首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Ribulose diphosphate carboxylase was found to exist in two distinct kinetic forms in spinach leaf extracts. One form displayed an apparent Km for CO2 in excess of 200 μm and is likely to be the form purified and studied by many previous workers. However, if leaf extracts were prepared in the presence of Mg2+ and atmospheric levels of CO2, the recently described high-affinity form was obtained. It had a Km for CO2 of about 20 μm, was quite stable even at 25 °C, and its properties were consistent with it being the form which operates in photosynthesis in vivo. Mg2+ was also able to convert the high-Km (CO2) form to the low-Km (CO2) form when it was added to an extract which had been prepared in its absence. Mg2+ was more effective in causing this conversion if bicarbonate was added as well. This activating effect of bicarbonate is a probable cause of previously reported apparent homotropic effects of bicarbonate on ribulose diphosphate carboxylase activity. It is possible that the apparently high-Km (CO2) form is not intrinsically active and appears to have activity only by virtue of the low-Km (CO2) form produced by contact with Mg2+ and bicarbonate (or CO2) during the course of the assay. Extracts prepared with ribose 5-phosphate in the absence of Mg2+ also showed low-Km (CO2) carboxylase activity initially, but the presence of this sugar phosphate was deleterious during storage at 25 °C, where it promoted conversion to the apparently high-Km (CO2) form.Effects on the affinity of ribulose diphosphate carboxylase for CO2 were paralleled by effects on the activity of the associated ribulose diphosphate oxygenase. Treatments which produced the low-Km (CO2) form of the carboxylase also resulted in high oxygenase activity, and it is possible that the apparently high-Km (CO2) form of the carboxylase has little, if any, oxygenase activity associated with it.The carboxylase and oxygenase activities of the low-Km (CO2) form showed broad and quite similar responses to pH variation, and the oxygenase had a Km for O2 of 0.22 mm.The stability of the low-Km (CO2) form in the presence of Mg2+ and bicarbonate was quite sufficient for it to be partially purified by Sepharose chromatography. The significance of the low-Km (CO2) form is discussed with respect to activation of photosynthesis by Mg2+.  相似文献   

2.
Two phosphoenolpyruvate carboxylase proteins (PC-I and PC-II) were extracted and purified close to homogeneity from corn leaves. PC-I contained about 85% and PC-II about 15% of the total phosphoenolpyruvate carboxylase activity. PC-I eluted from a DEAE-cellulose column with a buffer having lower ionic strength, had higher Km and V values with respect to phosphoenolpyruvate, Mg2+, and Mn2+, was more thermolabile and moved more slowly toward the anode during disc gel electrophoresis as compared to PC-II. The enzymes had sedimentation coefficient values (s20,W) of 9.7 and 11.6S and molecular weights, determined by equilibrium centrifugation on sucrose density gradients, of 225,650 and 270,800, respectively. The enzymes used HCO3? as the active “CO2” substrate, and the major protein (PC-I) had a temperature optimum for activity of 40 °C.  相似文献   

