首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The release of N and P from the sediment of two ditches, one (A) dominated by filamentous algae and the other (B) by water-lilies, was estimated by core and enclosure experiments. The release rates for ditch A tended to be higher than those for ditch B. Sediment cores covered by a filamentous algae layer released about 1.5 times more N and P than those from which the layer had been removed. During the incubation of the cores in the dark at 20°C for 2–3 weeks, about 10% of the N in the filamentous algae layer was mineralized. The mineralization could be described as a first-order reaction with a rate constant of about 0.2 d–1. On average the cores of ditches A and B released about 40 mg mineral N and 3 mg.m–2.d–1 soluble reactive phosphorus. Defining the release from the sediment in the enclosures as the net increase of N and P in the water phase and in the vegetation minus the input, a negative net release,i.e. net accumulation of N and P in the sediment, was found over the summer half of the year. The negative values were due to the significant N and P input, resulting from pumping ditch water into the enclosures in order to compensate for downward seepage. From the enclosure experiments a downward seepage rate of 14 mm.d–1 and an external load of about 6 g.m–2 total N and 0.6 g.m–2 total P during the summer half of the year —i.e. 33 mg.m–2.d–1 N and 3 mg.m–2.d–1 P. respectively — was calculated for the ditches. Tentative gross release rates — based on the sum of the positive net release of N and P into the water phase over 1–2 weeks intervals and the net increase of N and P in the vegetation — converted to 20°C and allowing for underestimation of the primary production by a factor of 5, amounted to 58 mg mineral N and 7 mg.m–2.d–1 soluble reactive phosphorus during the summer half of the year. Combining the rates estimated by cores and enclosures and converting them to rates at the mean water temperature during the summer half of the year, the release of mineral N and soluble reactive phosphorus roughly amounted to 40 and 4 mg.m–2.d–1, respectively. The release rates as well as the external load indicated a relatively low eutrophication of the ditches.  相似文献   

2.
Flindt  Mogens R.  Nielsen  Jan B. 《Hydrobiologia》1992,235(1):283-293
Total oxygen uptake, bacterial oxygen uptake, total bacterial biomass and active bacterial biomass were determined at the sediment-water interface at two stations in the brackish Roskilde Fjord between September and December in 1986 before, during and after sedimentation of a phytoplankton bloom. Bacterial oxygen consumption was separated from total oxygen consumption by addition of cycloheximide. The fractional and the absolute bacterial oxygen uptake were greatest at the most eutrophic station, where total oxygen uptake was 870–1740 mg O2 m–2 d–1 and the bacterial oxygen uptake was 232–870 mg O2 m–2 d–1. At the less eutrophic station, total oxygen uptake was 725–1740 mg O2 m–2 d–1. and bacterial oxygen uptake was 200–550 mg O2 m–2 d–1.Active bacterial biomass was separated from total bacterial biomass by addition of the terminal electron acceptor INT-formazan. The active bacterial biomass was 70–120 µg C mg–1 ww of sediment at the most eutrophic station and 50–90 µg C g–1 ww of sediment at the other station. Differences in capacity of bacterial oxygen uptake between the two stations correlated to the active bacterial biomass. The non-temperature dependent bacterial oxygen uptake correlated with the sedimentation rate.  相似文献   

3.
Primary production and distribution and abundance of phyto- and zooplankton of lake Manzala were investigated from June 1985 to June 1986.Primary production varied from 4.1 to 28.7 g O2 m–2 d–1 with the highest values 24.2 and 28.7 g O2 m–2 d–1 recorded in the eastern and southern sectors and the lowest value 4.1 g O2 m–2 d–1 recorded in the northern sector. The seasonal mean production for the lake was estimated at 13.3 g O2 m–2 d–1.Mean phytoplankton abundance ranged from 32.7 107 to 76.1 107 cells m–3 with a mean value of 48.107 cells m–3. Diatoms were the dominant phytoplankton group comprising 52 to 90 % by number. The greatest relative abundance (87 to 90%) was recorded in the southern sector.Mean zooplankton abundance ranged from 30.1 103 to 44.4 103 organisms m–3 in the eastern sector to 5.5.103 in the northern sector. In response of eutrophication, the species composition changed significantly over the last 20 years. Cladocerans represented less than 1% of zooplankton during 1959/60, but 75% in 1985/86. Rotifers constituted 40% in 1959/60, and only 1% in 1985/86. Cirriped larvae declined from 21% to 1%.  相似文献   

