首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of proteinaceous amino acids in rhizosphere nutrient mobilization was assessed both experimentally and theoretically. The degree of adsorption onto the soil's solid phase was dependent on both the amino acid species and on soil properties. On addition of amino acids to both soil and freshly precipitated Fe(OH)3, no detectable mobilization of nutrients (K, Na, Ca, Mg, Cu, Mn, Zn, Fe, S, P, Si and Al) was observed, indicating a very low complexation ability of the acidic, neutral and basic amino acids. This was supported by results from a solution equilibria computer model which also predicted low levels of amino acid complexation with solutes present in the soil solution. On comparison with the Fe(OH)3 and equilibria data obtained for the organic acid, citrate, it was concluded that amino acids released into the rhizosphere have a limited role in the direct acquisition of nutrients by plants. The effectiveness of root exudates such as amino acids, phytosiderophores and organic acids in nutrient mobilization from the rhizosphere is discussed with reference to rhizosphere diffusion distances, microbial degradation, rate of complexation and the root's capacity to recapture exudate-metal complexes from the soil.  相似文献   

2.
Synthetic chelators play an important role in boosting the microbial biomass carbon (MBC), dissolved organic carbon (DOC), and heavy metal solubility in a contaminated soil toward a sustainability of environment for agricultural crops. Castor plant was grown under different levels of Cd contaminated soil (?Cd and +Cd) following adding three chelating agents, ethylenediaminetetraacetic acid (H4EDTA), nitriloacetic acid (H3 NTA), and NH4 citrate (ammonium citrate) to the soil at rates of 10, 15, and 25 mmol in 5 kg of soil per pot. The highest bioavailable Cd concentrations in soil and castor plant were obtained from NH4 citrate and H4EDTA treatments in the contaminated soil. Fourier transform infrared (FTIR) analysis showed that NH4 citrate was the most effective chelator in Cd-contaminated soil. MBC and DOC contents were significantly increased and reached at 81.98–80.37 and 1.96–1.90 mg kg?1 respectively, in the (H3 NTA) and NH4 citrate treatments in Cd-contaminated soil. Further research is needed to investigate the use of chelators in the phytoextraction of Cd-contaminated soils under field conditions and whether it may be beneficial in accelerating the phytoextraction of Cd through hyperaccumulating plants.  相似文献   

3.
Summary The Cu++ retaining power of the three soils used in our experiments was found to be of the order: alkali soil > black soil > red soil. The alkali soil retained the applied Cu++ in basic copper carbonate and hydroxide forms due to its high carbonate (soluble + insoluble) and high pH values, and the red soil retained the least amount of Cu++ because of its low pH value and negligible carbonate content, whilst the black soil, being fairly rich in CaCO3, organic matter and suitable pH, occupied an intermediate position.When the original samples were treated with H2O2, H2O2 + HCl or were ignited at 600°C for 1 hour the retention of applied Cu++ decreased more or less as a result of destruction of organic matter, carbonate and dehydration of sesquioxides leaving an inert material.Saturation of original soils with H+ (by HCl) resulted in lower Cu++-retention, whilst the conversion of H-soils to Ca++-soils showed a higher Cu++-retention but never approached the amount of Cu retained by original soils. This is due to lowering of pH of the samples, removal of carbonates as well as due to antagonistic effect of H+-ions. A greater percentage of the Cu++ retained by these samples exists in the exchangeable forms in comparison to original soils.It has also been observed that addition of CaCO3, at the rate of 1 to 2 per cent (to the hydrogen samples) resulted in a precipitation of practically all the applied Cu++ and non-existence of exchangeable forms of Cu++.  相似文献   

