluated for their therapeutic potential in an in vivo GvHD model. The clinical and histologic GvHD score and Kaplan–Meier survival rate were improved after MSC transplantation, and these results demonstrated a dose-dependent inhibition.ConclusionsWe conclude that MSC inhibit GvHD in a dose-dependent manner in this mouse model and this model can be used to study the effects of MSC on GvHD.  相似文献   

10.
Previously we demonstrated that SHIP(-/-) mice accept allogeneic bone marrow transplants (BMT) without significant acute graft-vs-host disease (GvHD). In this study we show that SHIP(-/-) splenocytes and lymph node cells are poor stimulators of allogeneic T cell responses that cause GvHD. Intriguingly, SHIP(-/-) splenocytes prime naive T cell responses to peptide epitopes, but, conversely, are partially impaired for priming T cell responses to whole Ag. However, dendritic cells (DC) purified from SHIP(-/-) splenocytes prime T cell responses to allogeneic targets, peptide epitopes, and whole Ag as effectively as SHIP(+/+) DC. These findings point to an extrinsic effect on SHIP(-/-) DC that impairs priming of allogeneic T cell responses. Consistent with this extrinsic effect, we found that a dramatic expansion of myeloid suppressor cells in SHIP(-/-) mice impairs priming of allogeneic T cells. These findings suggest that SHIP expression or its activity could be targeted to selectively compromise T cell responses that mediate GvHD and graft rejection.  相似文献   

11.
The therapeutic efficacy of donor lymphocyte infusions has been proven for patients with relapsed hematologic malignancies after allogeneic stem cell transplantation. The beneficial effect of donor lymphocytes, however, is often accompanied by graft-versus-host-disease (GvHD). Adoptive transfer of antigen (Ag)-specific T-cell lines may eradicate the relapsed hematological malignancy, and may separate the anti-leukemic effect from GvHD. The main drawback of adoptive therapy of defined T-cell populations is the difficulty in producing sufficient quantities of these Ag-specific T cells. In addition, the specificity of the infused T cells is difficult to control. As the T-cell receptor (TCR) solely determines the specificity of T cells, transfer of relevant TCR genes into appropriate T-cell populations may provide a potent therapeutic reagent. With this strategy, donor-derived T-cell populations would be equipped with a TCR of defined specificity in short-term in vitro procedures, and infusion of the redirected cells would result in T-cell reactivity against the defined Ag. In this review we discuss the current status of TCR gene transfer for the treatment of hematological malignancies.  相似文献   

12.
Tse W  Laughlin M 《Cytotherapy》2005,7(3):228-242
Early clinical reports outlining outcomes for primarily pediatric patients undergoing UCB transplantation point to delayed time to hematopoietic recovery and favorable incidence and severity of GvHD. Recently, clinical reports in adult patients identified the feasibility of UCB transplantation for those patients lacking an available histocompatible-related or unrelated adult donor Intensive clinical and laboratory research is ongoing focused on strategies to foster UCB allogeneic donor engraftment thereby allowing wider application of this stem cell source for patients requiring allogeneic transplantation.  相似文献   

13.
CD134 (OX-40) is an activation-associated antigen which functions as a costimulatory receptor for CD4+ T cells. In order to determine the expression of CD134 during immune recovery following allogeneic bone marrow transplantation (BMT), we measured its expression on T cells and T cell subsets during the first 100 days following BMT in 26 patients. CD4+CD134+ T could be seen approximately 14 days following BMT cells in patients who did not develop GvHD which required therapy (n = 20). The percentage of CD4+CD134+ cells continued to increase up to the fourth week following BMT to a maximum of 40-50% of CD4+ T cells (normal = 1-8%). Two patients who developed Grade I-II GvHD and who responded to treatment with pulsed high-dose methylprednisolone (MPD) showed a decline of approximately 40% in CD4+CD134+ T cells was seen within 48 hours of treatment. Four patients who developed GvHD that was not responsive to MPD and who later developed high IV GvHD showed increasing CD4+CD134+ T cells up to 85% of the CD4+ T cells. Additionally, rapid increases in CD134+ T cells following antibody-based T cell therapy were associated with GvHD recurrence. In no cases was the percentage of CD134+ CD4+ T cells predictive of clinical GvHD. In this exploratory study, we have shown that CD134, although not predictive of the initial onset of GvHD, may be a useful tool for monitoring the response to early GvHD therapy and identification of patients at risk for reemergence of GvHD who may benefit from anti-T cell therapy. Cytometry (Comm. Clin. Cytometry) 38: 238-243, 1999.  相似文献   