4.
Marc W. Beutel 《Hydrobiologia》2001,466(1-3):107-117
Walker Lake (area = 140 km2, Z mean = 19.3 m) is a large, terminal lake in western Nevada. As a result of anthropogenic desiccation, the lake has decreased in volume by 75% since the 1880s. The hypolimnion of the lake, now too small to meet the oxygen demand exerted by decaying matter, rapidly goes anoxic after thermal stratification. Field and laboratory studies were conducted to examine the feasibility of using oxygenation to avoid hypolimnetic anoxia and subsequent accumulation of ammonia in the hypolimnion, and to estimate the required DO capacity of an oxygenation system for the lake. The accumulation of inorganic nitrogen in water overlaying sediment was measured in laboratory chambers under various DO levels. Rates of ammonia accumulation ranged from 16.8 to 23.5 mg-N m–2 d–1 in chambers with 0, 2.5 and 4.8 mg L–1 DO, and ammonia release was not significantly different between treatments. Beggiatoa sp. on the sediment surface of the moderately aerated chambers (2.5 and 4.8 mg L–1 DO) indicated that oxygen penetration into sediment was minimal. In contrast, ammonia accumulation was reversed in chambers with 10 mg L–1 DO, where oxygen penetration into sediment stimulated nitrification and denitrification. Ammonia accumulation in anoxic chambers (18.1 and 20.6 mg-N m–2 d–1) was similar to ammonia accumulation in the hypolimnion from July through September of 1998 (16.5 mg-N m–2 d–1). Areal hypolimnetic oxygen demand averaged 1.2 g O2 m–2 d–1 for 1994–1996 and 1998. Sediment oxygen demand (SOD) determined in experimental chambers averaged approximately 0.14 g O2 m–2 d–1. Continuous water currents at the sediment-water interface of 5–6 cm s–1 resulted in a substantial increase in SOD (0.38 g O2 m–2 d–1). The recommended oxygen delivery capacity of an oxygenation system, taking into account increased SOD due to mixing in the hypolimnion after system start-up, is 215 Mg d–1. Experimental results suggest that the system should maintain high levels of DO at the sediment-water interface (10 mg L–1) to insure adequate oxygen penetration into the sediments, and a subsequent inhibition of ammonia accumulation in the hypolimnion of the lake.  相似文献   

5.
Gross primary production, community respiration and reaeration coefficient were determined during an annual cycle on the Viroin River (South Belgium), based on the daily variations of dissolved oxygen concentration. Reaeration coefficient remains remarkably constant (0.26 h−1) during the year in spite of discharge variations. The autotrophic community is dominated by ‘Ranunculus fluitans’. Primary production parallels the variations of total solar radiations. It ranges from 0 in winter to 8 g O2 m−2 d−1 in summer. In spring and summer, respiration variations parallel those of primary production (average value: 10 g O2 m−2 d−1); in the dry autumn, decomposition of dying macrophytes considerably enhances the community respiration (15 g O2 m−2 d−1). A P/R diagram is used to characterize the trophic state of the Viroin.  相似文献   

