首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.

Background  

Chromosomal copy number changes (aneuploidies) play a key role in cancer progression and molecular evolution. These copy number changes can be studied using microarray-based comparative genomic hybridization (array CGH) or gene expression microarrays. However, accurate identification of amplified or deleted regions requires a combination of visual and computational analysis of these microarray data.  相似文献   

2.

Background  

A variety of diseases are caused by chromosomal abnormalities such as aneuploidies (having an abnormal number of chromosomes), microdeletions, microduplications, and uniparental disomy. High density single nucleotide polymorphism (SNP) microarrays provide information on chromosomal copy number changes, as well as genotype (heterozygosity and homozygosity). SNP array studies generate multiple types of data for each SNP site, some with more than 100,000 SNPs represented on each array. The identification of different classes of anomalies within SNP data has been challenging.  相似文献   

3.

Purpose

Short Tandem Repeat (STR) genetic markers hold great potential in forensic investigations, molecular diagnostics and molecular genetics research. AmpFlSTR® Identifiler™ PCR amplification kit is a multiplex system for co-amplification of 15 STR markers used worldwide in forensic investigations. This study attempts to assess forensic validity of these STRs in Pakistani population and to investigate its applicability in quick and simultaneous diagnosis and tracing parental source of common chromosomal aneuploidies.

Methodology

Samples from 554 healthy Pakistani individuals from 5 different ethnicities were analyzed for forensic parameters using Identifiler STRs and 74 patients' samples with different aneuploidies were evaluated for diagnostic strengths of these markers.

Results

All STRs hold sufficient forensic applicability in Pakistani population with paternity index between 1.5 and 3.5, polymorphic information content from 0.63 to 0.87 and discrimination power ≥ 0.9 (except TPOX locus). Variation from Hardy–Weinberg equilibrium was observed at some loci reflecting selective breeding and intermarriages trend in Pakistan. Among aneuploidic samples, all trisomies were precisely detectable while aneuploidies involving sex chromosomes or missing chromosomes were not clearly detectable using Identifiler STRs. Parental origin of aneuploidy was traceable in 92.54% patients.

Conclusion

The studied STR markers are valuable tools for forensic application in Pakistan and utilizable for quick and simultaneous identification of some common trisomic conditions. Adding more sex chromosome specific STR markers can immensely increase the diagnostic and forensic potential of this system.  相似文献   

4.

Introduction

Chromosomal anomalies (CA) are the most frequent fetal anomalies.

Objective

To evaluate the diagnostic performance of a machine learning ensemble model based on the maternal serum metabolomic fingerprint of fetal aneuploidies during the second trimester .

Methods

This is a case-control pilot study. Metabolomic profiles have been obtained on serum of 328 mothers (220 controls and 108 cases), using gas chromatography coupled to mass spectrometry. Eight machines learning and classification models were built and optimized. An ensemble model was built using a voting scheme. All samples were randomly divided into two sets. One was used as training set, the other one for diagnostic performance assessment.

Results

Ensemble machine learning model correctly classified all cases and controls. The accuracy was the same for trisomy 21 and 18; also, the other CA were correctly detected. Elaidic, stearic, linolenic, myristic, benzoic, citric and glyceric acid, mannose, 2-hydroxy butyrate, phenylalanine, proline, alanine and 3-methyl histidine were selected as the most relevant metabolites in class separation.

Conclusion

The proposed model, based on the maternal serum metabolomic fingerprint of fetal aneuploidies during the second trimester, correctly identifies all the cases of chromosomal abnormalities. Overall, this preliminary analysis appeared suggestive of a metabolic environment conductive to increased oxidative stress and a disturbance in the fetal central nervous system development. Maternal serum metabolomics can be a promising tool in the screening of chromosomal defects. Moreover, metabolomics allows to extend our knowledge about biochemical alterations caused by aneuploidies and responsible for the observed phenotypes.
  相似文献   

5.

Objective

Individuals with chromosomal aneuploidies tend to develop malignancies. Telomerase is an enzyme complex that lengthens telomeres and has enhanced expression in numerous malignancies; one of its components is encoded by the TERC gene. In this study, we evaluated the TERC gene copy number in amniocytes from fetuses with aneuploidy, other than trisomy-21.

