首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis, characterization and comparative biological study of a series of antibacterial copper complexes with heterocyclic sulfonamides were reported. Two kinds of complexes were obtained with the stoichiometries [Cu(L)2] . H2O and [Cu(L)2(H2O)4] . nH2O. They were characterized by infrared and electronic spectroscopies and the crystal structure of [Cu(sulfisoxazole)2(H2O)4] . 2H2O was determined by single crystal X-ray diffraction. It crystallized in the C2/c with Z = 8 monoclinic space group C2/c with Z = 8. The Cu(II) is in a slightly tetragonal distorted octahedron formed by four oxygen atoms from water molecules and two nitrogen atoms from two isoxazole rings. The antimicrobial activity was evaluated for all the synthesized complexes and ligands using the agar dilution test. The results showed that the complexes with five-membered heterocyclic rings were more active than the free sulfonamides while the pyrimidine, pyridine and pyridazine complexes had similar or less activity than the free ligands. In order to find an explanation for this behavior lipophilicity and superoxide dismutase-like activity were tested, showing that the [Cu(sulfamethoxazol)2(H2O)4] . 3H2O presented the highest antimicrobial potency and a superoxide dismutase-like activity comparable with pharmacological active compounds.  相似文献   

2.
Within a set of food-related Amadori compounds, crystalline N-(1-deoxy-beta-D-fructopyranos-1-yl)-l-histidine monohydrate (Fru-l-HisxH(2)O) has an unusually low solubility in water, which we determined as 0.21 g/100 g at 25 degrees C. The majority of the other fructose-amino acid conjugates have solubilities exceeding 100 g/100 g in water at this temperature. We report the crystal structure data on Fru-l-HisxH(2)O. The conformation of the carbohydrate is the normal (2)C(5) pyranose chair. Bond lengths and valence angles compare well with the average values from a number of pyranose structures. All hydroxyl and carboxyl oxygen atoms, all nitrogen atoms and the water molecule are involved in an extensive hydrogen bonding, which forms a network of infinite chains with small antidromic rings.  相似文献   

3.
Here, we report the crystal structure of d-psicose, C(6)H(12)O(6), one of the rare sugars. The compound crystallizes as the beta-anomer with rarely observed in pyranose carbohydrate structures trans-gauche orientation of the hydroxymethyl group relative to the pyranosyl ring. The crystal system is orthorhombic, space group P2(1)2(1)2(1), Z=4, with cell dimensions a=7.727(2), b=8.672(2), c=11.123(3)A, V=745.3(3)A(3). The pyranosyl ring adopts chair (2)C(5) conformation. The crystal structure at 100(2)K is stabilized by three-dimensional network of O-Hcdots, three dots, centeredO and C-Hcdots, three dots, centeredO intermolecular hydrogen bonds.  相似文献   

4.
Our earlier work established a convenient assay procedure for acetoxycoumarin (AC): protein transacetylase (TA) by indirectly quantifying the activity of glutathione (GSH)-S-transferase (GST), the extent of inhibition of GST under the conditions of the assay represented TA activity. In this communication, we have probed the specificity for TA with respect to the number and position of acetoxy groups on the benzenoid as well as the pyranone rings of the coumarin system governing the efficient transfer of acetyl groups to the protein(s). For this purpose, coumarins bearing one acetoxy group, separately at C-3 or C-4 position and 4-methylcoumarins bearing single acetoxy group, separately at C-5, C-6 or C-7 position were synthesized and specificities to rat liver microsomal TA were examined. Negligible TA activity was discernible with 3-AC as the substrate, while the substrate efficiency of other AC were in the order 7-acetoxy-4-methylcoumarin (7 AMC)>6 AMC>5 AMC=5 ADMC=4 AC. To achieve a comparable level of GST inhibition which was proportional to the enzymatic transfer of acetyl groups to the protein (GST), the concentrations of 7-AMC, 6-AMC, 5-AMC and 4-AC were in the order 1:2:4:4, respectively. One diacetoxycoumarin, i.e., 7,8-diacetoxy-4-methylcoumarin (DAMC) was also examined and it was found to elicit maximum level of GST inhibition, nearly twice that observed with 7-AMC. These observations lead to the logical conclusion that a high degree of acetyl group transfer capability is conferred when the acetoxy group on the benzenoid ring of the coumarin system is in closer proximity to the oxygen heteroatom, i.e., when the acetoxy groups are at the C-7 and C-8 positions.  相似文献   

