首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The role of prostaglandins and nitric oxide (NO), generated after peripheral lipopolysaccharide (LPS) administration, in the adaptation of hypothalamic-pituitary-adrenal (HPA) axis under stressful circumstances remains to be elucidated. The aim of the present study was to assess the effect of chronic repetitive restraint or social crowding stress on the involvement of nitric oxide and prostaglandins in the LPS-induced pituitary-adrenocortical response. Male Wistar rats were restrained in metal tubes 2 x 10 min/day or crowded in cages for 7 days prior to treatment. All compounds were injected i.p., cyclooxygenase (COX) and nitric oxide synthase (NOS) inhibitors 15 min before LPS. Two hrs after injection LPS induced a significant increase in ACTH and corticosterone secretion. Repeated restraint impaired more potently than crowding stress the LPS-induced HPA-response. Indomethacin, a non-selective COX inhibitor, considerably reduced the LPS-induced HPA response in non-stressed rats and to a lesser extent diminished this response in repeatedly restrained or crowded rats. Neuronal NOS inhibitor, Nomega-nitro-L-arginine decreased the LPS-induced HPA response, more potently in control than crowded rats. Aminoguanidine, an iNOS inhibitor, diminished the LPS-elicited ACTH response in crowded rats. These results indicate that prostaglandins and NO generated by neuronal and inducible NOS are involved in the LPS-induced HPA axis response under basal conditions and during its adaptation to chronic social stress circumstances.  相似文献   

2.
It has been suggested that adrenergic agents might modulate the L-arginine-NO pathway. Sympathomimetic agonists enhance the basal release of NO, and noradrenaline increases the synthesis of nitric oxide synthase (NOS) in the medial basal hypothalamus in vitro. In the present study possible involvement of NO in central stimulation of the hypothalamic-pituitary-adrenal (HPA) axis by adrenergic agents was investigated in conscious rats. The nitric oxide synthase blocker N(omega)-nitro-L-arginine methyl ester (L-NAME 2 and 10 microg) was administered intracerebroventricularly (i.c.v.) 15 min before the adrenergic agonist given by the same route; 1 h later the rats were decapitated. Plasma levels of ACTH and corticosterone were measured. L-NAME significantly diminished the ACTH and corticosterone response to phenylephrine (30 microg), an alpha1-adrenergic receptor agonist. These hormone responses to clonidine (10 microg), an alpha2-receptor agonist, were dose-dependently suppressed or totally abolished by L-NAME. A significant rise in the ACTH and corticosterone secretion induced by isoprenaline (10 microg), a beta-adrenergic receptor agonist, was only moderately diminished by pretreatment with L-NAME. These results indicate that NOS is considerably involved in central stimulation of the HPA axis by alpha1- and alpha2-adrenergic receptor agonists, and that NO mediates the stimulatory action of these agonists on ACTH and corticosterone secretion. The stimulation induced by beta-adrenergic receptors is only moderately affected by endogenous NO.  相似文献   

3.
Nitric oxide (NO) is a major signaling molecule and biological mediator of the hypothalamic-pituitary-adrenal (HPA) axis. We investigated the role of NO formed by endothelial (e), neuronal (n) and inducible (i) nitric oxide synthase (NOS) in the stimulatory effect of nicotine on the HPA axis in rats under basal conditions. Also possible interaction of NOS systems with endogenous prostaglandins (PG) in that stimulation was assessed. NOS and cyclooxygenase inhibitors were administered i.p. 15 min prior to nicotine (2, 5 mg/kg i.p.). Plasma ACTH and serum corticosterone levels were measured 1 h after nicotine injection. NOS blockers given alone did not markedly affect the resting ACTH and corticosterone levels. L-NAME (2-10 mg/kg), a broad spectrum NOS inhibitor considerably and dose dependently enhanced the nicotine-induced ACTH and corticosterone secretion. L-NNA (2 mg/kg) and 7-nitroindazole (7-NI 20 mg/kg), neuronal NOS inhibitors in vivo also significantly augmented the nicotine-induced ACTH and corticosterone levels. L-arginine greatly impaired the nicotine-induced hormone responses and reversed the L-NNA elicited enhancement of the nicotine-evoked ACTH and corticosterone response. In contrast to the constitutive eNOS and nNOS antagonists, an inducible NOS antagonist guanethidine (50-100 mg/kg i.p.) did not substantially affect the nicotine-elicited pituitary-adrenocortical responses. Indomethacin (2 mg/kg i.p.), a non-selective cyclooxygenase blocker abolished the L-NAME and L-NNA-induced enhancement of the nicotine-evoked ACTH and corticosterone response. These results indicate that NO is an inhibitory mediator in the HPA axis activity. Inhibition of its generation by eNOS and nNOS significantly enhances the nicotine-induced HPA response. Under basal conditions iNOS is not involved in the nicotine-induced ACTH and corticosterone secretion. Prostaglandins play an obligatory role in the response of HPA axis to systemic nicotine administration.  相似文献   