4.
We investigated the suitability of two aluminum-based binding agents, polynuclear Al13 and Al-coated montmorillonite (Al-mont-morillonite), for the immobilization of heavy metals in two contaminated agricultural soils: a loamy luvisol from an arable site in Rafz, Canton Zürich, Switzerland, and a sandy podsol from Szopienice, Upper Silesia, Poland. Both soils were polluted by lead, zinc, and cadmium: the soil from Szopienice by the emissions of a nearby zinc-lead smelter, and the soil from Rafz by sewage sludge applications. While the samples from Szopienice exhibited extremely high loads of these metals, the samples from Rafz were only moderately contaminated. The samples from both soils were slightly acidic. The Rafz soil contained 2.5% organic matter, that from Szopienice only 1.5%. Destruction of the organic matter in the Szopienice samples by H2O2 led to a significant release of Zn and Cd into solution. This indicated that organic matter is an important factor for the immobilization of heavy metals in this soil. The treatment of the Szopienice samples with 8?mmol Al13 per kg dry soil resulted in a considerable mobilization of the two metals. As the pH of the samples did not decrease, this effect was presumably due to direct interactions between the applied aluminium and organic matter. After destruction of soil organic matter, the two binding agents exhibited an immobilizing effect on Zn, which, however, was weak compared with the binding of the metal by the organic matter prior to its destruction. In the case of the Rafz samples, metal mobilization was observed only for Al13 if applied in high doses (4 and 8?mmol per kg soil), but not for Al-montmorillonite. In this soil, Al-montmorillonite as well as Al13 at low doses (1.2?mmol per kg soil and less) decreased soluble zinc concentrations significantly. The mobilization of metals at high doses of the applied binding agents and the dependence of this effect on the type of soil show that care has to be taken with this remediation method and that the proper doses of applied binding agents can be crucial for the success of metal immobilization in polluted soils.  相似文献   

5.
Organic acids such as citrate and oxalate have been implicated in enhancing many rhizosphere processes including nutrient acquisition. This study was conducted to determine the importance of organic acid type and concentration on rhizosphere P mobilization and subsequent uptake by wheat (Triticum aestivum L.) roots and its translocation to shoots. A single wheat plant was grown in soil-filled rhizosphere microcosms and allowed to pass through a KH2PO4 33P-isotopically labeled patch of calcareous soil. Two days after 33P-injection, citrate and oxalate at concentrations of 1 mM and 10 mM were injected into the microcosms at the same patch every day over a period of 4 days. Oxalate resulted in a several-fold enhancement in plant 33P accumulation, while citrate had no such effect. In comparison with oxalate, high rates of citrate mineralization were observed suggesting that this reduced its potential to enhance plant 33P acquisition. This study concludes that organic acids cause an increase in P mobilization and P uptake by wheat but that this response is highly organic acid specific.  相似文献   

6.
M. K. Sinha 《Plant and Soil》1972,37(2):265-271
Summary Post-incubation fractionation of soils incubated with C14-tagged oat roots under aerobic and anaerobic conditions and chromatographic separation of hydrolysates of different organic matter fractions indicated the incorporation of C14-labelled amino acids in soil organic matter. Anaerobic incubation leads to the formation of hydrolysable heavily C14-labelled organic substances in greater quantity. The amino acid composition of the different fractions revealed not a very significant qualitative difference. The significance and causes of stabilization of amino acids in soil organic matter are discussed.  相似文献   

7.
菜豆根瘤菌对土壤钾的活化作用   总被引:1,自引:0,他引:1  
张亮  黄建国  韩玉竹  吴叶宽 《生态学报》2012,32(19):6016-6022
以土壤为钾源,通过液体培养试验研究了8株菜豆根瘤菌对土壤钾的活化作用。结果表明,菜豆根瘤菌能释放大量的氢离子,使液体培养基的pH值大幅度降低,氢离子的浓度至少提高22倍以上。根瘤菌分泌有机酸的种类与数量因菌株不同而异,这些有机酸包括甲酸、乙酸、草酸、丁二酸、柠檬酸、苹果酸和乳酸等,其中全部菌株均能分泌草酸和苹果酸,大部分菌株能分泌乙酸。在接种根瘤菌的液体培养基中,可溶性钾含量显著高于不接种的液体培养基,土壤矿物结构钾则显著降低。由于土壤是培养基钾的唯一来源,故根瘤菌可促进土壤无效钾的溶解。相关分析表明,土壤矿物结构钾与有机酸分泌总量呈极显著负相关(r=-0.878**,n=9),与培养液pH值呈极显著正相关(r=0.863**,n=9),说明根瘤菌分泌的有机酸和氢离子可能溶解土壤无效钾。考虑到根瘤菌草酸分泌量大,络合钙、镁、铁、铝的能力强,且与有机酸分泌总量呈极显著正相关(r=0.870**,n=9),推测草酸分泌在活化土壤无效钾的过程中起重要作用。此外,根瘤菌分泌的有机酸电离产生的氢离子仅占培养液氢离子的4.15%—27.56%,推测根瘤菌直接分泌的氢离子可能是造成培养液pH值降低的主要原因之一。  相似文献   