5.
[2Fe2S] clusters with terminal N-ligation (His, Arg) and unique functions are increasingly recognized in biological systems. In this work three new [2Fe2S] clusters 1-3 with different 1,1'-dipyrrolmethane derivatives as chelating terminal ligands have been prepared and fully characterized, including by X-ray crystallography: (NEt(4))(2)[L(2)Fe(2)(mu-S)(2)] with L=Me(2)C(C(4)H(3)N)(2) (1), Ph(2)C(C(4)H(3)N)(2) (2), (CH(2))(5)C(C(4)H(3)N)(2) (3). These systems represent rare examples of synthetic [2Fe2S] complexes with N-donor capping ligands. While geometric parameters as well as spectroscopic and electrochemical characteristics of the new complexes are as anticipated, the chelating nature of the terminal ligands in 1-3 imparts a relatively high stability that will be advantageous for reactivity studies of the [2Fe2S] core.  相似文献   

6.
From the lipopolysaccharide (LPS) fraction of the plant-pathogenic bacterium Burkholderia caryophylli, the linkage between O-specific caryan and core region was characterised. The LPS fraction was first treated with 48% aqueous HF at 4 degrees C and successively with 1% acetic acid at 100 degrees C. A main oligosaccharide representing the carbohydrate backbone of the core region and a portion of the caryan (three unit of caryose) was isolated by high-performance anion-exchange chromatography. Compositional and methylation analyses, matrix-assisted laser desorption/ionisation mass spectrometry and 2D NMR spectroscopy identified the structure: [carbohydrate structure: see text]. The above residues are alpha-linked pyranose rings, if not stated otherwise. Hep is L-glycero-D-manno-heptose, Car is 4,8-cyclo-3,9-dideoxy-L-erythro-D-ido-nonose and Kdo is 3-deoxy-D-manno-oct-2-ulosonic acid. This finding indicates that QuiNAc residue is the primer monosaccharide, which connects the core oligosaccharide to caryan O-chain.  相似文献   

7.
A number of organomercury(II) complexes involving isoniazid (I), of the type RHgCl(L)(II) [R = phenyl(C6H5), o-hydroxyphenyl (o-HOC6H4), p-hydroxyphenyl (p-HOC6H4), p-acetoxyphenyl (p-AcOC6H4), 2-furyl (2-C4H3O); L = isoniazid] have been synthesized and characterized. Conductance measurements indicate that the complexes are nonelectrolytes. From IR and UV studies, it is concluded that isoniazid acts as a bidentate ligand, coordinating through hydrazinic nitrogen and carbonyl oxygen. 1H and 13C NMR support the stoichiometry of the complexes. From fluoroscence studies a number of photochemical parameters have been elucidated. For the C6H5HgCl(L), p-HOC6H4HgCl(L), and p-AcOC6H4HgCl(L) complexes, thermogravimetric studies have been carried out and relevant kinetic and thermodynamic parameters for thermal degradation have been enumerated. In addition, the fragmentation pattern of the complexes has been analyzed on the basis of mass spectra. The C6H5HgCl(L) and p-HOC6H4HgCl(L) complexes have been screened for tuberculosis activity.  相似文献   

8.
Two new copper(II) complexes, Cu(L1)(ClO4)2 (1), {[(μ-oxalate)Cu(L1)] · 5H2O}n (2), and a zinc(II) complex, {[(μ-oxalate)Zn(L2)] · 3H2O · 0.5DMF}n (3) (L = 3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,01.18,07.12]docosane), have been synthesized and characterized by X-ray crystallography. In 1, the ligand conformation is planar, and the octahedral coordination about the copper(II) ion is completed by weakly interacting ions. In 2 and 3, bridging oxalate ligands coordinate to copper(II) or zinc(II) ions in an unusually twisted bis-monodentate (trans-1,1′-bicoordination) mode.

