首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
I S Seong  J Y Oh  S J Yoo  J H Seol  C H Chung 《FEBS letters》1999,456(1):211-214
HslVU is an ATP-dependent protease consisting of two multimeric components, the HslU ATPase and the HslV peptidase. To gain an insight into the role of HslVU in regulation of cell division, the reconstituted enzyme was incubated with SulA, an inhibitor of cell division in Escherichia coli, or its fusion protein with maltose binding protein (MBP). HslVU degraded both proteins upon incubation with ATP but not with its nonhydrolyzable analog, ATPgammaS, indicating that the degradation of SulA requires ATP hydrolysis. The pulse-chase experiment using an antibody raised against MBP-SulA revealed that the stability of SulA increased in hsl mutants and further increased in lon/hsl double mutants, indicating that SulA is an in vivo substrate of HslVU as well as of protease La (Lon). These results suggest that HslVU in addition to Lon plays an important role in regulation of cell division through degradation of SulA.  相似文献   

2.
Escherichia coli mutants lacking activities of all known cytosolic ATP-dependent proteases (Lon, ClpAP, ClpXP, and HslVU), due to double deletions [DeltahslVU and Delta(clpPX-lon)], cannot grow at low (30 degrees C) or very high (45 degrees C) temperatures, unlike those carrying either of the deletions. Such growth defects were particularly marked when the deletions were introduced into strain MG1655 or W3110. To examine the functions of HslVU and other proteases further, revertants that can grow at 30 degrees C were isolated from the multiple-protease mutant and characterized. The revertants were found to carry a suppressor affecting either ftsZ (encoding a key cell division protein) or sulA (encoding the SulA inhibitor, which binds and inhibits FtsZ). Whereas the ftsZ mutations were identical to a mutation known to produce a protein refractory to SulA inhibition, the sulA mutations affected the promoter-operator region, reducing synthesis of SulA. These results suggested that the growth defect of the parental double-deletion mutant at a low temperature was due to the accumulation of excess SulA without DNA-damaging treatment. Consistent with these results, SulA in the double-deletion mutant was much more stable than that in the Delta(clpPX-lon) mutant, suggesting that SulA can be degraded by HslVU. As expected, purified HslVU protease degraded SulA (fused to the maltose-binding protein) efficiently in an ATP-dependent manner. These results suggest that HslVU as well as Lon participates in the in vivo turnover of SulA and that HslVU becomes essential for growth when the Lon (and Clp) protease level is reduced below a critical threshold.  相似文献   

3.
SulA protein is known to be one of the physiological substrates of Lon protease, an ATP-dependent protease from Escherichia coli. In this study, we investigated the cleavage specificity of Lon protease toward SulA protein. The enzyme was shown to cleave approximately 27 peptide bonds in the presence of ATP. Among them, six peptide bonds were cleaved preferentially in the early stage of digestion, which represented an apparently unique cleavage sites with mainly Leu and Ser residues at the P1, and P1' positions, respectively, and one or two Gln residues in positions P2-P5. They were located in the central region and partly in the C-terminal region, both of which are known to be important for the function of SulA, such as inhibition of cell growth and interaction with Lon protease, respectively. The other cleavage sites did not represent such consensus sequences, though hydrophobic or noncharged residues appeared to be relatively preferred at the P1 sites. On the other hand, the cleavage in the absence of ATP was very much slower, especially in the central region, than in the presence of ATP. The central region was predicted to be rich in alpha helix and beta sheet structures, suggesting that the enzyme required ATP for disrupting such structures prior to cleavage. Taken together, SulA is thought to contain such unique cleavage sites in its functionally and structurally important regions whose preferential cleavage accelerates the ATP-dependent degradation of the protein by Lon protease.  相似文献   

4.
Lon is an ATP-dependent protease of Escherichia coli. The lon mutation has a pleiotropic phenotype: UV sensitivity, mucoidy, deficiency for lysogenization by bacteriophage lambda and P1, and lower efficiency in the degradation of abnormal proteins. All of these phenotypes are correlated with the loss of protease activity. Here we examine the effects of overproduction of one Lon substrate, SulA, and show that it protects two other substrates from degradation. To better understand this protection, we mutagenized the sulA gene and selected for mutants that have partially or totally lost their ability to saturate the Lon protease and thus can no longer protect another substrate. Some of the SulA mutants lost their ability to protect RcsA from degradation but could still protect the O thermosensitive mutant protein (Ots). All of the mutants retained their capacity to induce cell division inhibition. It was also found that deletion of the C-terminal end of SulA affected its activity but did not affect its susceptibility to Lon. We propose that Lon may have more than one specificity for peptide cleavage.  相似文献   