14.
Graft-versus-host disease (GvHD) is a chief complication of allogeneic bone marrow transplantation. In HLA-identical bone marrow transplantation, GvHD may be induced by disparities in minor histocompatibility antigens (mHags) between the donor and the recipient, with the antigen being present in the recipient and not in the donor. Cytotoxic T lymphocytes (CTLs) specific for mHags of the recipients can be isolated from the blood of recipients with severe GvHD (ref. 3). A retrospective study demonstrated an association between mismatch for mHags HA-1, -2, -4 and -5 and the occurrence of GvHD in adult recipients of bone marrow from HLA genotypically identical donors. Tetrameric HLA-peptide complexes have been used to visualize and quantitate antigen-specific CTLs in HIV-infected individuals and during Epstein-Barr virus and lymphocytic choriomeningitis virus infections. Here we show the direct ex vivo visualization of mHag-specific CTLs during GvHD using tetrameric HLA-class and I-mHag HA-1 and HY peptide complexes. In the peripheral blood of 17 HA-1 or HY mismatched marrow recipients, HA-1- and HY-specific CTLs were detected as early as 14 days after bone marrow transplantation. The tetrameric complexes demonstrated a significant increase in HA-1- and HY-specific CTLs during acute and chronic GvHD, which decreased after successful GvHD treatment. HLA class I-mHag peptide tetramers may serve as clinical tools for the diagnosis and monitoring of GvHD patients.  相似文献   

15.
Acute graft-versus-host disease (aGvHD) is the most common complication of allogeneic hematopoietic stem cell transplantation (HSCT), which is often accompanied by impaired hematopoietic reconstitution. Sinusoidal endothelial cells (SECs) constitute bone marrow (BM) vascular niche that plays an important role in supporting self-renewal capacity and maintaining the stability of HSC pool. Here we provide evidences that vascular niche is a target of aGvHD in a major histocompatibility complex (MHC)–haploidentical matched murine HSCT model. The results demonstrated that hematopoietic cells derived from GvHD mice had the capacity to reconstitute hematopoiesis in healthy recipient mice. However, hematopoietic cells from healthy donor mice failed to reconstitute hematopoiesis in GvHD recipient mice, indicating that the BM niche was impaired by aGvHD in this model. We further demonstrated that SECs were markedly reduced in the BM of aGvHD mice. High level of Fas and caspase-3 expression and high rate of apoptosis were identified in SECs, indicating that SECs were destroyed by aGvHD in this murine HSCT model. Furthermore, high Fas ligand expression on engrafted donor CD4+, but not CD8+ T cells, and high level MHC-II but not MHC-I expression on SECs, suggested that SECs apoptosis was mediated by CD4+ donor T cells through the Fas/FasL pathway.  相似文献   