The rigidity and steric hindrance of macrocycles L1 and L2 by the introduction of two cyclohexane rings and methyl groups on a cyclam (1,4,8,11-tetraazacyclotetradecane) skeleton cause the bridging oxalate ligands to adopt such unusual geometries in 2 and 3.  相似文献   


9.
(+)-18-crown-6 tetracarboxylic acid (18C6H(4)) has been used as a chiral selector for various amines and amino acids. To further clarify the structural scaffold of 18C6H(4) for chiral separation, single crystal X-ray analysis of its glycine(+) (1), H3O+ (2), H5O2+ (3), NH4+ (4), and 2CH3NH3+ (5) complexes was performed and the guest-dependent conformation of 18C6H(4) was investigated. The crown ether ring of 18C6H4 in 3, 4, and 5 took a symmetrical C2 or C2-like conformation, whereas that in 1 and 2 took an asymmetric C1 conformation, which is commonly observed in complexes with various optically active amino acids. The overall survey of the present and related complexes suggests that the molecular conformation of 18C6H4 is freely changeable within an allowable range, depending on the molecular shape and interaction mode with the cationic guest. On the basis of the present results, we propose the allowable conformational variation of 18C6H4 and a possible transition pathway from its primary conformation to the conformation suitable for chiral separation of racemic amines and amino acids.  相似文献   

10.
O-alpha-D-Galactopyranosyl-(1---4)-D-galactopyranose, C12H22O11, Mr = 342.30, crystallises in the orthorhombic space group P2(1)2(1)2(1), and has alpha = 5.826(1), b = 13.904(3), c = 17.772(4) A, Z = 4, and Dx = 1.579 g.cm-3. Intensity data were collected with a CAD4 diffractometer. The structure was solved by direct methods and refined to R = 0.063 and Rw = 0.084 for 2758 independent reflections. The glycosidic linkage is of the type 1-axial-4-axial with torsion angles phi O-5' (O-5'-C-1'-O-1'-C-4) = 98.1(2) degrees, psi C-3 (C-3-C-4-O-1'-C-1') = -81.9(3) degrees, phi H (H-1'-C-1'-O-1'-C-4) = -18 degrees, and psi H (H-4-C-4-O-1'-C-1') = 35 degrees. The conformation is stabilised by an O-3 . . . O-5' intramolecular hydrogen-bond with length 2.787(3) A and O-3-H . . . O-5' = 162 degrees. The glycosidic linkage causes a folding of the molecule with an angle of 117 degrees between the least-square planes through the pyranosidic rings. The crystal investigated contained 56(1)% of alpha- and 44(1)% of beta-galabiose as well as approximately 70% of the gauche-trans and approximately 30% of the trans-gauche conformers about the exocyclic C-5'-C-6' and C-5-C-6 bonds. The crystal packing is governed by hydrogen bonding that engages all oxygen atoms except the intramolecular acceptor O-5' and the glycosidic O-1' oxygen atoms.  相似文献   

11.
The time course of the relaxation effect induced by a single dose (3 x 10(-6) mol/L) of trans-[Ru(NH3)4L(NO)]3+ (L=nic, 4-pic, py, imN, P(OEt)3, SO(3)(2-), NH3, and pz) species and sodium nitroprusside (4 x 10(-9) mol/L) was studied in aortic rings without endothelium and pre-contracted with noradrenaline (1 x 10(-6) mol/L). All the compounds induced a relaxing effect in the aortic rings, but the intensity and time of relaxation were different. Only the species where L=py, 4-pic, and P(OEt)3 were able to induce 100% (99-100%) of the relaxing effect during the assay. trans-[Ru(NH3)4(L)(NO)]3+ (L=SO(3)(2-) and NH3) showed the lowest relaxing effect (36 and 37%, respectively) when compared with the other compounds. Relationship was observed between the time corresponding to half of the maximum relaxation intensity observed and, respectively, k-NO, E0'[Ru(NO)]3+/[Ru(NO)]2+ in trans-[Ru(NH3)4(L)(NO)]3+ species and E0'Ru(III)/Ru(II) in trans-[Ru(NH3)4(L)(H2O)]3+ ions. These relationships strongly suggested that the NO liberation from the reduced nitrosyl complexes was responsible for the observed relaxation.  相似文献   