6.
Aerobic respiration with oxygen and anaerobic respiration with nitrate (denitrification) and sulfate (sulfate reduction) were measured during winter and summer in two coastal marine sediments (Denmark). Both aerobic respiration and denitrification took place in the oxidized surface layer, whereas sulfate reduction was most significant in the deeper, reduced sediment. The low availability of nitrate apparently limited the activity of denitrification during summer to less than 0.2 mmoles NO 3 m–2 day–1, whereas activities of 1.0–3.0 mmoles NO 3 m–2 day–1 were measured during winter. Sulfate reduction, on the contrary, increased from 2.6–7.6 mmoles SO 4 2– m–2 day–1 during winter to 9.8–15.1 mmoles SO 4 2– m–2 day–1 during summer. The aerobic respiration was high during summer, 135–140 mmoles O2 m–2 day–1, as compared to estimated winter activities of about 30 mmoles O2 m–2 day–1. The little importance of denitrification relative to aerobic respiration and sulfate reduction is discussed in relation to the availability and distribution of oxygen, nitrate, and sulfate in the sediments and to the detritus mineralization.  相似文献   

7.
D. M. Alongi 《Oecologia》1994,98(3-4):320-327
Benthic oxygen consumption and primary production were measured using the bell jar technique in deltaic and fringing mangrove forests of tropical northeastern Australia. In a deltaic forest, rates of sediment respiration ranged from 197 to 1645 mol O2 m–2 h–1 (mean=836), but did not vary significantly with season or intertidal zone. Gross primary production varied among intertidal zones and seasons, ranging from –281 to 1413 mol O2 m–2 h–1 (mean=258). Upon tidal exposure, rates of gross primary production increased, but respiration rates did not change significantly. In a fringing mangrove forest, benthic respiration and gross primary production exhibited strong seasonality. In both forests, rates of oxygen consumption and production were low compared to salt marshes, but equivalent to rates in other mangrove forests. The production:respiration (P/R) ratio varied greatly over space and time (range:–0.61 to 1.76), but most values were «1 with a mean of 0.15, indicating net heterotrophy. On a bare creek bank and a sandflat, rates of gross primary production and P/R ratios were generally higher than in the adjacent mangroves. Low microalgal standing stocks, low light intensity under the canopy, and differences in gross primary production between mangroves and tidal flats, and with tidal status, indicate that benthic microalgae are light-limited and a minor contributor to primary productivity in these tropical mangrove forests.  相似文献   

8.
The organic carbon cycle of a shallow, tundra lake (mean depth 1.45 m) was followed for 5 weeks of the open water period by examining CO2 fluxes through benthic respiration and anaerobic decomposition, photosynthesis of benthic and phytoplankton communities and gas exchange at the air-water interface. Total photosynthesis (as consumption of carbon dioxide) was 37.5 mmole C m–2 d–1, 83% of which was benthic and macrophytic. By direct measurement benthic respiration exceeded benthic photosynthesis by 6.6 mmole C m–2 d–1. The lake lost 1.4 × 106 moles C in two weeks after ice melted by degassing C02, and 6.8 mmole C m–2 d–1 (1.5 × 106 moles) during the remainder of the open water period; 2.2 mmole C m2 d–1 of this was release Of CO2 stored in the sediments by cryoconcentration the previous winter. Anaerobic microbial decomposition was only 4% of the benthic aerobic respiration rate of 38 mmole C m–2 d–1. An annual budget estimate for the lake indicated that 50% of the carbon was produced by the benthic community, 20% by phytoplankton, and 30% was allochthonous material. The relative contribution of allochthonous input was in accordance with measurement of the 15N of sedimented organic matter.  相似文献   

9.
Newrkla  P.  Gunatilaka  A. 《Hydrobiologia》1982,91(1):531-536
Benthic community respiration rates of profundal sediments of Fuschlsee (37.6 mg · O2 · m–2 · h–1 — eutrophic), Mondsee (40.19 mg · O2 · m–2 · h–1 — eutrophic) and Attersee (11.5 mg · O2 · m–2 · h–1 — oligo-mesotrophic) were measuredin situ, and in cores. By exposing the sediments to different oxygen levels in the laboratory it was found that benthic community metabolism reduced with decreasing oxygen concentrations. The slope of the regression lines, relating oxygen uptake rates to oxygen concentrations, differed significantly for the different sites investigated. These results were closely related to the trophic conditions of the lakes.  相似文献   