5.
Seong IS  Oh JY  Lee JW  Tanaka K  Chung CH 《FEBS letters》2000,477(3):224-229
HslVU is an ATP-dependent protease consisting of two multimeric components: the HslU ATPase and the HslV peptidase. SulA, which is an inhibitor of cell division and has high tendency of aggregation, is degraded by HslVU protease. Here we show that HslU plays a role not only as a regulatory component for the HslV-mediated proteolysis but also as a molecular chaperone. Purified HslU prevented aggregation of SulA in a concentration-dependent fashion. This chaperone activity required oligomerization of HslU subunits, which could be achieved by ATP-binding or in the presence of high HslU protein concentrations. hsl mutation reduced the SulA-mediated inhibition of cell growth and this effect could be reversed upon overproduction of HslU, suggesting that HslU promotes the ability of SulA to block cell growth through its chaperone function. Thus, HslU appears to have two antagonistic functions: one as a chaperone for promotion of the ability of SulA in cell growth inhibition by preventing SulA aggregation and the other as the regulatory component for elimination of SulA by supporting the HslV-mediated degradation.  相似文献   

6.
7.
The SulA protein is a cell division inhibitor in Escherichia coli, and is specifically degraded by Lon protease. To study the recognition site of SulA for Lon, we prepared a mutant SulA protein lacking the C-terminal 8 amino acid residues (SA8). This deletion protein was accumulated and stabilized more than native SulA in lon(+) cells in vivo. Moreover, the deletion SulA fused to maltose binding protein was not degraded by Lon protease, and did not stimulate the ATPase or peptidase activity of Lon in vitro, probably due to the much reduced interaction with Lon. A BIAcore study showed that SA8 directly interacts with Lon. These results suggest that SA8 of SulA was recognized by Lon protease. The SA8 peptide, KIHSNLYH, specifically inhibited the degradation of native SulA by Lon protease in vitro, but not that of casein. A mutant SA8, KAHSNLYH, KIASNLYH, or KIHSNAYH, also inhibited the degradation of SulA, while such peptides as KIHSNLYA did not. These results show that SulA has the specified rows of C-terminal 8 residues recognized by Lon, leading to facilitated binding and subsequent cleavage by Lon protease both in vivo and in vitro.  相似文献   

8.
Intracellular accumulation of the inducible cell division inhibitor SulA is modulated by proteases that ensure its degradation, namely, the Lon protease and another ATP-dependent protease(s). Lon- cells are UV sensitive because SulA is stable. We asked whether these ATP-dependent proteases are more active when lon cells are grown at high temperature or in synthetic medium since these conditions decrease the UV sensitivity of lon cells. We found that these growth conditions have no direct effect on Lon-independent degradation of SulA. They may, instead, decrease the SulA-FtsZ interaction.  相似文献   

9.
Degron binding regulates the activities of the AAA+ Lon protease in addition to targeting proteins for degradation. The sul20 degron from the cell‐division inhibitor SulA is shown here to bind to the N domain of Escherichia coli Lon, and the recognition site is identified by cross‐linking and scanning for mutations that prevent sul20‐peptide binding. These N‐domain mutations limit the rates of proteolysis of model sul20‐tagged substrates and ATP hydrolysis by an allosteric mechanism. Lon inactivation of SulA in vivo requires binding to the N domain and robust ATP hydrolysis but does not require degradation or translocation into the proteolytic chamber. Lon‐mediated relief of proteotoxic stress and protein aggregation in vivo can also occur without degradation but is not dependent on robust ATP hydrolysis. In combination, these results demonstrate that Lon can function as a protease or a chaperone and reveal that some of its ATP‐dependent biological activities do not require translocation.  相似文献   

10.
11.
The HslVU complex is a bacterial two-component ATP-dependent protease, consisting of HslU chaperone and HslV peptidase. Investigation of protein-protein interactions using SPR in Escherichia coli HslVU and the protein substrates demonstrates that HslU and HslV have moderate affinity (Kd = 1 microM) for each other. However, the affinity of HslU for HslV fivefold increased (Kd approximately 0.2 microM) after binding with the MBP approximately SulA protein indicating the formation of a "ternary complex" of HslV-HslU-MBP approximately SulA. The molecular interaction studies also revealed that HslU strongly binds to MBP approximately SulA with 10(-9) M affinity but does not associate with nonstructured casein. Conversely, HslV does not interact with the MBP-SulA whereas it strongly binds with casein (Kd = 0.2 microM) requiring an intact active site of HslV. These findings provide evidence for "substrate-induced" stable HslVU complex formation. Presumably, the binding of HslU to MBP approximately SulA stimulates a conformational change in HslU to a high-affinity form for HslV.  相似文献   