8.
The purification procedure of 6,6′-diesters of trehalose from Corynebacterium diphtheriae was modified and the isolated substance was analysed by mass spectrometry as its permethylated derivative. The fatty acid moiety released from the glycolipid after alkaline hydrolysis was studied by mass spectral analysis of the O-methylated and O-acetylated methyl ester derivatives. By argentation thin-layer chromatography, three species of O-acetylated methyl esters were recognized, corresponding to saturated, mono-unsaturated and di-unsaturated α-branched-β-hydroxylated fatty acids. The double bond was located by ozonolysis of the O-acetylated methyl ester derivatives, by gas chromatography of the reaction product and mass spectrometry of the effluent from the gas chromatograph. The main components of each species of α-branched-β-hydroxylated fatty acids found in the gly colipid fraction of C. diphtheriae were 2-tetradecyl-3-hydroxyoctadecanoic acid (C32H64O3, corynomycolic acid), 2-tetradecyl-3-hydroxy-11-octadecenoic acid (C32H62O3, corynomycolenic acid), 2-tetradec-7′-enyl-3-hydroxy octadecanoic acid (C32H62O3) and 2-tetradec-7′-enyl-3-hydroxy-11-octadecenoic acid (C32H60O3, corynomycoldienic acid). The glycolipid fraction from C. diphtheriae is obviously a complex mixture of 6,6′-diesters of trehalose.  相似文献   

9.
Kent SS 《Plant physiology》1979,64(1):159-161
In the higher plant Vicia faba, anomalous labeling patterns in the organic acids and related amino acids of the tricarboxylic acid cycle which result from photosynthetic 14CO2 fixation (in conjunction with an enzyme localization pattern unique to plant mitochondria) suggest that the tricarboxylic acid cycle functions primarily as a pathway leading to glutamic acid biosynthesis during autotrophic growth. The distribution of isotope in citrate indicates little recycling of oxaloacetate for the resynthesis of citrate. Rather, malate appears to provide both the C2 and C4 fragments for the synthesis of citrate, and [3H]formate and 14CO2-labeling patterns implicate serine as the ultimate C3 precursor of malate.  相似文献   

10.
There is a variety of methodologies used in the aquatic sciences and soil sciences for extracting different forms of Si from sediments and soils. However, a comparison of the published extraction techniques is lacking. Here we review the methodologies used to extract different Si fractions from soils and sediments. Methods were classified in those to assess plant-available Si and those to extract Si from amorphous silica and allophane. Plant-available Si is supposed to comprise silicic acid in soil solution and adsorbed to soil particles. Extraction techniques for plant-available Si include extractions with water, CaCl2, acetate, acetic acid, phosphate, H2SO3, H2SO4, and citrate. The extractants show different capabilites to desorb silicic acid, with H2SO3, H2SO4 and citrate having the greater extraction potential. The most common extractants to dissolve amorphous silica from soils and aquatic sediments are NaOH and Na2CO3, but both also dissolve crystalline silicates to varying degrees. In soils moreover Tiron is used to dissolve amorphous silica, while oxalate is used to dissolve allophanes and imogolite-type materials. Most techniques analyzing for biogenic silica in aquatic environments use a correction method to identify mineral derived Si. By contrast, in the soil sciences no correction methods are used although pedologists are well aware of the overestimation of amorphous silica by the NaOH extraction, which is most commonly used to extract silica from soils. It is recommended that soil scientists begin to use the techniques developed in the aquatic sciences, since it seems impossible to extract amorphous Si from soils completely without dissolving some of the crystalline silicates.  相似文献   