10.
Kaj Granberg 《Hydrobiologia》1996,322(1-3):159-166
The aim of this study is to show the effects of the Pitkäranta pulp mill on the water quality of Northern Ladoga by using water quality models. The effluent loading of the pulp mill with its full production capacity is as follows: Water flow 85 000 m3 d–1 BOD5 2.4 t d–1 Suspended solids 4.1 t d–1 tot-N 330 kg d–1 tot-P 68 kg d–1 COD(Cr) 14.4 t d–1 Org. C 6 t d–1 Lignosulphonates 9.4 t d–1 Loadings of lignosulphonates and organic C are estimations. Lignosulphonate concentrations of 10.5 mg 1–1 have been reported in the region of Pitkäranta. The study area of northern Ladoga near the pulp mill was divided into three zones (I, II and III). The mean depth of each of them is considered as 10 m, their respective areas 5, 10 and 50 km2, and volumes 50, 100 and 500 million m3. The estimated discharges of the zones are 10, 20 and 50 m3 s–1, respectively. With the aid of simple water quality models the effects of the pulp mill effluents on the concentrations of oxygen, total phosphorus, lignin, COD(Mn) and Secchi disk depths in each of the zones were estimated. Estimations were made during full production capacity and half production capacity of the pulp mill. The modelling results were compared with the preliminary water analysis results of the Finnish-Russian joint research expedition into Lake Ladoga in August 1993. The results show that near the pulp mill (zone I) phosphorus concentrations are high even with half production capacity. Also lignin and COD(Mn) contents have increased, and oxygen concentrations are low both in the summer and during wintertime. Farther away in the open water (zone III) the pollution effects are low. Eutrophication, indicated by high total phosphorus concentrations, is the main effect of the pulp mill effluents.  相似文献   

11.
In situ paired light and dark-stirred benthic flux chambers were used to estimate dissolved oxygen flux across the sediment–water interface in Lake Mývatn, Iceland. Three sampling stations were selected, each station reflecting a specific sedimentary environment, benthic communities, and water depth. During this study the phytoplankton density was low. Spatial and seasonal variations of bottom DO concentration and DO flux have been observed during this study. The oxygen consumption rate at all study sites had a mean of –89 (±44) mmol m–2 d–1 while the oxygen production rate due to benthic algae had a mean of 131 (±103) mmol m–2 d–1. There was a strong correlation (r=0.91) between oxygen consumption rate and temperature. This was presumably because of the temperature influence on rates of microbial and macrobenthic processes. The mean benthic primary production rate at all study sites was 1216 (±957) mg C m–2 d–1 between June 2000 and February 2001. Annual gross benthic primary production was estimated from the gross mean daily benthic DO production (P) and Redfield's C:O2 ratio of 106:138 to be 420 g C m–2 y–1 at station HO, 250 g C m–2 y–1 at B2 and 340 g C m–2 y–1 at station 95. Thus, the mean gross benthic primary production was estimated as 1151 mg C m–2 d–1 at station HO, 685 mg C m–2 d–1 at station B2, and 932 mg C m–2 d–1 at station 95.  相似文献   