16.
In allogeneic hematopoietic cell transplantation (allo-HCT), donor lymphocytes play a central therapeutic role in both GvL and immune reconstitution. However, the full exploitation of these therapeutic properties is limited by the occurrence of GvHD. Different strategies have been investigated to obtain all the benefits derived from donor lymphocytes while avoiding the risk of GvHD. The genetic engineering of donor lymphocytes with the herpes simplex virus-thymidine kinase (HSV-TK) suicide gene confers the ability to modulate GvHD by invivo ganciclovir-induced elimination of the transduced cells. The suicide-gene strategy has applications in both donor lymphocyte infusion (DLI) for disease relapse and in add-back infusions after T-cell depleted allo-HCT. TK cell DLI resulted in anti-tumor activity in a relevant proportion of treated patients. Haplo-identical stem cell transplantation (haplo-HCT) is a promising therapeutic option for patients with high risk hematologic malignancies lacking an HLA-matched donor. However, the profound T-cell depletion required to overcome the risk of lethal GvHD has been associated with a marked delayed T-cell recovery with a prolonged risk of post-transplant viral, fungal and other opportunistic infections. TK cell add-backs efficiently promote early immune reconstitution after haplo-HCT and prevent disease relapse, providing a unique tool for the control of GvHD. The genetic manipulation of donor lymphocytes with a suicide gene is a promising strategy to increase feasibility and safety of allo-HCT.  相似文献   

17.
《Cytotherapy》2022,24(3):302-310
BackgroundAllogeneic hematopoietic cell transplantation (HCT) can be devastating when graft-versus-host disease (GvHD) develops. GvHD is characterized by mucosal inflammation due to breaching of epithelial barriers. Innate lymphoid cells (ILCs) are immune modulatory cells that are important in the maintenance of epithelial barriers, via their production of interleukin (IL)-22 and their T cell suppressive properties. After chemo- and radiotherapy, ILCs are depleted, and recovery after remission-induction therapy and after allogeneic HCT is slow and incomplete in a significant number of patients, which is associated with an increased risk to develop acute GvHD.ObjectiveTo investigate whether the presence of mature ILCs within G-CSF–mobilized HCT grafts is correlated with the development of acute GvHD after allogeneic HCT.Study DesignWe analyzed ILCs in a cohort of 36 patients who received allogeneic HCT for a hematologic malignancy, by flow-cytometric immune-phenotyping of prospectively collected, cryopreserved peripheral blood mononuclear cells (PBMCs) and donor-derived HCT grafts collected for the same patients. Biased analysis, with ILCs defined as CD3?lineage?CD45+CD127+CD161+ lymphocytes, was performed using FlowJo version 10 software. Unbiased analysis was done using FlowSOM, which uses a self-organizing map (SOM) with a minimal spanning tree (MST) to define and visualize different clusters present in the samples.ResultsRemission-induction therapy significantly depleted ILCs from the blood, and patients who had a relatively low percentage of ILCs before allogeneic HCT were significantly more prone to develop acute GvHD, confirming previous findings in a separate cohort. Allogeneic HCT grafts, which were all obtained from the blood of G-CSF–mobilized healthy donors, contained ILCs at a frequency very similar to the peripheral blood of healthy individuals. The ILC subset composition was also comparable to that of the blood of healthy individuals, with the exception of NKp44+ ILC3s, which were significantly more abundant in HCT grafts. The relative ILC content of the graft tended to correlate with ILC reconstitution after allogeneic HCT, suggesting that peripheral expansion of transplanted mature ILCs may contribute to early ILC reconstitution after allogeneic HCT. Patients who received a relatively ILC-poor HCT graft had a significantly increased risk to develop acute GvHD, compared with patients who received relatively ILC-rich allogeneic HCT grafts. Unbiased phenotypic analysis with the FlowSOM algorithm confirmed that allogeneic HCT grafts of patients who developed acute GvHD contained a lower frequency of ILCs that clustered in NKp44+ ILC3 signature groups.ConclusionThe presence of ILCs in allogeneic HCT grafts is associated with a reduced risk to develop acute GvHD. These data suggest that enhancement of ILC reconstitution of ILC3s in particular, for example via adoptive transfer of ILCs, may prevent acute GvHD and has the potential to improve outcome of allogeneic HCT recipients.  相似文献   

