首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An intact B-box 2 domain is essential for the antiretroviral activity of TRIM5alpha. We modeled the structure of the B-box 2 domain of TRIM5alpha based on the existing three-dimensional structure of the B-box 2 domain of human TRIM29. Using this model, we altered the residues predicted to be exposed on the surface of this globular structure. Most of the alanine substitutions in these residues exerted little effect on the antiretroviral activity of human TRIM5alphahu or rhesus monkey TRIM5alpharh. However, alteration of arginine 119 of TRIM5alphahu or the corresponding arginine 121 of TRIM5alpharh diminished the abilities of the proteins to restrict retroviral infection without affecting trimerization or recognition of the viral capsid. The abilities of these functionally defective TRIM5alpha proteins to accelerate the uncoating of the targeted retroviral capsid were abolished. Removal of the positively charged side chain from B-box 2 arginines 119/120/121 resulted in diminished proteasome-independent turnover of TRIM5alpha and the related restriction factor TRIMCyp. However, testing of an array of mutants revealed that the rapid turnover and retroviral restriction functions of this B-box 2 region are separable.  相似文献   

2.
3.
4.
The retroviral restriction factor TRIMCyp, derived from the TRIM5 gene, blocks replication at a postentry step. TRIMCyp has so far been found in four species of Asian macaques, Macaca fascicularis, M. mulatta, M. nemestrina, and M. leonina. M. fascicularis is commonly used as a model for AIDS research, but TRIMCyp has not been analyzed in detail in this species. We analyzed the prevalence of TRIMCyp in samples from Indonesia, Indochina, the Philippines, and Mauritius. We found that TRIMCyp is present at a higher frequency in Indonesian than in Indochinese M. fascicularis macaques and is also present in samples from the Philippines. TRIMCyp is absent in Mauritian M. fascicularis macaques. We then analyzed the restriction specificity of TRIMCyp derived from three animals of Indonesian origin. One allele, like the prototypic TRIMCyp alleles described for M. mulatta and M. nemestrina, restricts human immunodeficiency virus type 2 (HIV-2) and feline immunodeficiency virus (FIV) but not HIV-1. The others restrict HIV-1 and FIV but not HIV-2. Mutagenesis studies confirmed that polymorphisms at amino acid residues 369 and 446 in TRIMCyp (or residues 66 and 143 in the cyclophilin A [CypA] domain) confer restriction specificity. Additionally, we identified a polymorphism in the coiled-coil domain that appears to affect TRIMCyp expression or stability. Taken together, these data show that M. fascicularis has the most diverse array of TRIM5 restriction factors described for any primate species to date. These findings are relevant to our understanding of the evolution of retroviral restriction factors and the use of M. fascicularis models in AIDS research.  相似文献   

5.
Schaller T  Hué S  Towers GJ 《Journal of virology》2007,81(21):11713-11721
The recent identification of antiretroviral tripartite motif-bearing restriction factors that protect against retroviral infection has revealed a novel branch of innate immunity. The factors target the retroviral capsid and inhibit infectivity soon after the capsid has entered the cytoplasm by an incompletely characterized mechanism. Restriction is species specific. For example, TRIM5alpha from Old World monkeys, but not humans, restricts human immunodeficiency virus type 1 infection. Here, we identify an antiviral TRIM5 molecule in rabbits that is closely related to antiviral TRIM5 of both primates and cattle. We demonstrate that the rabbit TRIM5 protein is active against divergent retroviruses and leads to a strong block to viral DNA synthesis and infectivity. Furthermore, we show that antiviral activity is directed against the viral capsid and that human TRIM5 proteins are dominant negative to restriction in rabbit cells. We propose that the sequence and restriction characteristics conserved between restriction factors from primates, cattle, and rabbits indicate that these factors have evolved from a common ancestor with antiretroviral properties.  相似文献   

6.
Pathogenic viral infections have exerted selection pressure on their hosts to evolve cellular antiviral inhibitors referred to as restriction factors. Examples of such molecules are APOBEC3G, APOBEC3F and TRIM5alpha. APOBEC3G and APOBEC3F are cytidine deaminases that are able to strongly inhibit retroviral replication by at least two mechanisms. They are counteracted by the lentiviral Vif protein. TRIM5alpha binds to sensitive, incoming retroviruses via its C-terminal PRY/SPRY domain and rapidly recruits them to the proteasome before significant viral DNA synthesis can occur. Both of these proteins robustly block retroviral replication in a species-specific way. It remains an open but important question as to whether innate restriction factors such as these can be harnessed to inhibit HIV-1 replication in humans.  相似文献   