12.
The structure of [V(eta5-C5H5)2(CH3C(O)CHC(O)CH3)](O3SCF3) (1) (=[VCp2(acac)](O3SCF3)), a dual-function anti-cancer agent with anti-angiogenic and anti-mitotic properties, was determined by single-crystal X-ray diffraction. The geometry is well described as a pseudo-tetrahedral like structure with the centroids of the cyclopentadienyl rings and the two oxygen atoms of the acetylacetonate ring in the ancillary positions of the central vanadium (IV) atom. The bisector of the V(acac) fragment deviates from the C2 axis of the ligand framework by only 4 degrees, compared to a deviation of 7 degrees for the V(acac) fragment in the tetramethylethano-bridged vanadocene acetyl acetonate complex. Crystal data for 1: space group, P2(1)/c; a=7.5544(9) A, b=14.936(2) A, c=16.193(2) A, beta=102.901(2) degrees, V= 1781.0(4) A3; Z=4; R=0.0506 for 2310 reflections with I> 2sigma(I). This report also details the electron paramagnetic resonance, UV/Vis spectroscopy, electrochemical properties and the biological activity profile of this potent anti-cancer agent.  相似文献   

13.
The bursa of Fabricius (BF) is a central immune organ in birds, and some peptides from chicken BF have demonstrated important immune functions. Here, a new 626.27 Da pentapeptide, Bursopentin (BP5, Cys-Lys-Arg-Val-Tyr) was isolated and purified by reverse-phase high-performance liquid chromatography. In this study, we examined the effects of BP5 on antigen-specific immune response in BALB/c mice sensitized with inactivated avian influenza virus (AIV) [A/Duck/Jiangsu/NJ08/05 (AIV H9N2 subtype)]. The results suggested that BP5 enhanced anti-hemagglutinin antibody (IgG, the isotypes IgG1 and IgG2a) production, induced both of Th1- (IL-2 and IFN-γ) and Th2-type (IL-4 and -10) cytokines, increased proliferations of splenic lymphocyte subsets CD4+ T cells (CD3+CD4+), CD8+ T cells (CD3+CD8+) and B cells, and enhanced cytotoxic T-lymphocyte activity of the activated splenocytes against NIH3T3 cells. The effects of BP5 on the proliferation of isolated T- and/or B-cell populations of BALB/c mice were assessed, and the data suggested that BP5 promoted spleen lymphocyte proliferation by activating B cells directly and T cells indirectly. Further analysis revealed that B-lymphocyte proliferation induced by BP5 is mediated by reactive oxygen species generated from thiol auto-oxidation of BP5. Furthermore, our data indicated that protein kinase C, mitogen-activated protein kinase, and nuclear factor kappa B are involved in the signal transductions during the BP5-induced B lymphocyte proliferation. This study indicates that BP5 could be a potential immunomodulator for future immuno-pharmacological use.  相似文献   