12.
Changes of water table position influence carbon cycling in peatlands, but effects on the sources and sinks of carbon are difficult to isolate and quantify in field investigations due to seasonal dynamics and covariance of variables. We thus investigated carbon fluxes and dissolved carbon production in peatland mesocosms from two acidic and oligotrophic peatlands under steady state conditions at two different water table positions. Exchange rates and CO2, CH4 and DOC production rates were simultaneously determined in the peat from diffusive-advective mass-balances of dissolved CO2, CH4 and DOC in the pore water. Incubation experiments were used to quantify potential CO2, CH4, and DOC production rates. The carbon turnover in the saturated peat was dominated by the production of DOC (10–15 mmol m–2 d–1) with lower rates of DIC (6.1–8.5 mmol m–2 d–1) and CH4 (2.2–4.2 mmol m–2 d–1) production. All production rates strongly decreased with depth indicating the importance of fresh plant tissue for dissolved C release. A lower water table decreased area based rates of photosynthesis (24–42%), CH4 production (factor 2.5–3.5) and emission, increased rates of soil respiration and microbial biomass C, and did not change DOC release. Due to the changes in process rates the C net balance of the mesocosms shifted by 36 mmol m–2 d–1. According to our estimates the change in C mineralization contributed most to this change. Anaerobic rates of CO2 production rates deeper in the peat increased significantly by a factor of 2–3.5 (DOC), 2.9–3.9 (CO2), and 3–14 (CH4) when the water table was lowered by 30 cm. This phenomenon might have been caused by easing an inhibiting effect by the accumulation of CO2 and CH4 when the water table was at the moss surface.  相似文献   

13.
M. M. Babiker 《Hydrobiologia》1984,110(1):351-363
The respiratory behaviour and partitioning of O2 uptake between air and water were investigated in Polypterus genegalus using continuous-flow and two-phase respirometers and lung gas replacement techniques P. senegalus rarely resorts to aerial respiration under normal conditions. Partitioning of O2 consumption depends on the activity and age of fish and the availability of aquatic oxygen. Immature fish (12–22 g) cannot utilize aerial O2 but older fish exhibit age-dependent reliance on aerial respiration in hypoxic and hypercarbic waters. Pulmonary respiration accounts for 50% of the total requirement at aquatic O2 concentrations of about 3.5 mg · l–1 (or CO2 of about 5%) and fish rely exclusively on aerial respiration at O2 concentrations of less than 2.5 mg · l–1. Branchial respiration is initially stimulated by hypercarbia (CO2: 0.5–0.8%) but increased hypercarbia (CO2 – 1%) greatly depresses (by over 90%) brancial respiration and initiates (CO2: 0.5%) and sustains pulmonary respiration.  相似文献   

14.
Results are presented of in situ benthic phosphorus release experiments in an undercut bank of an impounded river. Due to high sedimentation of phytoplankton biomass high oxygen consumption rates between 259.4 and 947.0 mg O2 m–2 d–1 developed, leading to almost anaerobic conditions and phosphorus releases between 175.2 and 236.3 mgP m–2 d–1 over a period of 18 days.In a second series of experiments the water column overlying the sediment was aerated, resulting in much lower P release rates (1.1 to 32.9 mgP m–2 d–1) over a period of 30 days. The influence of pH and nitrate was studied by adjusting pH and adding NO3 to the overlying water. Increasing pH positively affected P release rates and enhanced NO3 levels led to an increase of benthic P release, too.  相似文献   

15.
Summary Seepage caused salinity gradients in a 120 cm deep ditch adjacent to Lake Veere in the Dutch Delta area. The water was mixed by strong horizontal currents, forced by a pumping engine. The restoration of vertical chloride and oxygen gradients was studied.During summer when the level of Lake Veere was raised by 70 cm, a rapid seepage into the ditch was observed, ranging from 6 to 10 mm.h–1. This caused an anoxic saline layer. At the anaerobic-aerobic interface 1.4 to 2.4 mg O2.l–1.h–1 of the oxygen present in the upper water column was taken up. Sulfide oxidation required one quarter of this amount of oxygen.During winter the level of Lake Veere was lowered again. Normally seepage was absent then, and chloride entered the water column by diffusion; the mud chlorinity decreased from 15 to 3 Cl on its way to the ditch. Only after maximum discharge of polder water a moderate seepage of less than 4.4 mm.h–1 restored a chloride gradient; about 1.6 mg O2.l–1.h–1, produced by benthic diatoms, had to be supplied to the reducing materials in the seepage water in less than 12 hours.A saline seepage was simulated in the laboratory. These simulation tests showed that seepage below 1 mm.h–1, as well as benthic respiration only, had a small impact on the vertical oxygen profile in the water column. Bottom oxygen demand increased with seepage velocity. At a strong seepage the water column could become entirely anaerobic.Communication no. 226.  相似文献   