3.
Magnesium-dependent adenosine triphosphatase, purified from sheep kidney medulla using digitonin, has been characterized in a series of kinetic and magnetic resonance studies. Kinetic studies of divalent metal activation using either Mg2+ or Mn2+ indicate a biphasic response to divalent cations. Apparent Km values of 23 μm for free Mg2+ and 3.3 μm for free Mn2+ are obtained at low levels of added metal, while Km values of 0.50 mm for free Mg2+ and 0.43 mm for free Mn2+ are obtained at much higher levels of divalent cations. In all cases the kinetic data indicate that the binding of divalent metals is independent of the substrate, ATP. Kinetic studies of the substrate requirements of the Mg2+-ATPase also yield biphasic Lineweaver-Burk plots. At low ATP concentrations, kinetic studies yield apparent Km values for free ATP of 6.0 and 1.4 μm with Mg2+ and Mn2+, respectively, as the activating divalent metals. At much higher levels of ATP the response of the enzyme to ATP changes so that Km values for free ATP of 8.0 and 2.0 mm are obtained for Mg2+ and Mn2+, respectively. In both cases, however, the binding of ATP is independent of added metal. ADP inhibits the Mg2+-ATPase and the kinetic data indicate that ADP competes with ATP at both the high and low affinity sites. Dixon plots of the data are consistent with competitive inhibition at both ATP sites, with Ki values of 10.5 μm and 4.5 mm. Electron paramagnetic resonance and water proton relaxation rate studies show that the enzyme binds 1 g ion of Mn2+ per 469,000 g of protein. The Mn2+ binding studies yield a KD for Mn2+ at the single high affinity site of 2 μm, in good agreement with the kinetically determined activator constant for Mn2+ at low Mn2+ levels. Moreover, the EPR binding studies also indicate the existence of 34 weak sites for Mn2+ per single high affinity Mn2+ site. The KD for Mn2+ at these sites is 0.55 mm, in good agreement with the kinetic activator constant for Mn2+ of 0.43 mm, consistent with additional activation of the enzyme by the large number of weaker metal binding sites. The enhancement of water proton relaxation by Mn2+ in the presence of the enzyme is also consistent with the tight binding of a single Mn2+ ion per 469,000 Mr protein and the weaker binding of a large number of divalent metal ions. Analysis of the data yields a value for the enhancement for bound Mn2+ at the single tight site, ?b, of 5 and an enhancement at the 34 weak sites of 11. The frequency dependence of water proton relaxation by Mn2+ at the single tight site yields a dipolar correlation time (constant from 8–60 MHz) of 3.18 × 10?9 s. The kinetics and metal binding studies, together with the effect of temperature on ATPase activity at high and low levels of ATP, are consistent with the existence in this preparation of a single Mg2+-ATPase, with high and low affinity sites for divalent metals and for ATP. Observations of both high and low affinities for ATP have been made with two other purified ATPases. The similarities of these systems to the Mg2+-ATPase described here are discussed.  相似文献   

4.
Ribulose 1,5-bisphosphate carboxylase/oxygenase purified from malate-grown Thiocapsa roseopersicina required Mg2+ for the activation of both carboxylase and oxygenase activities. Mg2+ was either not required or required at very low concentrations for catalysis by both enzyme activities. EDTA and dithiothreitol had no effect on ribulose 1,5-biphosphate oxygenase. The K0.5 values with respect to Mg2+ for activation of the carboxylase and oxygenase activities were 8.4 and 2 mm, respectively. Ribulose 1,5-biphosphate carboxylase and oxygenase activities revealed differential sensitivities to 6-phosphogluconate. This ligand at 1 mm inhibited the carboxylase activity 30%, whereas the oxygenase activity was inhibited by 69%.  相似文献   

5.
Pyruvate kinase (ATP:pyruvate 2-O-phosphotransferase, EC 2.7.1.40) from Mycobacterium smegmatis has been purified to homogeneity through a seven-step procedure with a yield of 16% and specific activity of 220 units/mg protein. The purified enzyme had a molecular weight of 230,700 and was composed of four subunits with identical molecular weights of 57,540. Analysis of amino acid composition revealed a low content of aromatic amino acids. The enzyme exhibited sigmoidal kinetics of varying concentrations of phosphoenolpyruvate, the degree of cooperativity and S0.5v value for phosphoenolpyruvate being strongly dependent on the pH of the reaction mixture. Among the nucleoside diphosphates acting as substrate for pyruvate kinase, ADP was the best phosphate acceptor, as judged by its lowest Km value. The enzyme showed an absolute requirement for divalent cations (either Mg2+ or Mn2+), but monovalent cations were not necessary for activity. Other divalent cations inhibited the Mg2+-activated enzyme to varying degrees (Ni2+ > Zn2+ > Cu2+ > Ca2+ > Ba2+). The differences in the kinetic responses of the enzyme to Mg2+ and Mn2+ are discussed.  相似文献   