4.
The objective of this research was to determine the amount and timing of nitric oxide (NO, nitrogen monoxide) gas produced by the lungs, intestinal mucosa, and organ surfaces facing the peritoneal cavity after iv injection of a bacterial toxin, lipopolysaccharide (LPS). Some of the deleterious effects of LPS on organ function have been attributed to NO or strong oxidants formed locally from NO. Medical-grade air was used as an inspiratory air source (50 strokes/min x 3 ml/stroke) or was pumped through the ileal lumen or peritoneal cavity (20 strokes/min x 3 ml/stroke). The air was collected at intervals of 15-30 min for 3 h after LPS and analyzed for authentic NO gas by chemiluminescence. LPS (5 mg/kg) or saline was injected iv. Sodium nitroprusside (SNP) was injected to determine the appearance of its NO released into the perfused compartments. Blood pressure, plasma nitrate plus nitrite (NO(x)), and total plasma leukocytes were measured as other manifestations of LPS effects. NO began to increase in the pulmonary expired air 90 min after LPS and continued to increase for the remainder of the experiment. The final pulmonary post-LPS [NO] was about 20-fold greater than the [NO] before LPS. LPS had no effect on intraluminal or intraperitoneal [NO]. The saline injection had no effect on [NO] in any compartment. SNP injection increased NO entry into all three air-perfused compartments. Thus, NO from an exogenous tissue source was not prevented from being detected. Blood pressure was decreased by LPS only during the pulmonary perfusion. There were no significant effects of LPS on leukocytes or plasma NO(x). LPS decreased blood pressure and leukocytes and increased plasma NO(x) when air perfusion was not done. It was concluded that different organs can produce LPS-induced NO at markedly different rates and times. However, some aspect of the experimental technique of air perfusion could alter the effects of LPS.  相似文献   