11.
There is an assumption in much recent literature that secreted organic anions (OAs) protect the root meristem from Al toxicity by complexation of Al ions. In fact, several possible mechanisms exist by which common OA might afford some degree of protection. Plants can excrete OA which undergo chemical association with protons (hereafter referred to as protonation) in the soil and increase rhizosphere pH. The cost in reduced carbon relative to protons consumed, C:H+, ranges from 2–6. The efficiency of this mechanism can be enhanced in the presence of soil organisms which can oxidise the OA that remain dissociated at soil pH to CO2 and H2O, thereby consuming protons which associate with lower pK functional groups (pK 1.2 to ~ 4). For fully dissociated organic acids the C:H+ ratio decreases to the range 1–3. The C cost to plants is further minimised if MnO2 is the terminal electron acceptor rather than O2, resulting in C:H+<1. OA might also complex or chelate Al. Complexes of Al3+ with oxalate appear to be effective, with some C:H+≤1. However, citrate complexation appears to be more stable in pure solutions and might offer the additional benefit of enhanced P acquisition. Our assessment is that the most efficient strategy for a plant to employ to protect itself from Al toxicity is to increase pH near the root apex by secreting OA into soil where the microbial oxidation of reduced C could be coupled with the reduction of MnO2. This would consume 0.2–0.67 mole of C per H+, which is the order of magnitude better than the C:H+ ratio of 2–6 that would occur if only protonation of OA was to be relied upon. These mechanisms have implications for the effectiveness of programs aimed at selecting cultivars for resistance to acidic soils.  相似文献   

12.
Exudation of carboxylic anions and protons by plant roots plays an important role in mobilizing soil P under P-deficiency conditions. The objective of this work was to quantify short-term (6 h) carboxylate and H+ exudation by tomato roots in response to P concentration (0, 0.1, 0.5 and 1.0 mt M P) in nutrient solution (Cp). The exudation rate of tri- and dicarboxylates decreased exponentially with increasing Cp, from 0.3 to 0.03 mol plant–1 6h–1. At low Cp the predominant exudates were fumarate, citrate and succinate, while at Cp=0.5 and 1.0 mt M the prevalent anions were succinate and citrate. The solution pH declined sharply as Cp was lowered from 0.1 (pH=4.2) to 0 mt M P (pH=3.7).  相似文献   

13.
Chromium (III) accumulation in high biomass agricultural crops, sunflower (Helianthus annum) and Indian mustard (Brassica juncea) was studied using four soils (pH 4.6 to 7.6) contaminated with different rates of CrCl3.6H2O in the presence of synthetic chelate and organic acids. Chromium is essential for normal glucose metabolism in humans and animals, but its contamination and recovery from soils is of environmental concern. Adding ethylenediaminetetraacetic acid (EDTA), citric acid, or oxalic acid to Cr(III)‐contaminated soils significantly increased Cr concentration in plant shoots and roots. Adding Cr(III) complexes of EDTA, citric acid, and oxalic acid to soils dramatically increased (>200‐fold) Cr concentration in shoots and roots. Plant growth was severely decreased but was dependent on soil type, chelate rate, form, and time of chelate application. Chelates and organic acids enhanced Cr(III) accumulation, but its toxic effects were not avoided. Chromium(III) complexes were as toxic to plants as Cr(VI). The phytoaccumulation and recovery of Cr(III) from soils were limited and depended on soil type.  相似文献   

14.
We have investigated the effects of low molecular weight organic acid ligands on the adsorption of the insecticidal toxin from Bacillus thuringiensis (Bt) by the colloidal (<2 μm particle-size) fraction of some soils. The desorption of the bound toxin by NaCl and phosphate buffer has also been measured. The soils used were a red soil (Ultisol), a latosol (Oxisol), a yellow brown soil (Alfisol) and a yellow cinnamon soil (Alfisol) from central and southern China. The adsorption isotherms were all of the L-type, and the data fitted the Langmuir equation (R2 > 0.97). When present at low concentrations, organic acids (acetate, oxalate, citrate) had an inhibitory effect on toxin adsorption. Uptake, however, was promoted when the organic acid concentration exceeded 10 mM. The toxin was very strongly bound by the soils but the soil-toxin interaction weakened in the presence of organic acids. A small portion of the toxin was adsorbed by electrostatic and ligand exchange interactions. The addition of organic acids appeared to enhance these interactions. Responsible Editor: Thomas B. Kinraide  相似文献   