6.
myo-Inositol hexaphosphate adenosine diphosphate phosphotransferase transfers phosphate from myo-inositol hexaphosphate to adenosine diphosphate to synthesize adenosine triphosphate. This enzyme has been isolated and purified from ungerminated mungbean seeds and found to be different from guanosine diphosphate phosphotransferase. A purification of about 200-fold with 15% recovery has been obtained. The optimal pH of the reaction is 7.0 and is dependent on the presence of a divalent cation, i.e., Mg2+ and Mn2+. The Km value for myo-inositol hexaphosphate has been found to be 0.41 × 10?4m and V is 90.0 nmol of Pi transferred per milligram of protein per 20 min. Km for ADP is 0.88 × 10-4m and V is 83.3 nmol of phosphorus transferred to ADP per milligram of protein per 20 min. The ADP phosphotransferase reaction is reversible to the extent of about 50% of the forward reaction. dADP is partly effective as an acceptor but other ribonucleoside mono- and diphosphates cannot substitute for ADP. The products ATP and myo-inositol pentaphosphate have been confirmed by several criteria. It has also been shown that this enzyme transfers phosphate only from a specific phosphoryl group (C-2 position) of myo-inositol hexaphosphate for the synthesis of ATP and 1,3,4,5,6-myo-inositol pentaphosphate or pentakis (dihydrogen phosphate).  相似文献   

7.
The effect of SO32? on the activity of PEP-carboxylase and on subsequent malate formation has been studied in leaf extracts of Zea mays. PEP-carboxylase was assayed by incorporation of H14CO3 - into oxaloacetate dinitrophenylhydrazone and by a spectrophotometric method. In contrast to ribulose diphosphate carboxylase, PEP-carboxylase was not inhibited by 10 mM SO32? with respect to PEP. As was the case with ribulose diphosphate carboxylase, the activity of PEP-carboxylase was inhibited non-competitively with respect to Mg2+. However, the Ki value (84.5 mM) was found to be very high. With respect to HCO3?, like ribulose diphosphate carboxylase, PEP-carboxylase was inhibited competitively, but the Ki value (27 mM SO32?) increased by about the same factor (× 9) as the Km, (0·5 mM HCO3?) is decreased. This indicates that the replacement of HCO3? by SO32?, common to both enzymes, is facilitated by decreasing the affinity of the enzyme for HCO3?. At substrate saturating conditions malate formation by the combined action of PEP-carboxylase and endogenous NADH-dependent malate dehydrogenase in leaf extracts was not inhibited by 10 mM SO32?. Although the malate dehydrogenase is inhibited at this SO32? concentration to about 85%, malate formation is unaffected, as PEP-carboxylase is the rate limiting step its turnover rate being only about 8% of NADH-dependent malate dehydrogenase.  相似文献   

8.
Free ribulose hisphosphate (RuBP4?) rather than its magnesium complex (RuBP-Mg2?) was the apparent substrate for spinach ribulose bisphosphate carboxylase/oxygenase. The apparent Km for total RuBP (pH 8.0 at 30° C) increased with increasing Mg2+ concentrations from 11.6 μM at 13.33 mM Mg2+ to 32.6 μM at 40.33 mM Mg2+. Similarly the apparent Km for RuBP-Mg2? complex increased with increasing Mg2+ from 9.4 μM at 13.33 mM Mg2+ to 29.7 μM at 40.33 mM Mg2+. However, the Km values for uncomplexed RuBP4? were independent of the (saturating) concentration of Mg2+ (Km=2.2 μM). The Vmax did not vary with the changing concentrations of Mg2+. In contrast, the Km for total RuBP remained constant with varying Mg2+ concentrations (Km=59.5 μM) for the enzyme from R. rubrum. The apparent Km for the RuBP-Mg2? complex decreased with increasing Mg2+ concentrations from 16.0 μM at 7.5 mM Mg2+ to 5.9 μM at 27.5 mM Mg2+. The initial velocity for the C. vinosum enzyme was also found to be independent of the (saturating) concentration of Mg2+ when total RuBP was varied in the assay. Thus the response to total RuBP by these two bacterial enzymes, which markedly differ in structure, was closely similar.  相似文献   