5.
The aim of the present study was to determine the effect of social crowding stress and significance of nitric oxide (NO) and prostaglandins (PG) generated by constitutive and inducible nitric oxide synthase (NOS) and cyclooxygenase (COX) in the stimulation of hypothalamic-pituitary-adrenal (HPA) axis by cholinergic muscarinic receptor agonist carbachol. Inhibitors of neuronal NOS (nNOS) L-NNA, general NOS L-NAME and inducible NOS (iNOS) aminoguanidine, as well as inhibitors of COX-1, piroxicam, and COX-2, compound NS-398 were administered 15 min prior to carbachol to control or crowded rats (24 rats in cage for 7, during 3 and 7 days). In stressed rats L-NAME, L-NNA and aminoguanidine significantly intensified the carbachol-induced ACTH and corticosterone secretion, like in control rats. Piroxicam, markedly decreased the carbachol-induced ACTH and corticosterone response under either basal or stress conditions. Compound NS-398 did not markedly alter the carbachol-induced HPA response in control and stressed rats. Crowding stress (3 days) significantly impaired the i.c.v. prostaglandin E(2)-induced ACTH response. Corticotropin releasing hormone (CRH) receptor antagonists, alpha-helical CRH [9-14], given i.c.v. did not alter the PGE(2)-evoked corticosterone response in either control or stressed rats, indicating that hypothalamic CRH is not involved in the PGE(2)-induced central stimulation of HPA axis. In control rats L-NAME considerably enhanced, while L-arginine, a physiological NOS substrate, abolished the PGE(2)-induced ACTH and corticosterone response. In stressed rats this NOS blocker significantly increased and L-Arg reduced the stimulatory effect of PGE(2) on ACTH and corticosterone secretion. The carbachol-induced corticosterone response was significantly increased by pretreatment with nNOS inhibitor L-NNA and was considerably reduced by indomethacin, a general COX inhibitor. Pretreatment with both antagonists left the carbachol-induced corticosterone level unchanged, suggesting an independent and reciprocal effect of NO and PG in the cholinergic stimulation of pituitary-adrenocortical response. These results indicate that in the stimulatory action of muscarinic agonist, carbachol, NO is an inhibitory transmitter under basal and crowding stress conditions. This psychosocial stress does not functionally affect the NOS/NO systems. Prostaglandins are involved in the cholinergic muscarinic-induced stimulation of HPA response to a significant extent in non-stressed rats. PGE(2) may be involved in the carbachol-elicited HPA response under basal and stress conditions. Prostaglandins released in response to muscarinic stimulation did not evoke the hypothalamic CRH mediation. NO significantly impairs and PG stimulates the carbachol-induced HPA response in rats under basal and social stress conditions.  相似文献   

6.
Having one electron with unpaired spin, nitric oxide (NO) shows high reactivity and activates or inhibits free radical chain reactions. NO toxic and genotoxic effects appear to be the result of intracellular formation of peroxinitrite that can induce some cellular damages, including DNA strand breaks, DNA base oxidation, destruction of the key enzymes, etc. Taking into account the character of DNA damages being formed under NO activity, we proposed a formation of the SOS signal and induction the SOS DNA repair response in E. coli cells treated with NO physiological donors--DNIC and GSNO. The ability of NO donor compounds to induce the SOS DNA response in E. coli PQ37 with sfiA::lacZ operon fusion is reported here at the first time. So, the SOS DNA repair response induction is one of the function of nitric oxide.  相似文献   

7.
Role of nitric oxide in parasitic infections.   总被引:22,自引:0,他引:22       下载免费PDF全文
Nitric oxide is produced by a number of different cell types in response to cytokine stimulation and thus has been found to play a role in immunologically mediated protection against a growing list of protozoan and helminth parasites in vitro and in animal models. The biochemical basis of its effects on the parasite targets appears to involve primarily inactivation of enzymes crucial to energy metabolism and growth, although it has other biologic activities as well. NO is produced not only by macrophages and macrophage-like cells commonly associated with the effector arm of cell-mediated immune reactivity but also by cells commonly considered to lie outside the immunologic network, such as hepatocytes and endothelial cells, which are intimately involved in the life cycle of a number of parasites. NO production is stimulated by gamma interferon in combination with tumor necrosis factor alpha or other secondary activation signals and is regulated by a number of cytokines (especially interleukin-4, interleukin-10, and transforming growth factor beta) and other mediators, as well as through its own inherent inhibitory activity. The potential for design of prevention and/or intervention approaches against parasitic infection (e.g., vaccination or combination chemo- and immunotherapy strategies) on the basis of induction of cell-mediated immunity and NO production appears to be great, but the possible pathogenic consequences of overproduction of NO must be taken into account. Moreover, more research on the role and regulation of NO in human parasitic infection is needed before its possible clinical relevance can be determined.  相似文献   