7.
TRIM5alpha is a restriction factor that limits infection of human cells by so-called N- but not B- or NB-tropic strains of murine leukemia virus (MLV). Here, we performed a mutation-based functional analysis of TRIM5alpha-mediated MLV restriction. Our results reveal that changes at tyrosine(336) of human TRIM5alpha, within the variable region 1 of its C-terminal PRYSPRY domain, can expand its activity to B-MLV and to the NB-tropic Moloney MLV. Conversely, we demonstrate that the escape of MLV from restriction by wild-type or mutant forms of huTRIM5alpha can be achieved through interdependent changes at positions 82, 109, 110, and 117 of the viral capsid. Together, our results support a model in which TRIM5alpha-mediated retroviral restriction results from the direct binding of the antiviral PRYSPRY domain to the viral capsid, and can be prevented by interferences exerted by critical residues on either one of these two partners.  相似文献   

8.
TRIM5alpha is an important mediator of antiretroviral innate immunity influencing species-specific retroviral replication. Here we investigate the role of the peptidyl prolyl isomerase enzyme cyclophilin A in TRIM5alpha antiviral activity. Cyclophilin A is recruited into nascent human immunodeficiency virus type 1 (HIV-1) virions as well as incoming HIV-1 capsids, where it isomerizes an exposed proline residue. Here we show that cyclophilin A renders HIV-1 sensitive to restriction by TRIM5alpha in cells from Old World monkeys, African green monkey and rhesus macaque. Inhibition of cyclophilin A activity with cyclosporine A, or reducing cyclophilin A expression with small interfering RNA, rescues TRIM5alpha-restricted HIV-1 infectivity. The effect of cyclosporine A on HIV-1 infectivity is dependent on TRIM5alpha expression, and expression of simian TRIM5alpha in permissive feline cells renders them able to restrict HIV-1 in a cyclosporine A-sensitive way. We use an HIV-1 cyclophilin A binding mutant (CA G89V) to show that cyclophilin A has different roles in restriction by Old World monkey TRIM5alpha and owl monkey TRIM-Cyp. TRIM-Cyp, but not TRIM5alpha, recruits its tripartite motif to HIV-1 capsid via cyclophilin A and, therefore, HIV-1 G89V is insensitive to TRIM-Cyp but sensitive to TRIM5alpha. We propose that cyclophilin A isomerization of a proline residue in the TRIM5alpha sensitivity determinant of the HIV-1 capsid sensitizes it to restriction by Old World monkey TRIM5alpha. In humans, where HIV-1 has adapted to bypass TRIM5alpha activity, the effects of cyclosporine A are independent of TRIM5alpha. We speculate that cyclophilin A alters HIV-1 sensitivity to a TRIM5alpha-independent innate immune pathway in human cells.  相似文献   

9.
Mammalian cells have developed diverse strategies to restrict retroviral infection. Retroviruses have therefore evolved to counteract such restriction factors, in order to colonize their hosts. Tripartite motif-containing 5 isoform-alpha (TRIM5alpha) protein from rhesus monkey (TRIM5alpharh) restricts human immunodeficiency virus type 1 (HIV-1) infection at a postentry, preintegration stage in the viral life cycle, by recognizing the incoming capsid and promoting its premature disassembly. TRIM5alpha comprises an RBCC (RING, B-box 2 and coiled-coil motifs) domain and a B30.2(SPRY) domain. Sequences in the B30.2(SPRY) domain dictate the potency and specificity of the restriction. As TRIM5alpharh targets incoming mature HIV-1 capsid, but not precursor Gag, it was assumed that TRIM5alpharh did not affect HIV-1 production. Here we provide evidence that TRIM5alpharh, but not its human ortholog (TRIM5alphahu), blocks HIV-1 production through rapid degradation of HIV-1 Gag polyproteins. The specificity for this restriction is determined by sequences in the RBCC domain. Our observations suggest that TRIM5alpharh interacts with HIV-1 Gag during or before Gag assembly through a mechanism distinct from the well-characterized postentry restriction. This finding demonstrates a cellular factor blocking HIV-1 production by actively degrading a viral protein. Further understanding of this previously unknown restriction mechanism may reveal new targets for future anti-HIV-1 therapy.  相似文献   

10.
The innate antiviral factor TRIM5alpha restricts the replication of some retroviruses through its interaction with the viral capsid protein, leading to abortive infection. While overexpression of human TRIM5alpha results in modest restriction of human immunodeficiency virus type 1 (HIV-1), this inhibition is insufficient to block productive infection of human cells. We hypothesized that polymorphisms within TRIM5 may result in increased restriction of HIV-1 infection. We sequenced the TRIM5 gene (excluding exon 5) and the 4.8-kb 5' putative regulatory region in genomic DNA from 110 HIV-1-infected subjects and 96 exposed seronegative persons, along with targeted gene sequencing in a further 30 HIV-1-infected individuals. Forty-eight single nucleotide polymorphisms (SNPs), including 20 with allele frequencies of >1.0%, were identified. Among these were two synonymous and eight nonsynonymous coding polymorphisms. We observed no association between TRIM5 polymorphism in HIV-1-infected subjects and their set-point viral load after acute infection, although one TRIM5 haplotype was weakly associated with more rapid CD4(+) T-cell loss. Importantly, a TRIM5 haplotype containing the nonsynonymous SNP R136Q showed increased frequency among HIV-1-infected subjects relative to exposed seronegative persons, with an odds ratio of 5.49 (95% confidence interval = 1.83 to 16.45; P = 0.002). Nonetheless, we observed no effect of individual TRIM5alpha nonsynonymous mutations on the in vitro HIV-1 susceptibility of CD4(+) T cells. Therefore, any effect of TRIM5alpha polymorphism on HIV-1 infection in primary lymphocytes may depend on combinations of SNPs or on DNA sequences in linkage disequilibrium with the TRIM5alpha coding sequence.  相似文献   