14.
Microcalorimetry has been used to determine enthalpy changes for the hydrolysis of a series of oligosaccharides. High-pressure liquid chromatography was used to determine the extents of reaction and to check for any possible side reactions. The enzyme glucan 1,4-alpha-glucosidase was used to bring about the following hydrolysis reactions: (A) maltose(aq) + H2O(liq) = 2D-glucose(aq); (B) maltotriose(aq) + 2H2O(liq) = 3D-glucose(aq); (C) maltotetraose(aq) + 3H2O(liq) = 4D-glucose(aq); (D) maltopentaose(aq) + 4H2O(liq) = 5D-glucose(aq); (E) maltohexaose(aq) + 5H2O(liq) = 6D-glucose(aq); (F) maltoheptaose(aq) + 6H2O(liq) = 7D-glucose(aq); (G) amylose(aq) + nH2O(liq) = (n + 1) D-glucose(aq); and (H) panose(aq) + 2H2O(liq) = 3D-glucose(aq); (J) isomaltotriose(aq) + 2H2O(liq) = 3D-glucose(aq). The enzyme beta-fructofuranosidase was used for the reactions: (K) raffinose(aq) + H2O(liq) = alpha-D-melibiose(aq) + D-fructose(aq); and (L) stachyose(aq) + H2O(liq) = o-alpha-D-galactopyranosyl-(1----6)- alpha-o-D-galactopyranosyl-(1----6)-alpha-D-glucopyranose + D-fructose(aq). The results of the calorimetric measurements (298.15 K, 0.1 M sodium acetate buffer, pH 4.44-6.00) are: delta H0A = -4.55 +/- 0.10, delta H0B = -9.03 +/- 0.10, delta H0C = -13.79 +/- 0.15, delta H0D = -18.12 +/- 0.10, delta H0E = -22.40 +/- 0.15, delta H0F = -26.81 +/- 0.20, delta H0H = 1.46 +/- 0.40, delta H0J = 11.4 +/- 2.0, delta H0K = -15.25 +/- 0.20, and delta H0L = -14.93 +/- 0.20 kJ mol-1. The enthalpies of hydrolysis of two different samples of amylose were 1062 +/- 20 and 2719 +/- 100 kJ mol-1, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Both trans- and cis-[PtCl2(NH3)(L)] compounds have been synthesized, L representing either the imino ether HN=C(OMe)Me having a Z or E configuration at the C=N double bond, or the cyclic ligands and (compounds 14 for trans geometry and 58 for cis geometry, respectively). The cyclic ligands mimic the imino ether ligands but, differently from imino ethers, cannot undergo change of configuration. In a panel of human tumor cells, trans compounds inhibit growth much more than transplatin. Moreover, compound 1 in most cases is less active than 2, and 1 and 2 are less active than 3 and 4, respectively. For cis compounds with imino ethers, the activity is reduced (5) or unaffected (6) with respect to cisplatin. Moreover, unlike trans compounds, substitution of cyclic ligands (7, 8) for imino ethers (5, 6) generally decreases the activity. This determines, for compounds with cyclic ligands, an unusual inversion of the cis geometry requirement for activity of platinum(II) species. Importantly, 14 and 58 partially circumvent the multifocal cisplatin resistance of A2780cisR cells, and 14 also overcome resistance from reduced uptake of 41McisR cells. DNA interaction regioselectivity of 14 and 58 is not substantially modified with respect to transplatin and cisplatin. However, both imino ethers and cyclic ligands slow down the DNA interstrand cross-link reaction, (E)-HN=C(OMe)Me and decreasing also its extent. Therefore, DNA interaction of 14 and 58 appears to be characterized by persistent monoadducts (14), and by monoadducts and/or intrastrand cross-links structurally different from those of cisplatin (58). This study demonstrates that ligand configuration modulates the activity of both trans and cis compounds, and supports the development of platinum drugs based on their coordination chemistry to combat cisplatin resistance.F.P. Intini and A. Boccarelli contributed equally to this work  相似文献   

16.
In order to target specific DNA sequences >or=10 base pairs in size by minor groove binding ligands, a search for the optimal linker in dimers of hairpin polyamides was initiated. Two series of tandem polyamides ImPyIm-(R)[ImPyIm-(R)(H2N)gamma-PyPyPy-L](HN)gamma-PyPyPy-beta-Dp (1a-e), where L represents a series of 4-8 carbon long aliphatic amino acid linkers, and ImPyIm-(R)[ImPyIm-(R)(H2N)gamma-PyPyPyIm-L](HN)gamma-PyPyPy-beta-Dp (2a-e), where L represents a series of 2-6 carbon long aliphatic amino acid linkers, were synthesized and characterized by quantitative DNase I footprinting. beta, gamma and Dp represents beta-alanine, gamma-aminobutyric acid, and 3-(dimethylamino)propylamine, respectively. It was found that the five-carbon 5-aminovaleric acid (delta), is suitable to span one base-pair (bp) of DNA when incorporated into a tandem polyamide. ImPyIm-(R)[ImPyIm-(R)(H2N)gamma-PyPyPy-delta](HN)gamma-PyPyPy-beta-Dp (1b) binds the 10 bp binding-site 5'-AGTGAAGTGA-3' with equilibrium association constant K(a)=3.2 x 10(10) M(-1) and ImPyIm-(R)[ImPyIm-(R)(H2N)gamma-PyPyPyIm-delta](HN)gamma-PyPyPy-beta-Dp (2d) binds the 11 bp binding-site 5'-AGTGATAGTGA-3' with K(a)=9.7 x 10(9) M(-1). Tandem 1b also bind the 11 bp site but with lower affinity affording a 15-fold specificity for the shorter binding site. Replacing a methylene group in the amino acid linker with an oxygen atom to form tandem polyamide ImPyIm-(R)[ImPyIm-(R)(H2N)gamma-PyPyPy-E](HN)gamma-PyPyPy-beta-Dp (4) where E represents the ether linker, resulted in that an 80-fold specificity for the 10 bp binding site over the 11 bp site.  相似文献   