8.
The production of nitric oxide is the putative mechanism for the attenuation of sympathetic vasoconstriction (sympatholysis) in working muscles during exercise. We hypothesized that nitric oxide synthase blockade would eliminate the reduction in alpha-adrenergic-receptor responsiveness in exercising skeletal muscle. Ten mongrel dogs were instrumented chronically with flow probes on the external iliac arteries of both hindlimbs and a catheter in one femoral artery. The selective alpha(1)-adrenergic agonist (phenylephrine) or the selective alpha(2)-adrenergic agonist (clonidine) was infused as a bolus into the femoral artery catheter at rest and during mild and heavy exercise. Before nitric oxide synthase inhibition with N(G)-nitro-l-arginine methyl ester (l-NAME), intra-arterial infusions of phenylephrine elicited reductions in vascular conductance of -91 +/- 3, -80 +/- 5, and -75 +/- 6% (means +/- SE) at rest, 3 miles/h, and 6 miles/h and 10% grade, respectively. Intra-arterial clonidine reduced vascular conductance by -65 +/- 6, -39 +/- 4, and -30 +/- 3%. After l-NAME, intra-arterial infusions of phenylephrine elicited reductions in vascular conductance of -85 +/- 5, -85 +/- 5, and -84 +/- 5%, whereas clonidine reduced vascular conductance by -67 +/- 5, -45 +/- 3, and -35 +/- 3%, at rest, 3 miles/h, and 6 miles/h and 10% grade. alpha(1)-Adrenergic-receptor responsiveness was attenuated during heavy exercise. In contrast, alpha(2)-adrenergic-receptor responsiveness was attenuated even at a mild exercise intensity. Whereas the inhibition of nitric oxide production eliminated the exercise-induced attenuation of alpha(1)-adrenergic-receptor responsiveness, the attenuation of alpha(2)-adrenergic-receptor responsiveness was unaffected. These results suggest that the mechanism of exercise sympatholysis is not entirely mediated by the production of nitric oxide.  相似文献   

9.
10.
Saia RS  Carnio EC 《Life sciences》2006,79(15):1473-1478
We have tested the hypothesis that nitric oxide (NO) arising from inducible nitric oxide synthase (iNOS) plays a role in hypothermia during endotoxemia by regulating vasopressin (AVP) release. Wild-type (WT) and iNOS knockout mice (KO) were intraperitoneally injected with either saline or Escherichia coli lipopolysaccharide (LPS) 10.0 mg/kg in a final volume of 0.02 mL. Body temperature was measured continuously by biotelemetry during 24 h after injection. Three hours after LPS administration, we observed a significant drop in body temperature (hypothermic response) in WT mice, which remained until the seventh hour, returning then close to the basal level. In iNOS KO mice, we found a significant fall in body temperature after the fourth hour of LPS administration; however, the hypothermic response persisted until the end of the 24 h of the experiment. The pre-treatment with beta-mercapto-beta,beta-cyclopentamethylenepropionyl(1), O-Et-Tyr2, Val4, Arg8-Vasopressin, an AVP V1 receptor antagonist (10 microg/kg) administered intraperitoneally, abolished the persistent hypothermia induced by LPS in iNOS KO mice, suggesting the regulation of iNOS under the vasopressin release in this experimental model. In conclusion, our data suggest that the iNOS isoform plays a role in LPS-induced hypothermia, apparently through the regulation of AVP release.  相似文献   

11.
It is well recognized that prostaglandins of the E (PGE) and F (PGF) series play an important role in ovarian physiology; in addition, nitric oxide (NO) has been recently demonstrated to be an important mediator of granulosa cell function. There is now evidence for a biologic relationship between PGs and the NO biosynthetic pathway. The aim of this study was to investigate the relationship between NO and PGE2 and PGF2alpha in bovine granulosa cells. Granulosa cells collected from small (<5mm) and large (>8mm) follicles were treated with the NO donor S-nitroso-N-acetylpenicillamine (SNAP) or with indomethacin, an inhibitor of PGs synthesis, and PGE2 and PGF2alpha were quantified; in addition, the effects of PGE2 PGF2alpha and indomethacin on steroidogenesis and NO production were determined. The highest concentration of SNAP inhibited (P < 0.001) PGE2 production in cells from both kinds of follicles, while the lowest dose was effective only in cells from small follicles. The highest concentration of SNAP inhibited and stimulated (P < 0.001) PGF2alpha production in cells from small and large follicles, respectively. Progesterone (P4) production was stimulated by PGE2 and inhibited by PGF2alpha (P < 0.001) in cells from both types of follicles. Estradiol 17beta (E2) secretion was inhibited in cells from small and stimulated in those from large follicles by PGE2 (P < 0.05), while PGF2alpha was stimulatory in cells from both kinds of follicles (P < 0.001). P4 production by cells from small follicles was inhibited and stimulated by those from large follicles by indomethacin (P < 0.001), which also increased E2 output in cells from small follicles (P < 0.001). NO production was inhibited by both PGE2 and PGF2alpha except at the lowest concentration, which was stimulatory (P < 0.001). Indomethacin stimulated (P < 0.001) NO production. Taken together, the present data suggest a cross-talk between NO and PGs biosynthetic pathways, which needs to be further clarified.  相似文献   