16.
Granéli  Wilhelm 《Hydrobiologia》1992,(1):303-310
Sediment and seston oxygen consumption rates below the sharp halocline in the south-eastern part of the shallow Kattegat were measured and compared to calculated rates of carbon addition through the halocline. The mean rate of decrease in deep-water oxygen concentrations between March and September 1988 was 1.0 ml O2 M–3 h–1. Measurements of benthic oxygen uptake using laboratory-incubated sediment cores from depths 30 m gave a mean value of 7.8 ml O2 m–2 h–1. Below-halocline water (from 20 m, 30 m and 1 m above bottom) incubated in bottles showed oxygen consumption rates varying from 0.5 ml O2 m –3 h–1 in March to 2.8 ml O2 M–3 h-1 in late August. The sum of benthic and deep-water oxygen consumption was equivalent to a mean oxygen decrease rate of 1.7 ml O2 m–3 h–1 below the halocline. Of the total oxygen consumption below the halocline 65% was due to oxygen up-take in the water and 35% was due to benthic oxygen consumption. The sum of oxygen consumption measured in sediment cores and in bottles corresponds to a carbon utilisation of 80.1 g C m–2 (respiratory quotient (RQ), assumed 1.0 and 1.4 for water and sediment, respectively), while the decrease in deep-water oxygen concentration was equivalent to 43.0 g C m–2 (RQ assumed = 1.0). Using published values for the external N loading (including deep-water supply), 15NO3-uptake, 14CO2-uptake in combination with % 15NO3-uptake of total 15N-uptake (nitrate, ammonia and urea) and a Redfield C/N ratio of 6.6, rates of carbon addition (new or export production) through the halocline were calculated to 31.9, 46.7 and 36.3 g C m–2, respectively, with a mean value of 38.3 g C m–2 for the 8 month period March–September. This is somewhat less than the value (50.5 g C m–2) calculated from a published empirical relationship between total and export production. The fact that the calculated carbon addition through the halocline was appreciably less than the carbon equivalent of the measured below-halocline respiration may be an effect of sediment focusing (horizontal transport of sedimenting material to deeper areas), since the bottom area below the halocline is much smaller than the total area of the Kattegat. A lower observed decrease in the oxygen concentration below the halocline compared to the sum of measured sediment and deep-water oxygen consumption on the other hand indicates oxygen supply to below-halocline waters through advection and/or vertical entrainment.  相似文献   

17.
The biomass and primary production of phytoplankton in Lake Awasa, Ethiopia was measured over a 14 month period, November 1983 to March 1985. The lake had a mean phytoplankton biomass of 34 mg chl a m–3 (n = 14). The seasonal variation in phytoplankton biomass of the euphotic zone (mg chl a m–2 h–1) was muted with a CV (standard deviation/mean) of 31%. The vertical distribution of photosynthetic activity was of a typical pattern for phytoplankton with light inhibition on all but overcast days. The maximum specific rates of photosynthesis or photosynthetic capacity (Ømax) for the lake approached 19 mg O2 (mg chl a)–1 h–1, with high values during periods of low phytoplankton biomass. Areal rates of photosynthesis ranged between 0.30 to 0.73 g O2 m–2 h–1 and 3.3 to 7.8 g O2 m–2 d–1. The efficiency of utilisation of PhAR incident on the lake surface varied from 2.4 to 4.1 mmol E–1 with the highest efficiency observed corresponding to the lowest surface radiation. Calculated on a caloric basis, the efficiency ranged between 1.7 and 2.9%. The temporal pattern of primary production by phytoplankton showed limited variability (CV = 21 %).  相似文献   