9.
Free ribulose bisphosphate (RuBP4?) rather than its magnesium complex (RuBP-Mg2?) was the apparent substrate for spinach ribulose bisphosphate carboxylase/oxygenase. The apparent Km for total RuBP (pH 8.0 at 30° C) increased with increasing Mg2+ concentrations from 11.6 μM at 13.33 mM Mg2+ to 32.6 μM at 40.33 mM Mg2+. Similarly the apparent Km for RuBP-Mg2? complex increased with increasing Mg2+ from 9.4 μM at 13.33 mM Mg2+ to 29.7 μM at 40.33 mM Mg2+. However, the Km values for uncomplexed RuBP4? were independent of the (saturating) concentration of Mg2+ (Km=2.2 μM). The Vmax did not vary with the changing concentrations of Mg2+. In contrast, the Km for total RuBP remained constant with varying Mg2+ concentrations (Km=59.5 μM) for the enzyme from R. rubrum. The apparent Km for the RuBP-Mg2? complex decreased with increasing Mg2+ concentrations from 16.0 μM at 7.5 mM Mg2+ to 5.9 μM at 27.5 mM Mg2+. The initial velocity for the C. vinosum enzyme was also found to be independent of the (saturating) concentration of Mg2+ when total RuBP was varied in the assay. Thus the response to total RuBP by these two bacterial enzymes, which markedly differ in structure, was closely similar.  相似文献   

10.
Phosphoenolpyruvate carboxylase (EC 4.1.1.31) was purified to homogeneity with about 29% recovery from immature pods of chickpea using ammonium sulfate fractionation, DEAE-cellulose chromatography, and gel filtration through Sephadex G-200. The purified enzyme with molecular weight of about 200,000 daltons was a tetramer of four identical subunits and exhibited maximum activity at pH 8.1. Mg2+ ions were specifically required for the enzyme activity. The enzyme showed typical hyperbolic kinetics with phosphoenolpyruvate with a Km of 0.74 millimolar, whereas sigmoidal response was observed with increasing concentrations of HCO3 with S0.5 value as 7.6 millimolar. The enzyme was activated by inorganic phosphate and phosphate esters like glucose-6-phosphate, α-glycerophosphate, 3-phosphoglyceric acid, and fructose-1,6-bisphosphate, and inhibited by nucleotide triphosphates, organic acids, and divalent cations Ca2+ and Mn2+. Oxaloacetate and malate inhibited the enzyme noncompetitively. Glucose-6-phosphate reversed the inhibitory effects of oxaloacetate and malate.  相似文献   

11.
Ribulose-1,5-bisphosphate oxygenase was activated by incubation with CO2 and Mg2+ and inactivated upon removal of CO2 and Mg2+ by gel filtration. The activity of the enzyme was dependent upon the preincubation concentrations of CO2 and Mg2+ and upon the preincubation pH. This indicated that activation involved the reversible formation of an equilibrium complex of enzyme-CO2-Mg. The kinetics of the activation process were the same as those described by G. H. Lorimer et al. ((1976) Biochemistry15, 529–536), for ribulose bisphosphate carboxylase and are consistent with the ordered reversible reaction sequence:
The activity of the enzyme, after preincubation at constant concentrations of CO2 and Mg2+, increased as the pH was raised, suggesting that CO2 reacted with an enzyme group having an alkaline pK. Since CO2 and O2 interact competitively at the catalytic site, the activation of ribulose bisphosphate oxygenase by CO2 and Mg2+ indicates that the CO2 molecule which takes part in the activation process is not the same as that which becomes fixed during the carboxylase reaction. These results also indicate that the oxygenase and carboxylase functions of the catalytic site are tightly coupled rather than independent of one another.  相似文献   