12.
Acetylcholine (ACh) can effect vasodilation by several mechanisms, including activation of endothelial nitric oxide (NO) synthase and prostaglandin (PG) production. In human skin, exogenous ACh increases both skin blood flow (SkBF) and bioavailable NO levels, but the relative increase is much greater in SkBF than NO. This led us to speculate ACh may dilate cutaneous blood vessels through PGs, as well as NO. To test this hypothesis, we performed a study in 11 healthy people. We measured SkBF by laser-Doppler flowmetry (LDF) at four skin sites instrumented for intradermal microdialysis. One site was treated with ketorolac (Keto), a nonselective cyclooxygenase antagonist. A second site was treated with NG-nitro-L-arginine methyl ester (L-NAME) to inhibit NO synthase. A third site was treated with a combination of Keto and L-NAME. The fourth site was an untreated control site. After the three treated sites received the different inhibiting agents, ACh was administered to all four sites by intradermal microdialysis. Finally, sodium nitroprusside (SNP) was administered to all four sites. Mean arterial pressure (MAP) was monitored by Finapres, and cutaneous vascular conductance (CVC) was calculated (CVC = LDF/MAP). For data analysis, CVC values for each site were normalized to their respective maxima as effected by SNP. The results showed that both Keto and L-NAME each attenuated the vasodilation induced by exogenous ACh (ACh control = 79 +/- 4% maximal CVC, Keto = 55 +/- 7% maximal CVC, L-NAME = 46 +/- 6% maximal CVC; P < 0.05, ACh vs. Keto or L-NAME). The combination of the two agents produced an even greater attenuation of ACh-induced vasodilation (31 +/- 5% maximal CVC; P < 0.05 vs. all other sites). We conclude that a portion of the vasodilation effected by exogenous ACh in skin is due to NO; however, a significant portion is also mediated by PGs.  相似文献   

13.
14.
15.
The relative contributions of endothelium-dependent dilators [nitric oxide (NO), prostaglandins (PGs), and endothelium-derived hyperpolarizing factor (EDHF)] in human limbs are poorly understood. We tested the hypothesis that relative contributions of NO and PGs differ between endothelial agonists acetylcholine (ACh; 1, 2, and 4 microg.dl(-1).min(-1)) and bradykinin (BK; 6.25, 25, and 50 ng.dl(-1).min(-1)). We measured forearm blood flow (FBF) using venous occlusion plethysmography in 50 healthy volunteers (27 +/- 1 yr) in response to brachial artery infusion of ACh or BK in the absence and presence of inhibitors of NO synthase [NOS; with NG-monomethyl-L-arginine (L-NMMA)] and cyclooxygenase (COX; with ketorolac). Furthermore, we tested the idea that the NOS + COX-independent dilation (in the presence of L-NMMA + ketorolac, presumably EDHF) could be inhibited by exogenous NO administration, as reported in animal studies. FBF increased approximately 10-fold in the ACh control; L-NMMA reduced baseline FBF and ACh dilation, whereas addition of ketorolac had no further effect. Ketorolac alone did not alter ACh dilation, but addition of L-NMMA reduced ACh dilation significantly. For BK infusion, FBF increased approximately 10-fold in the control condition; L-NMMA tended to reduce BK dilation (P < 0.1), and addition of ketorolac significantly reduced BK dilation. Similar to ACh, ketorolac alone did not alter BK dilation, but addition of L-NMMA reduced BK dilation. To test the idea that NO can inhibit the NOS + COX-independent portion of dilation, we infused a dose of sodium nitroprusside (NO-clamp technique) during ACh or BK that restored the reduction in baseline blood flow due to L-NMMA. Regardless of treatment order, the NO clamp restored baseline FBF but did not reduce the NOS + COX-independent dilation to ACh or BK. We conclude that the contribution of NO and PGs differs between ACh and BK, with ACh being more dependent on NO and BK being mostly dependent on a NOS + COX-independent mechanism (EDHF) in healthy young adults. The NOS + COX-independent dilation does not appear sensitive to feedback inhibition from NO in the human forearm.  相似文献   