12.
Escherichia coli Lon, an ATP-dependent AAA+ protease, recognizes and degrades many different substrates, including the RcsA and SulA regulatory proteins. More than a decade ago, the E240K mutation in the N domain of Lon was shown to prevent degradation of RcsA but not SulA in vivo. Here, we characterize the biochemical properties of the E240K mutant in vitro and present evidence that the effects of this mutation are complex. For example, LonE240K exists almost exclusively as a dodecamer, whereas wild-type Lon equilibrates between hexamers and dodecamers. Moreover, LonE240K displays degradation defects in vitro that do not correlate in any simple fashion with degron identity, substrate stability, or dodecamer formation. The Lon sequence segment near residue 240 is known to undergo nucleotide-dependent conformational changes, and our results suggest that this region may be important for coupling substrate binding with allosteric activation of Lon protease and ATPase activity.  相似文献   

13.
SulA is induced in Escherichia coli by the SOS response and inhibits cell division through interaction with FtsZ. To determine which region of SulA is essential for the inhibition of cell division, we constructed a series of N-terminal and C-terminal deletions of SulA and a series of alanine substitution mutants. Arginine at position 62, leucine at 67, tryptophan at 77 and lysine at 87, in the central region of SulA, were all essential for the inhibitory activity. Residues 3–27 and the C-terminal 21 residues were dispensable for the activity. The mutant protein lacking N-terminal residues 3–47 was inactive, as was that lacking the C-terminal 34 residues. C-terminal deletions of 8 and 21 residues increased the growth-inhibiting activity in lon + cells, but not in lon ? cells. The wild-type and mutant SulA proteins were isolated in a form fused to E. coli maltose-binding protein, and tested in vitro for sensitivity to Lon protease. Lon degraded wild-type SulA and a deletion mutant lacking the N-terminal 93 amino acids, but did not degrade the derivative lacking 21 residues at the C-terminus. Futhermore, the wild-type SulA and the N-terminal deletion mutant formed a stable complex with Lon, while the C-terminal deletion did not. MBP fused to the C-terminal 20 residues of SulA formed a stable complex with, but was not degraded by Lon. When LacZ protein was fused at its C-terminus to 8 or 20 amino acid residues from the C-terminal region of SulA the protein was stable in lon + cells. These results indicate that the C-terminal 20 residues of SulA permit recognition by, and complex formation with, Lon, and are necessary, but not sufficient, for degradation by Lon.  相似文献   

14.
SulA is induced in Escherichia coli by the SOS response and inhibits cell division through interaction with FtsZ. To determine which region of SulA is essential for the inhibition of cell division, we constructed a series of N-terminal and C-terminal deletions of SulA and a series of alanine substitution mutants. Arginine at position 62, leucine at 67, tryptophan at 77 and lysine at 87, in the central region of SulA, were all essential for the inhibitory activity. Residues 3–27 and the C-terminal 21 residues were dispensable for the activity. The mutant protein lacking N-terminal residues 3–47 was inactive, as was that lacking the C-terminal 34 residues. C-terminal deletions of 8 and 21 residues increased the growth-inhibiting activity in lon + cells, but not in lon cells. The wild-type and mutant SulA proteins were isolated in a form fused to E. coli maltose-binding protein, and tested in vitro for sensitivity to Lon protease. Lon degraded wild-type SulA and a deletion mutant lacking the N-terminal 93 amino acids, but did not degrade the derivative lacking 21 residues at the C-terminus. Futhermore, the wild-type SulA and the N-terminal deletion mutant formed a stable complex with Lon, while the C-terminal deletion did not. MBP fused to the C-terminal 20 residues of SulA formed a stable complex with, but was not degraded by Lon. When LacZ protein was fused at its C-terminus to 8 or 20 amino acid residues from the C-terminal region of SulA the protein was stable in lon + cells. These results indicate that the C-terminal 20 residues of SulA permit recognition by, and complex formation with, Lon, and are necessary, but not sufficient, for degradation by Lon. Received: 8 October 1996 / Accepted: 27 November 1996  相似文献   

15.
To overproduce extremely unstable SulA protein, which is the cell-division inhibitor of Escherichia coli, we fused the sulA gene to the maltose-binding protein (MBP) fusion vectors with or without the signal sequence (plasmids pMAL-p-SulA and pMAL-c-SulA respectively). The amount of the full-length fusion protein expressed from the plasmid pMAL-p-SulA (pre-MBP-SulA) in E. coli was much larger than that expressed from the plasmid pMAL-c-SulA (MBP-SulA). A major amount of the pre-MBP-SulA fusion protein was expressed in a soluble form and affinity-purified by amylose resin. Since site-specific cleavage of the fusion protein with factor Xa resulted in the precipitation of SulA protein, the pre-MBP-SulA fusion protein was used to study the degradation of SulA protein by E. coli Lon protease in vitro. It was found that only the SulA portion of the fusion protein was degraded by Lon protease in an ATP-dependent manner. This result provides direct evidence that Lon protease plays an important role in the rapid degradation of SulA protein in cells.  相似文献   