15.
Potential denitrification rates were determined for predominantly acid (pH ≥ 3.6) horizons of forestal, miry, and agricultural soils from 22 locations in southern Finland. The acetylene inhibition method was used with nitrate-amended water-logged soils incubated in an N2 atmosphere containing 2.5 or 5% C2H2. Complete inhibition of the reduction of N2O to N2 was observed in 99.3% of the samples. The denitrification rates varied from 0.12 to 53.8 μg of N·cm-3·day-1. Correlation between denitrification rate and soil pH was highly significant: r = 0.84 on a volume basis, and r = 0.44 on a weight basis. Vegetation type and amount of soil organic matter had a minor or no effect, respectively. In spodosolized soils the rates were significantly higher for B horizons than for A horizons. These results show that denitrification can occur in acid soils.  相似文献   

16.
Acidification and alkalinization of soils   总被引:5,自引:0,他引:5  
Acidification or alkalinization of soils occurs through H+ transfer processes involving vegetation, soil solution and soil minerals. A permanent change in the acid neutralizing capacity of the inorganic soil fraction (ANC(s)),i.e. soil acidification (ΔANC<0) or soil alkalinization (ΔANC>0), results from an irreversible H+ flux. This irreversible H+ flux can be caused either by direct proton addition or depletion, by different mobility of components of the ANC(s) or by a permanent change in redox conditions. The contributions of (a) acidic atmospheric deposition, (b) nitrogen transformations, (c) deprotonation of CO2 and of organic acids and protonation of their conjugate bases, (d) assimilation of cations and anions by the vegetation, (e) weathering or reverse weathering of minerals and (f) stream output to changes in the ANC(s) are illustrated by means of H+ budgets for actual soils and watersheds.  相似文献   

17.
The reaction of lead(II) nitrate with trisodium citrate Na3(C6H5O7) in a 1:22.5 ratio at pH 4.8 provides crystals of {Na(H2O)3}[Pb5(H2O)3(C6H5O7)3(C6H6O7)]·9.5H2O (1). The structure of 1 is two-dimensional and exhibits five distinct Pb(II) sites and four different modes of citrate bonding. The five lead sites all display hemidirected coordination geometries, that is, irregular distribution of neighboring oxygen atoms resulting in obvious gaps in the coordination spheres. Consequently, the lead coordination geometries exhibit proximal bonding to a number of oxygen donors, as well as distal interactions with nearest neighbors. The coordination numbers vary from 8 to 10, with ‘5+3’, ‘5+4’, ‘6+4’ and ‘7+3’ coordination modes where the first number refers to the proximal ligands and the second to the distal set. The four crystallographically distinct citrate groups include three with deprotonated carboxylate groups (C6H5O7)3− and one with a single protonated carboxyl group (C6H6O7)2. The citrate ligands bridge 3, 5, 7 and 7 lead sites. Three of the citrate groups exhibit tridentate chelation coordination to a lead site through two carboxylate oxygen donors and the hydroxyl groups. One citrate group projects an uncoordinated -OH group and a pendant protonated carboxyl group into the interlamellar domain. This latter carboxyl group coordinates to a sodium cation, which exhibits five coordinate geometry defined by three aqua ligands and the carbonyl oxygen of the -CO2H groups in the basal plane and a citrate -OH donor in the apical position.  相似文献   