16.
Levels of dehydroepiandrosterone (DHEA) and its sulfated derivative (DHEAS) decline during aging and reach even lower levels in Alzheimer's disease (AD). DHEA is known to exhibit a variety of functional activities in the CNS, including an increase of memory and learning, neurotrophic and neuroprotective effects, and the reduction of risk of age-related neurodegenerative disorders. However, the influence of DHEA on the immune functions of glial cells is poorly understood. In this study, we investigated the effect of DHEA on activated glia. The production of inducible nitric oxide synthase (iNOS) was studied in lipopolysaccharide (LPS)-stimulated BV-2 microglia, as a model of glial activation. The results showed that DHEA but not DHEAS significantly inhibited the production of nitrite in the LPS-stimulated BV-2 cell cultures. Pretreatment of BV-2 cells with DHEA reduced the LPS-induced iNOS mRNA and protein levels in a dose-dependent manner. The LPS-induced iNOS activity in BV-2 cells was decreased by the exposure of 100 microM DHEA. Moreover, DHEA suppressed iNOS gene expression in LPS-stimulated BV-2 cells did not require de novo synthesis of new proteins or destabilize of iNOS mRNA. Since DHEA is biosynthesized by astrocytes and neurons, our findings suggest that it might have an important regulatory function on microglia.  相似文献   

17.
Nitric oxide (NO) plays an important role in the pathogenesis of neuronal injury during cerebral ischemia. The endothelial and neuronal isoforms of nitric oxide synthase (eNOS, nNOS) generate NO, but NO generation from these two isoforms can have opposing roles in the process of ischemic injury. While increased NO production from nNOS in neurons can cause neuronal injury, endothelial NO production from eNOS can decrease ischemic injury by inducing vasodilation. However, the relative magnitude and time course of NO generation from each isoform during cerebral ischemia has not been previously determined. Therefore, electron paramagnetic resonance spectroscopy was applied to directly detect NO in the brain of mice in the basal state and following global cerebral ischemia induced by cardiac arrest. The relative amount of NO derived from eNOS and nNOS was accessed using transgenic eNOS(-/-) or nNOS(-/-) mice and matched wild-type control mice. NO was trapped using Fe(II)-diethyldithiocarbamate. In wild-type mice, only small NO signals were seen prior to ischemia, but after 10 to 20 min of ischemia the signals increased more than 4-fold. This NO generation was inhibited more than 70% by NOS inhibition. In either nNOS(-/-) or eNOS(-/-) mice before ischemia, NO generation was decreased about 50% compared to that in wild-type mice. Following the onset of ischemia a rapid increase in NO occurred in nNOS(-/-) mice peaking after only 10 min. The production of NO in the eNOS(-/-) mice paralleled that in the wild type with a progressive increase over 20 min, suggesting progressive accumulation of NO from nNOS following the onset of ischemia. NOS activity measurements demonstrated that eNOS(-/-) and nNOS(-/-) brains had 90% and < 10%, respectively, of the activity measured in wild type. Thus, while eNOS contributes only a fraction of total brain NOS activity, during the early minutes of cerebral ischemia prominent NO generation from this isoform occurs, confirming its importance in modulating the process of ischemic injury.  相似文献   