18.
Ecosystem and macrophyte primary production of the Fort River,Massachusetts   总被引:3,自引:3,他引:0  
Primary production and ecosystem respiration of the Fort River ecosystem, a medium size (mean discharge 1.4 m3/sec) lowland stream in central Massachusetts, U.S.A., were measured using diurnal oxygen techniques from May 1972 to November 1973. During the summer of 1973, vascular hydrophyte production was measured with a modified cropping technique. Whole ecosystem gross primary production ranged from 0.44 g O2/m2:day in winter to 6.50 g O2/m2.day in summer, and averaged 1.78 g O2/m2.day for 12 months. Mean ecosystem respiration was 3.65 g O2/m2.day for 12 months. Mean ecosystem respiration was 3.65 g O2/m2.day.Macrophyte gross production (59.9 g O2/m2.year) constitutes 9.2% of annual ecosystem productivity and 15.2% of summer primary production. Macrophytes were little grazed and entered food webs only after death, as detritus. Decomposition occurred near the site of production at relatively rapid rates, thus transport of dead macrophyte material in stream water was low. Data from this and other stream ecosystems suggest that in general, streams are only moderately productive ecosystems which depend to varying degrees on watershed-derived organic matter inputs.  相似文献   

19.
Estimates of net primary production, community respiration (R'), and gross primary production (P g) are developed and presented for the productive layers of eutrophic Onondaga Lake, NY, U.S.A., for time scales ranging from diel to several months, based on 4 months of robotic diel profiles of dissolved oxygen (DO) and temperature. Metabolic rate calculations are made through application of a DO mass balance framework that also accommodates inputs and losses of DO mediated by exchange across the air–water interface and across the lower boundary of the productive layers. It is demonstrated that the dynamics of the flux across the air–water interface are important to the metabolic rate estimates, while vertical mixing-based losses to the underlying layers can be ignored. Study average estimates of R' (1.49 g O2 m–3 d–1) and P g (1.60 g O2 m–3 d–1) obtained by this non-isolated community approach are consistent with levels reported in the literature for similar chlorophyll a concentrations, based on isolated community (bottle experiment) protocols to measure these metabolic rates. The non-isolated community approach is shown to have limited utility for quantifying day-to-day changes in these rates in this lake, apparently because of horizontal exchange with waters of different DO concentrations. However, this approach may support reliable estimates of metabolic rates at intermediate time scales; e.g., several days to a week. The DO mass balance framework is demonstrated to be valuable in resolving the relative roles of various physical and biological processes in regulating the DO pool of the productive layers.  相似文献   

20.
The in situ rates of oxygen consumption by benthic nitrifiers were estimated at 11 study sites in 4 streams. Two methods were used: an in situ respiration chamber method and a method involving conversion of nitrifying potential measurements to in situ rates. Estimates of benthic nitrogenous oxygen consumption (BNOC) rate ranged from 0–380 mmol of O2 m–2·day–1, and BNOC contributed between 0–85% of the total benthic oxygen consumption rate. The activity of nitrifiers residing in the sediments was influenced by O2 availability, temperature, pH, and substrate. Depending upon site, nitrification could approximate either first-order or zero-order kinetics with respect to ammonium concentration. The source of ammonium for benthic nitrifiers could be either totally from within the sediment or totally from the overlying water. Nitrate produced in the sediments could flux to the water above or be lost within the sediment. The sediments could act as a source (positive flux) or sink (negative flux) for both ammonium (–185 mmol·m–2·day–1 to +195 mmol·m–2·day–1) and nitrate (–135 mmol·m–2·day–1 to +185 mmol·m–2·day–1).This study provides evidence to suggest that measurements of down-stream mass flow changes in inorganic nitrogen forms may give poor estimates of in situ rates of nitrification in flowing waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号