Methods

In this prospective, basic research study, fluorescence in situ hybridization (FISH) for the TERC gene (3q26) was applied to amniocytes retrieved from 14 fetuses with various aneuploidies and from a control group of 6 fetuses with a normal karyotype, to determine the TERC gene copy number.

Results

The percentage of cells with more than two copies of the TERC gene was lowest in the control group (x3 = 1.2 ± 0.4%; x4 = 0 ± 0%), higher in the sex chromosome aneuploidies (x3 = 4 ± 3%; x4 = 0.7 ± 0.95%) and even higher in trisomy 18 (x3 = 10.6 ± 2.3; x4 = 4.6 ± 1.8). The differences were statistically significant (P < 0.05).

Conclusion

The TERC gene copy number is increased in aneuploid amniocytes, which demonstrates their genetic instability and is presumably related to their tendency to develop malignancies.  相似文献   

6.

Background  

Recent advances in genome technologies have provided an excellent opportunity to determine the complete biological characteristics of neoplastic tissues, resulting in improved diagnosis and selection of treatment. To accomplish this objective, it is important to establish a sophisticated algorithm that can deal with large quantities of data such as gene expression profiles obtained by DNA microarray analysis.  相似文献   

7.

Background

Helicobacter pylori eradication therapy is commonly performed to reduce the incidence of gastric cancer. However, gastric cancer is occasionally discovered even after successful eradication therapy. Therefore, we examined the prognosis of gastric cancer patients, diagnosed after successful H. pylori eradication therapy.

Materials and Methods

All‐cause death rates and gastric cancer‐specific death rates in gastric cancer patients who received successful H. pylori eradication treatment was tracked and compared to rates in patients who did not receive successful eradication therapy.

Results

In total, 160 gastric cancer patients were followed‐up for up to 11.7 years (mean 3.5 years). Among them, 53 gastric cancer patients received successful H. pylori eradication therapy prior to gastric cancer diagnosis. During the follow‐up period, 11 all‐cause deaths occurred. In the successful eradication group, the proportion of patients with cancer stage I was higher. The proportions of patients who received curative endoscopic therapy and endoscopic examination in the 2 years prior to gastric cancer diagnosis were also higher in the successful eradication group. Kaplan–Meier analysis of all‐cause death and gastric cancer‐specific death revealed a lower death rate in patients in the successful eradication group (P = .0139, and P = .0396, respectively, log‐rank test). The multivariate analysis showed that endoscopy within 2 years before cancer diagnosis is associated with stage I cancer.

Conclusions

Possible early discovery of gastric cancer after H. pylori eradication due to regular endoscopic surveillance may contribute to better prognosis of patients with gastric cancer.  相似文献   

8.

Introduction:

Aneuploidies are frequent genetic disorders in clinical practice. However, little is known about other genetic variants that may influence the final phenotype.

Objective:

To determine the variations in the number of copies and regions with homozygosity greater than 0.5% or larger than 10 Mb in newborns with autosomal aneuploidies.

Materials and methods:

We performed a chromosomal microarray analysis on newborns with autosomal aneuploidies (n=7), trisomy 21 (n=5), and trisomy 18 (n=2) evaluated at the Hospital Antonio Lorena and Hospital Regional of Cusco, Perú, during 2018.

Results:

We found pathogenic and probably pathogenic variants in the number of copies in other genomic regions different to chromosomes 21 or 18 in two neonates. Additionally, we found two variants bigger than 500 kpb of unknown pathogenicity.

Conclusions:

Although the number of analyzed individuals was small, it is important to highlight that we found other variants in the number of copies that have been described in association with neurodevelopmental disorders, congenital anomalies, deafness, and short/ tall stature, among others, in almost half of them, which will probably impact the phenotype negatively in patients with aneuploidies.  相似文献   

9.