17.
Glycine release has been rarely studied. The aim of this work was to characterize the release of the amino acid from spinal cord glycinergic nerve endings selectively pre-labeled through glycine transporters of the GLYT2 type. Purified mouse spinal cord synaptosomes were incubated with [(3)H]glycine in the presence of the GLYT1 blocker N-[(3R)-3-([1,1'-biphenyl]-4-yloxy)-3-(4-fluorophenyl)propyl]-N-methylglycine hydrochloride and exposed in superfusion to varying concentrations of KCl, 4-aminopyridine (4-AP), or veratridine. KCl (< or = 15 micromol/L), 4-AP (up to 1 mmol/L), and veratridine (< or = 0.3 micromol/L)-provoked [(3)H]glycine release by external Ca2+-dependent, botulinum toxin C(1)-sensitive, exocytosis. The overflows evoked by higher concentrations of K+ or veratridine involved external Ca2+-independent mechanisms of different nature. Only the overflow evoked by 3 or 10 micromol/L veratridine occurred totally (3 micromol/L) or in part (10 micromol/L) by transporter reversal, being sensitive to the GLYT2 blockers 4-benzyloxy-3,5-dimethoxy-N-[1-(dimethylaminociclopentyl)-methyl] benzamide or O-[(2-benzyloxyphenyl-3-flurophenyl)methyl]-l-serine; in contrast, the external Ca2+-independent [(3)H]glycine overflow provoked by 50 mmol/L K+ was transporter-independent. This component of K+-evoked overflow and the GLYT2-independent portion of the 10 micromol/L veratridine-evoked overflow, were largely sensitive to the vesicle depletor bafilomycin or BAPTA-AM and were prevented by blocking the mitochondrial Na+/Ca2+ exchanger with 7-chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one, indicating the involvement of exocytosis triggered by intraterminal mitochondrial Ca2+ ions.  相似文献   

18.
The stability constants of the mixed-ligand complexes formed between Cu(Arm)2+, where Arm=2,2'-bipyridine (Bpy) or 1,10-phenanthroline (Phen), and the dianions of 9-[2-(2-phosphonoethoxy)ethyl]adenine (PEEA2-) and (2-phosphonoethoxy)ethane (PEE2-), also known as [2-(2-ethoxy)ethyl]phosphonate, were determined by potentiometric pH titrations in aqueous solution (25 degrees C; I=0.1 M, NaNO3). The ternary Cu(Arm)(PEEA) complexes are considerably more stable than the corresponding Cu(Arm)(R-PO3) species, where R-PO3(2-) represents a phosph(on)ate ligand with a group R that is unable to participate in any kind of interaction within the complexes. The increased stability is attributed to intramolecular stack formation in the Cu(Arm)(PEEA) complexes and also, to a smaller extent, to the formation of 6-membered chelates involving the ether oxygen atom present in the -CH2-O-CH2-CH2-PO3(2-) residue of PEEA2-. This latter interaction is separately quantified by studying the ternary Cu(Arm)(PEE) complexes which can form the 6-membered chelates but where no intramolecular ligand-ligand stacking is possible. Application of these results allows a quantitative analysis of the intramolecular equilibria involving three structurally different Cu(Arm)(PEEA) species; e.g., of the Cu(Bpy)(PEEA) system about 11% exist with the metal ion solely coordinated to the phosphonate group, 4% as a 6-membered chelate involving the ether oxygen atom of the -CH2-O-CH2CH2-PO3(2-) residue, and 85% with an intramolecular stack between the adenine moiety of PEEA2- and the aromatic rings of Bpy. In addition, the Cu(Arm)(PEEA) complexes may be protonated, leading to Cu(Arm)(H;PEEA)+ species for which it is concluded that the proton is located at the phosphonate group and that the complexes are mainly formed (50 and 70%) by a stacking adduct between Cu(Arm)2+ and the adenine residue of H(PEEA)-. Finally, the stacking properties of adenosine 5'-monophosphate (AMP2-), of the dianion of 9-[2-(phophonomethoxy)ethyl]adenine (PMEA2-) and of several of its analogues (=PA2-) are compared in their ternary Cu(Arm)(AMP) and Cu(Arm)(PA) systems. Conclusions regarding the antiviral properties of several acyclic nucleoside phosphonates are shortly discussed.  相似文献   