12.
Photosynthetic carbon assimilation in plants is regulated by activity of the ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase. Although the carboxylase requires CO2 to activate the enzyme, changes in CO2 between 100 and 1,400 microliters per liter did not cause changes in activation of the leaf carboxylase in light. With these CO2 levels and 21% O2 or 1% or less O2, the levels of ribulose bisphosphate were high and not limiting for CO2 fixation. With high leaf ribulose bisphosphate, the Kact(CO2) of the carboxylase must be lower than in dark, where RuBP is quite low in leaves. When leaves were illuminated in the absence of CO2 and O2, activation of the carboxylase dropped to zero while RuBP levels approached the binding site concentration of the carboxylase, probably by forming the inactive enzyme-RuBP complex.

The mechanism for changing activation of the RuBP carboxylase in the light involves not only Mg2+ and pH changes in the chloroplast stroma, but also the effects of binding RuBP to the enzyme. In light when RuBP is greater than the binding site concentration of the carboxylase, Mg2+ and pH most likely determine the ratio of inactive enzyme-RuBP to active enzyme-CO2-Mg2+-RuBP forms. Higher irradiances favor more optimal Mg2+ and pH, with greater activation of the carboxylase and increased photosynthesis.

  相似文献   

13.
In Acetobacter aceti growing on pyruvate as the only source of carbon and energy, oxaloacetate (OAA) is produced by a phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31). The enzyme was purified 122-fold and a molecular weight of about 380,000 was estimated by gel filtration.The optimum pH was 7.5 and the K m values for PEP and NaHCO3 were 0.49 mM and about 3 mM, respectively. The enzyme needed a divalent cation; the K m for Mn2+, Co2+ and Mg2+ were 0.12, 0.26 and 0.77 mM, respectively. Maximal activity was only obtained with Mg2+. Mn2+ and Co2+ became inhibitory at high concentrations.The activity was inhibited by succinate and, to a lesser extent, by fumarate, citrate, -ketoglutarate, aspartate and glutamate.As compared with the corresponding enzyme from A. xylinum, the PEP carboxylase of A. aceti showed the following differences: a) It had an absolute requirement for acetyl CoA (K a 0.18 mM) or propionyl CoA (K a 0.2 mM). b) It was not affected by ADP. c) It was sensitive to thiol blocking agents.Abbreviations PEP phosphoenolpyruvate - OAA oxaloacetate - MW molecular weight - TEMG buffer 50 mM Tris-HCl, pH 7.5, 1 mM EDTA, 5 mM MgCl2, 1 mM glutathione - HEPES N-2-hydroxyethylpiperazine-N-ethanesulfonic acid  相似文献   

14.
Fructose diphosphatase of Hydrogenomonas eutropha H 16, produced during autotrophic growth, was purified 247-fold from extracts of cells. The molecular weight of the enzyme was estimated to be 170,000. The enzyme showed a pH optimum of 8.5 in both crude extracts and purified preparation. The shape of the pH curve was not changed in the presence of ethylenediaminetetraacetic acid. The enzyme required Mg2+ for activity. The MgCl2 saturation curve was sigmoidal and the degree of positive cooperativity increased at lower fructose diphosphate concentrations. Mn2+ can replace Mg2+, but maximal activity was lower than that observed with Mg2+ and the optimal concentration range was narrow. The fructose diphosphate curve was also sigmoidal. The purified enzyme also hydrolyzed sedoheptulose diphosphate but at a much lower rate than fructose diphosphate. The enzyme was not inhibited by adenosine 5′-monophosphate but was inhibited by ribulose 5-phosphate and adenosine 5′-triphosphate. Adenosine 5′-triphosphate did not affect the degree of cooperativity among the sites for fructose diphosphate. The inhibition by adenosine 5′-triphosphate was mixed and by ribulose 5-phosphate was noncompetitive. An attempt was made to correlate the properties of fructose diphosphatase from H. eutropha with its physiological role during autotrophic growth.  相似文献   