18.
Komanduri KV 《Cytotherapy》2002,4(4):333-342
The thymus is the primary site of T-cell production early in life, and has now been shown to continue to function in both healthy and immunocompromised individuals late into life. Positive and negative selection occurring in the thymus are two of the most important processes that govern the development and specificity of peripheral T cells, including their restriction to self HLA and their ability to respond in an alloreactive manner. In the chimeric state that follows successful allogeneic stem-cell transplants, the specificity of alloreactive cells may be governed by either host- or recipient-derived cellular elements, as well as maturing lymphoid cells, which are, in turn, derived from donor stem cells or host cells surviving transplant conditioning. The ability to measure recent thymic emigrants via the detection of T-cell receptor excision circles has facilitated studies of thymic function in immunodeficient individuals, including HIV-1 infected subjects and recipients of autologous or allogeneic stem-cell transplant (SCT). These studies have now demonstrated that thymic function is likely to play a beneficial role in immune reconstitution in these settings, but have yet to clearly demonstrate what clinical variables are the most important determinants of thymic persistence. It is also not yet clear how much the degree of thymic function following allogeneic SCT influences the alloreactive T-cell repertoire, although studies in animal models and early clinical studies suggest that GvHD results in thymic injury and dysfunction. Future studies will further clarify how thymic function shapes the repertoire of T cells that mediate alloreactivity, as well as protective pathogen-specific immune responses, following SCT. Finally, these studies will also demonstrate whether endogenous mediators of thymic function could be selectively applied to regulate post-SCT thymic function and alloreactivity.  相似文献   

19.
Allogeneic hematopoietic stem cell transplantation (HSCT) is the treatment of choice for many hematologic malignancies and inherited disorders of the hematopoietic system. Ex vivo T-cell depletion (TCD) of the graft and post-transplantation immunosuppression efficiently prevents the development of GvHD in no- MHC-identical settings. However, the consequence of these non-specific strategies is a long-lasting immunodeficiency associated with increased incidence of disease relapse, graft rejection and reactivation of viral infections. Donor lymphocyte infusion, which is used for treating leukemic relapse after allogeneic HSCT, can result in severe GvHD. Several strategies are being optimized specifically to inactivate anti-host T cells while preserving anti-leukemic or anti-microbial immunocompetence. Based on the ex vivo or in vivo elimination of anti-host T cells, or on the modulation of their anti-host activity, these approaches, which have been explored extensively in pre-clinical studies and tested in some preliminary clinical trials, are discussed in this paper.  相似文献   

20.
Poor immune reconstitution after haplo-identical stem cell transplantation results in high mortality from viral infections and relapse. One approach to overcome this problem is to deplete alloreactive cells selectively by deleting T cells activated by recipient stimulators, using an immunotoxin directed against the activation marker CD25. However, the degree of depletion of alloreactive cells is variable following stimulation with recipient PBMC, and this can result in GvHD. We have shown that using recipient EBV-transformed LCL as stimulators to activate donor alloreactive T cells results in more consistent depletion of in vitro alloreactivity while preserving T-cell responses to viral and potential myeloid tumor Ag. Based on these data, we have embarked on a phase I clinical dose escalation study of add-back of allo-LCL-depleted donor T cells in the haplo-identical setting, to determine if the allodepletion we achieve to allow infusion of sufficient T cells to restore useful antiviral/anti-leukemic responses without causing GvHD. Fifteen patients have so far been treated. The incidence of significant acute or chronic GvHD has been low (2/15), as has mortality from infection (1/15). Preliminary data show accelerated immune reconstitution in dose level 2 patients. Infused allodepleted donor T cells appear able to expand significantly in the face of viral reactivations, and doses as low as 3 x 10(5)/kg may be sufficient to confer useful antiviral immunity in this setting. At a median follow-up of 19.5 months, nine of 15 patients are alive and disease-free. Five patients have relapsed, all of whom have died.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号