11.
Polymorphisms in human genes have been shown to affect the rate of disease progression to acquired immune deficiency syndrome in human immunodeficiency virus type 1 (HIV-1)-infected individuals. Recently, tripartite motif 5α (TRIM5α) was identified as a factor that confers resistance to HIV-1 infection in Old World monkey cells. Subsequently, Sawyer et al. (Curr Biol 16:95–100, 2006) reported a single nucleotide polymorphism (H43Y) in the human TRIM5α gene and TRIM5α protein with 43Y was found to lose its ability to restrict HIV-1. In the present study, we reevaluated effects of this allele on in vitro anti-HIV-1 activity as well as on HIV-1 disease progression in European and Asian cohorts of HIV-1-infected individuals. Our epidemiological and molecular biological findings clearly indicate H43Y has a very minor effect on anti-HIV-1 activity of TRIM5α, suggesting that this allele is immaterial, at least in HIV-1-infected Europeans and Asians.  相似文献   

12.
13.
14.
Human TRIM5alpha (TRIM5alpha(hu)) potently restricts N-tropic (N-MLV), but not B-tropic, murine leukemia virus in a manner dependent upon residue 110 of the viral capsid. Rhesus monkey TRIM5alpha (TRIM5alpha(rh)) inhibits N-MLV only weakly. The study of human-monkey TRIM5alpha chimerae revealed that both the v1 and v3 variable regions of the B30.2/SPRY domain contain potency determinants for N-MLV restriction. These variable regions are predicted to be surface-exposed elements on one face of the B30.2 domain. Acidic residues in v3 complement basic residue 110 of the N-MLV capsid. The results support recognition of the retroviral capsid by the TRIM5alpha B30.2 domain.  相似文献   

15.
16.
17.
Li X  Sodroski J 《Journal of virology》2008,82(23):11495-11502
The retroviral restriction factor, TRIM5α, blocks infection of a spectrum of retroviruses soon after virus entry into the cell. TRIM5α consists of RING, B-box 2, coiled-coil, and B30.2(SPRY) domains. The B-box 2 domain is essential for retrovirus restriction by TRIM5α, but its specific function is unknown. We show here that the B-box 2 domain mediates higher-order self-association of TRIM5αrh oligomers. This self-association increases the efficiency of TRIM5α binding to the retroviral capsid, thus potentiating restriction of retroviral infection. The contribution of the B-box 2 domain to cooperative TRIM5α association with the retroviral capsid explains the conditional nature of the restriction phenotype exhibited by some B-box 2 TRIM5α mutants; the potentiation of capsid binding that results from B-box 2-mediated self-association is essential for restriction when B30.2(SPRY) domain-mediated interactions with the retroviral capsid are weak. Thus, B-box 2-dependent higher-order self-association and B30.2(SPRY)-dependent capsid binding represent complementary mechanisms whereby sufficiently dense arrays of capsid-bound TRIM5α proteins can be achieved.  相似文献   

18.
19.
TRIM5alpha     
Nakayama EE  Shioda T 《Uirusu》2005,55(2):259-265
  相似文献   

20.
Li Y  Li X  Stremlau M  Lee M  Sodroski J 《Journal of virology》2006,80(14):6738-6744
Human TRIM5alpha (TRIM5alpha(hu)) only modestly inhibits human immunodeficiency virus type 1 (HIV-1) and does not inhibit simian immunodeficiency virus (SIV(mac)). Alteration of arginine 332 in the TRIM5alpha(hu) B30.2 domain to proline, the residue found in rhesus monkey TRIM5alpha, has been shown to create a potent restricting factor for both HIV-1 and SIV(mac.) Here we demonstrate that the potentiation of HIV-1 inhibition results from the removal of a positively charged residue at position 332 of TRIM5alpha(hu.) The increase in restricting activity correlated with an increase in the ability of TRIM5alpha(hu) mutants lacking arginine 332 to bind HIV-1 capsid complexes. A change in the cyclophilin A-binding loop of the HIV-1 capsid decreased TRIM5alpha(hu) R332P binding and allowed escape from restriction. The ability of TRIM5alpha(hu) to restrict SIV(mac) could be disrupted by the presence of any charged residue at position 332. Thus, charged residues in the v1 region of the TRIM5alpha(hu) B30.2 domain can modulate capsid binding and restriction potency. Therapeutic strategies designed to neutralize arginine 332 of TRIM5alpha(hu) might potentiate the innate resistance of human cells to HIV-1 infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号