15.
Zelitch I 《Plant physiology》1978,61(2):236-241
Under conditions where glycolate synthesis was inhibited at least 50% in tobacco (Nicotiana tabacum L.) leaf discs treated with glycidate (2,3-epoxypropionate), the ribulose diphosphate carboxylase activity in extracts and the inhibition of the activity by 100% oxygen were unaffected by the glycidate treatment. [1-14C]Glycidate was readily taken into leaf discs and was bound to leaf proteins, but the binding occurred preferentially with proteins of molecular weight lower than ribulose diphosphate carboxylase. Glycidate added to the isolated enzyme did not inhibit ribulose diphosphate carboxylase activity or affect its inhibition by 100% O2. Thus, glycidate did not inhibit glycolate synthesis by a direct effect on ribulose diphosphate carboxylase/oxygenase.  相似文献   

16.
Small-angle x-ray scattering studies have been carried out on the enzyme yeast inorganic pyrophosphatase (PPase), and its overall conformational changes on interaction with divalent metal ions (Mg2+ and Mn2+) and with phosphoryl ligands [inorganic phosphate (Pi) and hydroxymethane bisphosphonate (PCHOHP), a nonhydrolyzable inorganic pyrophosphate analog] were assessed. The enzyme undergoes an apparent reduction in size on simultaneous addition of Mg2+ and high Pi concentration, although neithough neither Mg2+ nor Pi added separately induced any measurable conformational changes. By contrast, simultaneous addition of Mn2+ and Pi to PPase does not result in an observable conformational change. However, the overall structure of the enzyme appears to enlarge in the simultaneous presence of Mn2+ ions and PCHOHP. The significance of the structural changes seen in PPase under various conditions is discussed.  相似文献   

17.
The effects of adenine nucleotides on phosphoenolypyruvate carboxylase were investigated using purified enzyme from the CAM plant, Crassula argentea. At 1 millimolar total concentration and with limiting phosphoenolpyruvate, AMP had a stimulatory effect, lowering the Km for phosphoenolpyruvate, ADP caused less stimulation, and ATP decreased the activity by increasing the Km for phosphoenolpyruvate. Activation by AMP was not additive to the stimulation by glucose 6-phosphate. Furthermore, AMP increased the Ka for glucose 6-phosphate. Inhibition by ATP was competitive with phosphoenolpyruvate. In support of the kinetic data, fluorescence binding studies indicated that ATP had a stronger effect than AMP on phosphoenolpyruvate binding, while AMP was more efficient in reducing glucose 6-phosphate binding. As free Mg2+ was held constant and saturating, these effects cannot be ascribed to Mg2+ chelation. Accordingly, the enzyme response to the adenylate energy charge was basically of the “R” type (involving enzymes of ATP regenerating sequences) according to D. E. Atkinson's (1968 Biochemistry 7: 4030-4034) concept of energy charge regulation. The effect of energy charge was abolished by 1 millimolar glucose 6-phosphate. Levels of glucose 6-phosphate and of other putative regulatory compounds of phosphoenolpyruvate carboxylase were determined in total leaf extracts during a day-night cycle. The level of glucose 6-phosphate rose at night and dropped sharply during the day. Such a decrease in glucose 6-phosphate concentration could permit an increased control of phosphoenolpyruvate carboxylase by energy charge during the day.  相似文献   