Background  

The 14-3-3 test appears to be a valuable aid for the clinical diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) in selected populations. However, its usefulness in routine practice has been challenged. In this study, the influence of the clinical context on the performance of the 14-3-3 test for the diagnosis of sCJD is investigated through the analysis of a large prospective clinical series.  相似文献   

10.

Background  

DNA methylation patterns have been shown to significantly correlate with different tissue types and disease states. High-throughput methylation arrays enable large-scale DNA methylation analysis to identify informative DNA methylation biomarkers. The identification of disease-specific methylation signatures is of fundamental and practical interest for risk assessment, diagnosis, and prognosis of diseases.  相似文献   

11.

Background  

Clinical chemical blood analysis including plasma electrolytes is routinely carried out for the diagnosis of various organ diseases. Phenotype-driven N-ethyl-N-nitrosourea (ENU) mouse mutagenesis projects used plasma electrolytes as parameters for the generation of novel animal models for human diseases.  相似文献   

12.

Background  

Anaplasmosis is a vectorborne disease caused by the gram-negative bacterium Anaplasma phagocytophilum. This species displays positive tropism to granulocytes and can cause illness in several mammalian species, including cats, dogs, and humans. It is considered as an emerging disease in Europe. The clinical signs are nonspecific and include fever, lethargy, and inappetence. The most typical hematologic abnormality is thrombocytopenia. A tentative diagnosis can be made by detecting intracytoplasmic morulae inside neutrophils. The diagnosis is confirmed by PCR and serology in paired serum samples. A sample for PCR analysis should be taken before treatment. Anaplasmosis is treated with doxycycline.  相似文献   

13.
14.

Background  

Bacterial and cellular genotyping is becoming increasingly important in the diagnosis of infectious diseases. However, difficulties in obtaining sufficient amount of bacterial and cellular DNA extracted from the same human biopsy specimens is often a limiting factor. In this study, total DNA (host and bacterial DNA) was isolated from minute amounts of gastric biopsy specimens and amplified by means of whole genome amplification using the multiple displacement amplification (MDA) technique. Subsequently, MDA-DNA was used for concurrent Helicobacter pylori and human host cellular DNA genotyping analysis using PCR-based methods.  相似文献   

15.

Background  

Cerebral venous thrombosis (CVT) is a disease with a wide spectrum of symptoms and severity. In this study we analysed the predictive value of clinical signs and symptoms and the contribution of D-dimer measurements for diagnosis.  相似文献   

16.

Introduction  

The aim of this study was to develop a clinical-grade, automated, multiplex system for the differential diagnosis and molecular stratification of rheumatoid arthritis (RA).  相似文献   

17.

Background  

Fungal infections constitute a major health problem all over the world. Signs and symptoms induced by various dermatophytic infections are difficult to distinguish clinically from each other. So, characterization by in vitro culture is required for appropriate diagnosis and treatment as well as to study the epidemiological characteristics in a region.  相似文献   

18.

Introduction  

Early diagnosis of Oral Squamous Cell Carcinoma (OSCC) increases the survival rate of oral cancer. For early diagnosis, molecular biomarkers contained in samples collected non-invasively and directly from at-risk oral premalignant lesions (OPMLs) would be ideal.  相似文献   

19.

Background  

Tropheryma whipplei, the agent of Whipple's disease (WD), has been recently isolated and the genomes of two isolates have been fully sequenced. Previous diagnosis tools for the diagnosis of the disease used sequence analysis of the 16S rRNA gene. Using this target gene, the high percentage of detection of the bacterium in saliva of healthy people was in contrast to the negative results obtained with specific target genes. The aim of our study was to compare previously published primers targeting the 16S rRNA gene to real-time PCR with Taqman* probes targeting specific repeat genes only found in the genome of T. whipplei in a series of 57 saliva from healthy people.  相似文献   

20.

Background  

Previously published studies have reported that up to 43% of patients with disorders of consciousness are erroneously assigned a diagnosis of vegetative state (VS). However, no recent studies have investigated the accuracy of this grave clinical diagnosis. In this study, we compared consensus-based diagnoses of VS and MCS to those based on a well-established standardized neurobehavioral rating scale, the JFK Coma Recovery Scale-Revised (CRS-R).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号