19.
A series of square-planar Pd(II) complexes of the composition cis-[Pd(L(n))(2)Cl(2)] {L(1)=2-chloro-6-benzylamino-9-isopropylpurine (1), L(2)=2-chloro-6-[(4-methoxybenzyl)amino]-9-isopropylpurine (2), L(3)=2-chloro-6-[(2-methoxybenzyl)amino]-9-isopropylpurine (3) and 2-[(chloropropyl)amino]-6-benzylamino-9-isopropylpurine (6)} has been synthesized by the reaction of PdCl(2) with L(n) in a 1:2 molar ratio. In contrast, the same reaction followed by recrystallization of the product from N,N'-dimethylformamide (DMF) leads to trans-[Pd(L(n))(2)Cl(2)] x nDMF {L(3), n=0 (4), n=1(4( *)DMF); L(4)=2-chloro-6-[(2,3-dimethoxybenzyl)-amino]-9-isopropylpurine, n=0 (5), n=1.5 (5( *)DMF). The compounds have been characterized by elemental analyses, conductivity measurements, electrospray mass spectra in the positive ion mode (ES+MS), FTIR, (1)H and (13)C NMR spectra, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Moreover, the complexes 2 and 6 have been also investigated by (15)N NMR spectroscopy. The molecular structures of L(5), {(H(2+)L(5))(Cl(-))(2)} x H(2)O, i.e. the protonated form of L(5), trans-[Pd(L(3))(2)Cl(2)] (4) and trans-[Pd(L(4))(2)Cl(2)] (5) have been determined by single crystal X-ray analysis. NMR data and X-ray structures revealed that the organic molecules are coordinated to Pd via N7 atom of a purine moiety. All the complexes and the corresponding ligands have been tested in vitro for their cytotoxicity against four human cancer cell lines: breast adenocarcinoma (MCF7), malignant melanoma (G361), chronic myelogenous leukaemia (K562) and osteogenic sarcoma (HOS). Promising in vitro cytotoxic effect has been found for cis-[Pd(L(2))(2)Cl(2)] (2), having the IC(50) values of 12, 10, 25, and 14 microM against MCF7, G361, K562, and HOS, respectively, and for trans-[Pd(L(3))(2)Cl(2)].DMF (4) with the IC(50) value of 15 microM against G361.  相似文献   

20.
The 13C CPMAS n.m.r. spectrum of 4-O-beta-D-galactopyranosyl-D-fructose (lactulose) trihydrate, C12H22O11.3 H2O, identifies the isomer in the crystals as the beta-furanose. This is confirmed by a crystal structure analysis, using CuK alpha X-ray data at room temperature. The space group is P212121, with Z = 4 and cell dimensions a = 9.6251(3), b = 12.8096(3), c = 17.7563(4) A. The structure was refined to R = 0.031 and Rw 0.025 for 1929 observed structure amplitudes. All the hydrogen atoms were unambigously located on difference syntheses. The conformation of the pyranose ring is the normal 4C1 chair and that of the furanose ring is 4T3. The 1----4 linkage torsion angles are O-5'-C-1'-O-1'-C-4 = 79.9(2) degrees and C-1'-O-1'-C-4-C-5 = -170.3(2) degrees. All hydroxyls, ring and glycosidic oxygens, and water molecules are involved in the hydrogen bonding, which consists of infinite chains linked together by water molecules to form a three-dimensional network. There is a three-centered intramolecular, interresidue hydrogen bond from O-3-H to O-5' and O-6'. The n.m.r. spectrum of the amorphous, dehydrated trihydrate suggests the occurrence of a solid-state reaction forming the same isomeric mixture as was observed in crystalline anhydrous lactulose, although the mutarotation of the trihydrate when dissolved in Me2SO is very slow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号