18.
Binding of fructose-6-P and Pi to rabbit liver fructose bisphosphatase has been analyzed in terms of four negatively cooperative binding sites per enzyme tetramer. The association of fructose-6-P occurs in the absence of divalent metal ion, although the extent of binding is increased in the order Mg2+ < Zn2+ < Mn2+. The binding of Pi shows an absolute requirement for divalent metal ion with Mn2+ being more effective than Mg2+. The interaction of the enzyme with the substrate analog, (α + β) methyl-d-fructofuranoside-1,6-P2 in the presence of Mn2+ closely resembles that found for fructose-1,6-P2 in the absence of Mn2+, although the measured constants are on average an order of magnitude smaller. Combination experiments with the three ligands show that the binding follows an identical ordered sequence, i.e., the tighter sites are initially occupied regardless of the ligand's identity. The binding of Pi or fructose-6-P is not altered by the presence of the other. Comparison of binding constant with Ki values obtained from steady-state assays permits identification of the catalytic sites expressed in the latter. The association of Mn2+ at the catalytic site can be induced by fructose-6-P or the substrate analog suggesting that a 1-phosphoryl group enhances but is not necessary for Mn2+ binding at this site. The binding of AMP is decreased in the presence of substrate analog relative to fructose-1,6-P2, suggesting that the 2-hydroxyl serves as a “molecular signal.” From the single and combined binding experiments, a calculation of the equilibrium constant for the overall hydrolysis reaction on the enzyme surface in the presence of Mn2+ has been carried out and an estimate made for the Mg2+ case.  相似文献   

19.
The binding of Mg2+ to intracellular 2,3-bisphosphoglycerate in the human red blood cell is significant to the function of the cell. We have studied interactions of Mg2+ and Mn2+ with 2,3-bisphosphoglycerate by magnetic resonance spectroscopy. The results of this study reveal the presence of two independent divalent metal cation binding sites of similar affinity (KD = 3.0 ± 0.5 mM) in the 2,3-bisphosphoglycerate molecule, one on each phosphoryl group, contrary to the assumption of one metal ion binding site made in the previous literature. Over the range of their intracellular concentrations, ATP and ADP, however, possess only one metal ion site in spite of the presence of multiple phosphoryl groups. These results are consistent with the chemistry of metal-chelation which requires the formation of 5- or 6-membered rings for the stability of chelate structures.  相似文献   

20.
Phosphatase activity of a kidney (Na + K)-ATPase preparation was optimally active with Mg2+ plus K+. Mn2+ was less effective and Ca2+ could not substitute for Mg2+. However, adding Ca2+ with Mg2+ or substituting Mn2+ for Mg2+ activated it appreciably in the absence of added K+, and all three divalent cations decreased apparent affinity for K+. Inhibition by Na+ decreased with higher Mg2+ concentrations, when Ca2+ was added, and when Mn2+ was substituted for Mg2+. Dimethyl sulfoxide, which favorsE 2 conformations of the enzyme, increased apparent affinity for K+, whereas oligomycin, which favorsE 1 conformations, decreased it. These observations are interpretable in terms of activation through two classes of cation sites. (i) At divalent cation sites, Mg2+ and Mn2+, favoring (under these conditions)E 2 conformations, are effective, whereas Ca2+, favoringE 1, is not, and monovalent cations complete. (ii) At monovalent cation sites divalent cations compete with K+, and although Ca2+ and Mn2+ are fairly effective, Mg2+ is a poor substitute for K+, while Na+ at these sites favorsE 1 conformations. K+ increases theK m for substrate, but both Ca2+ and Mn2+ decrease it, perhaps by competing with K+. On the other hand, phosphatase activity in the presence of Na+ plus K+ is stimulated by dimethyl sulfoxide, by higher concentrations of Mg2+ and Mn2+, but not by adding Ca2+; this is consistent with stimulation occurring through facilitation of an E1 to E2 transition, perhaps an E1-P to E2-P step like that in the (Na + K)-ATPase reaction sequence. However, oligomycin stimulates phosphatase activity with Mg2+ plus Na+ alone or Mg2+ plus Na+ plus low K+: this effect of oligomycin may reflect acceleration, in the absence of adequate K+, of an alternative E2-P to E1 pathway bypassing the monovalent cation-activated steps in the hydrolytic sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号