18.
Modified Hb solutions have been developed as O(2) carrier transfusion fluids, but of concern is the possibility that increased scavenging of nitric oxide (NO) within the plasma will alter vascular reactivity even if the Hb does not readily extravasate. The effect of decreasing hematocrit from approximately 30% to 18% by an exchange transfusion of a 6% sebacyl cross-linked tetrameric Hb solution on the diameter of pial arterioles possessing tight endothelial junctions was examined through a cranial window in anesthetized cats with and without a NO synthase (NOS) inhibitor. Superfusion of a NOS inhibitor decreased diameter, and subsequent Hb transfusion produced additional constriction that was not different from Hb transfusion alone but was different from the dilation observed by exchange transfusion of an albumin solution after NOS inhibition. In contrast, abluminal application of the cross-linked Hb produced constriction that was attenuated by the NOS inhibitor. Neither abluminal nor intraluminal cross-linked Hb interfered with pial arteriolar dilation to cromakalim, an activator of ATP-sensitive potassium channels. Pial vascular reactivity to hypocapnia and hypercapnia was unaffected by Hb transfusion. Microsphere-determined regional blood flow indicated selective decreases in perfusion after Hb transfusion in the kidney, small intestine, and neurohypophysis, which does not have tight endothelial junctions. Administration of a NOS inhibitor to reduce the basal level of NO available for scavenging before Hb transfusion prevented further decreases in blood flow to these regions compared with NOS inhibition alone. In contrast, blood flow to skeletal and left ventricular muscle increased, and cerebral blood flow was unchanged after Hb transfusion. This cross-linked Hb tetramer is known to appear in renal lymph but not in urine. We conclude that cell-free tetrameric Hb does not scavenge sufficient NO in the plasma space to significantly affect baseline tone in vascular beds with tight endothelial junctions but does produce substantial constriction in beds with porous endothelium. The data support increasing the molecular size of Hb by polymerization or conjugation to limit extravasation in all vascular beds to preserve normal vascular reactivity.  相似文献   

19.
The signaling pathway for lipopolysaccharide (LPS)-induced nitric oxide (NO) release in RAW 264.7 macrophages involves the protein kinase C and p38 activation pathways (Chen, C. C., Wang, J. K., and Lin, S. B. (1998) J. Immunol. 161, 6206-6214; Chen, C. C., and Wang, J. K. (1999) Mol. Pharmacol. 55, 481-488). In this study, the role of the cAMP-dependent protein kinase A (PKA) pathway was investigated. The PKA inhibitors, KT-5720 and H8, reduced LPS-induced NO release and inducible nitric oxide synthase (iNOS) expression. The direct PKA activator, Bt(2)cAMP, caused concentration-dependent NO release and iNOS expression, as confirmed by immunofluorescence studies. The intracellular cAMP concentration did not increase until after 6 h of LPS treatment. Two cAMP-elevating agents, forskolin and cholera toxin, potentiated the LPS-induced NO release and iNOS expression. Stimulation of cells with LPS or Bt(2)cAMP for periods of 10 min to 24 h caused nuclear factor-kappaB (NF-kappaB) activation in the nuclei, as shown by detection of NF-kappaB-specific DNA-protein binding. The PKA inhibitor, H8, inhibited the NF-kappaB activation induced by 6- or 12-h treatment with LPS but not that induced after 1, 3, or 24 h. The cyclooxygenase-2 (COX-2) inhibitors, NS-398 and indomethacin, attenuated LPS-induced NO release, iNOS expression, and NF-kappaB DNA-protein complex formation. LPS induced COX-2 expression in a time-dependent manner, and prostaglandin E(2) production was induced in parallel. These results suggest that 6 h of treatment with LPS increases intracellular cAMP levels via COX-2 induction and prostaglandin E(2) production, resulting in PKA activation, NF-kappaB activation, iNOS expression, and NO production.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号