16.
Lon protease of Escherichia coli regulates a diverse set of physiological responses including cell division, capsule production, plasmid stability, and phage replication. Little is known about the mechanism of substrate recognition by Lon. To examine the interaction of Lon with two of its substrates, RcsA and SulA, we generated point mutations in lon which affected its substrate specificity. The most informative lon mutant overproduced capsular polysaccharide (RcsA stabilized) yet was resistant to DNA-damaging agents (SulA degraded). Immunoblots revealed that RcsA protein persisted in this mutant whereas SulA protein was rapidly degraded. The mutant contains a single-base change within lon leading to a single amino acid change of glutamate 240 to lysine. E240 is conserved among all Lon isolates and resides in a charged domain that has a high probability of adopting a coiled-coil conformation. This conformation, implicated in mediating protein-protein interactions, appears to confer substrate discriminator activity on Lon. We propose a model suggesting that this coiled-coil domain represents the discriminator site of Lon.  相似文献   

17.
HslVU is an ATP-dependent protease consisting of HslU ATPase and HslV peptidase. In an HslVU complex, the central pores of HslU hexamer and HslV dodecamer are aligned and the proteolytic active sites are sequestered in the inner chamber of HslV. Thus, the degradation of natively folded proteins requires unfolding and translocation processes for their access into the proteolytic chamber of HslV. A highly conserved GYVG(93) sequence constitutes the central pore of HslU ATPase. To determine the role of the pore motif on protein unfolding and translocation, we generated various mutations in the motif and examined their effects on the ability of HslU in supporting the proteolytic activity of HslV against three different substrates: SulA as a natively folded protein, casein as an unfolded polypeptide, and a small peptide. Flexibility provided by Gly residues and aromatic ring structures of the 91st amino acid were essential for degradation of SulA. The same structural features of the GYVG motif were highly preferred, although not essential, for degradation of casein. In contrast, none of the features were required for peptide hydrolysis. Mutations in the GYVG motif of HslU also showed marked influence on its ATPase activity, affinity to ADP, and interaction with HslV. These results suggest that the GYVG motif of HslU plays important roles in unfolding of natively folded proteins as well as in translocation of unfolded proteins for degradation by HslV. These results also implicate a role of the pore motif in ATP cleavage and in the assembly of HslVU complex.  相似文献   

18.
Lon protease, also known as protease La, is one of the simplest ATP-dependent proteases that plays vital roles in maintaining cellular functions by selectively eliminating misfolded, damaged and certain short-lived regulatory proteins. Although Lon is a homo-oligomer, each subunit of Lon contains both an ATPase and a protease active site. This relatively simple architecture compared to other hetero-oligomeric ATP-dependent proteases such as the proteasome makes Lon a useful paradigm for studying the mechanism of ATP-dependent proteolysis. In this article, we survey some recent developments in the mechanistic characterization of Lon with an emphasis on the utilization of pre-steady-state enzyme kinetic techniques to determine the timing of the ATPase and peptidase activities of the enzyme.  相似文献   

19.
20.
Protein degradation in bacteria is involved in diverse cellular responses to environmental stimuli and in removing potentially toxic damaged proteins or protein aggregates. ATP-dependent proteases play a key role in these processes. Here, we have individually inactivated all the ATP-dependent proteases belonging to the Clp or Lon families in Deinococcus radiodurans. The mutants were tested for survival after gamma-irradiation and for sensitivity to the tRNA analogue puromycin in order to assess the impact of each disruption on radioresistance, as well as on proteolysis of misfolded proteins. We found that inactivation of the ClpPX protease significantly decreased cell survival at elevated gamma-irradiation doses, while inactivation of Lon1 and Lon2 proteases reduced resistance to puromycin, suggesting that they play a role in eliminating damaged proteins. Mutants devoid of ClpPX protease displayed altered kinetics of DNA double-strand break repair and resumed cell division after an exceedingly long lag phase following completion of DNA repair. During this stasis period, most of the DeltaclpPX irradiated cells showed decondensed nucleoids and abnormal septa and some cells were devoid of DNA. We propose that the ClpPX protease is involved in the control of proper chromosome segregation and cell division in cells recovering from DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号