18.
Lignin mineralization represents a critical flux in the terrestrial carbon (C) cycle, yet little is known about mechanisms and environmental factors controlling lignin breakdown in mineral soils. Hypoxia is thought to suppress lignin decomposition, yet potential effects of oxygen (O2) variability in surface soils have not been explored. Here, we tested the impact of redox fluctuations on lignin breakdown in humid tropical forest soils during ten‐week laboratory incubations. We used synthetic lignins labeled with 13C in either of two positions (aromatic methoxyl or propyl side chain Cβ) to provide highly sensitive and specific measures of lignin mineralization seldom employed in soils. Four‐day redox fluctuations increased the percent contribution of methoxyl C to soil respiration relative to static aerobic conditions, and cumulative methoxyl‐C mineralization was statistically equivalent under static aerobic and fluctuating redox conditions despite lower soil respiration in the latter treatment. Contributions of the less labile lignin Cβ to soil respiration were equivalent in the static aerobic and fluctuating redox treatments during periods of O2 exposure, and tended to decline during periods of O2 limitation, resulting in lower cumulative Cβ mineralization in the fluctuating treatment relative to the static aerobic treatment. However, cumulative mineralization of both the Cβ‐ and methoxyl‐labeled lignins nearly doubled in the fluctuating treatment relative to the static aerobic treatment when total lignin mineralization was normalized to total O2 exposure. Oxygen fluctuations are thought to be suboptimal for canonical lignin‐degrading microorganisms. However, O2 fluctuations drove substantial Fe reduction and oxidation, and reactive oxygen species generated during abiotic Fe oxidation might explain the elevated contribution of lignin to C mineralization. Iron redox cycling provides a potential mechanism for lignin depletion in soil organic matter. Couplings between soil moisture, redox fluctuations, and lignin breakdown provide a potential link between climate variability and the biochemical composition of soil organic matter.  相似文献   

19.
Past research strongly indicates the importance of amino acids in the N economy of the Arctic tundra, but little is known about the seasonal dynamics of amino acids in tundra soils. We repeatedly sampled soils from tussock, shrub, and wet sedge tundra communities in the summers of 2000 and 2001 and extracted them with water (H2O) and potassium sulfate (K2SO4) to determine the seasonal dynamics of soil amino acids, ammonium (NH4+), nitrate (NO3), dissolved organic nitrogen (DON), dissolved organic carbon (DOC), and phosphate (PO42–). In the H2O extractions mean concentrations of total free amino acids (TFAA) were higher than NH4+ in all soils but shrub. TFAA and NH4+ were highest in wet sedge and tussock soils and lowest in shrub soil. The most predominant amino acids were alanine, arginine, glycine, serine, and threonine. None of the highest amino acids were significantly different than NH4+ in any soil but shrub, in which NH4+ was significantly higher than all of the highest individual amino acids. Mean NO3 concentrations were not significantly different from mean TFAA and NH4+ concentrations in any soil but tussock, where NO3 was significantly higher than NH4+. In all soils amino acid and NH4+ concentrations dropped to barely detectable levels in the middle of July, suggesting intense competition for N at the height of the growing season. In all soils but tussock, amino acid and NH4+ concentrations rebounded in August as the end of the Arctic growing season approached and plant N demand decreased. This pattern suggests that low N concentrations in tundra soils at the height of the growing season are likely the result of an increase in soil N uptake associated with the peak in plant growth, either directly by roots or indirectly by microbes fueled by increased root C inputs in mid-July. As N availability decreased in July, PO42– concentrations in the K2SO4 extractions increased dramatically in all soils but shrub, where there was a comparable increase in PO42– later in the growing season. Previous research suggests that these increases in PO42– concentrations are due to the mineralization of organic phosphorus by phosphatase enzymes associated with soil microbes and plant roots, and that they may have been caused by an increase in organic P availability.  相似文献   

20.
The degradation of phenanthrene sorbed on soil has been carried out using a H2O2/goethite heterogeneous catalytic oxidation process. The effect of operating variables, such as the goethite concentration, pH, H2O2 concentration, soil organic matter, and bicarbonate ions has been investigated. The reaction followed pseudo-first order kinetics. The rate constants were evaluated and varied between 2.0×10?4 and 1.1×10?3?min?1 depending on the H2O2 concentration. The highest rate of degradation of phenanthrene was observed at a H2O2 concentration of 5?M and 134.0?g/kg goethite. The intermediate product formed during the degradation of phenanthrene was identified to be salicylic acid that finally degraded to CO2 and H2O. H2O2 consumption continued as the OH radical attacked the salicylic acid. More than 80% consumption of the 5?M H2O2 took place within 30?min, and the degradation was almost complete after 3?h of reaction. Neutral pH was found to be effective in the removal of phenanthrene. Both soil organic matter (SOM) and bicarbonate ions in the soil inhibited the oxidation rate of phenanthrene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号