首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Down syndrome (DS), or Trisomy 21, is the most common genetic cause of cognitive impairment and congenital heart defects in the human population. To date, the contribution of microRNAs (miRNAs) in DS has not been investigated. Bioinformatic analyses demonstrate that human chromosome 21 (Hsa21) harbors five miRNA genes; miR-99a, let-7c, miR-125b-2, miR-155, and miR-802. MiRNA expression profiling, miRNA RT-PCR, and miRNA in situ hybridization experiments demonstrate that these miRNAs are overexpressed in fetal brain and heart specimens from individuals with DS when compared with age- and sex-matched controls. We hypothesize that trisomic 21 gene dosage overexpression of Hsa21-derived miRNAs results in the decreased expression of specific target proteins and contribute, in part, to features of the neuronal and cardiac DS phenotype. Importantly, Hsa21-derived miRNAs may provide novel therapeutic targets in the treatment of individuals with DS.  相似文献   

2.
3.
4.
The co-ordinated regulation of oncogenes along with miRNAs play crucial role in carcinogenesis. In retinoblastoma (RB), several miRNAs are known to be differentially expressed. Epithelial cell adhesion molecule (EpCAM) gene is involved in many epithelial cancers including, retinoblastoma (RB) tumorigenesis. EpCAM silencing effectively reduces the oncogenic miR-17-92 cluster. In order to investigate whether EpCAM has wider effect as an inducer or silencer of miRNAs, we performed a global microRNA expression profile in EpCAM siRNA knockdown Y79 cells. MicroRNA profiling in EpCAM silenced Y79 cells showed seventy-three significantly up regulated and thirty-six down regulated miRNAs. A subset of these miRNAs was also validated in tumors. Functional studies on Y79 and WERI-Rb-1 cells transfected with antagomirs against two miRNAs of miR-181c and miR-130b showed striking changes in tumor cell properties in RB cells. Treatment with anti-miR-181c and miR-130b showed significant decrease in cell viability and cell invasion. Increase in caspase-3 level was noticed in antagomir transfected cell lines indicating the induction of apoptosis. Possible genes altered by EpCAM influenced microRNAs were predicted by bioinformatic tools. Many of these belong to pathways implicated in cancer. The study shows significant influence of EpCAM on global microRNA expression. EpCAM regulated miR-181c and miR-130b may play significant roles in RB progression. EpCAM based targeted therapies may reduce carcinogenesis through several miRNAs and target genes.  相似文献   

5.
MicroRNA (miRNA) maturation is regulated by interaction of particular miRNA precursors with specific RNA-binding proteins. Following their biogenesis, mature miRNAs are incorporated into the RNA-induced silencing complex (RISC) where they interact with mRNAs to negatively regulate protein production. However, little is known about how mature miRNAs are regulated at the level of their activity. To address this, we screened for proteins differentially bound to the mature form of the miR-1 or miR-133 miRNA families. These muscle-enriched, co-transcribed miRNA pairs cooperate to suppress smooth muscle gene expression in the heart. However, they also have opposing roles, with the miR-1 family, composed of miR-1 and miR-206, promoting myogenic differentiation, whereas miR-133 maintains the progenitor state. Here, we describe a physical interaction between TDP-43, an RNA-binding protein that forms aggregates in the neuromuscular disease, amyotrophic lateral sclerosis, and the miR-1, but not miR-133, family. Deficiency of the TDP-43 Drosophila ortholog enhanced dmiR-1 activity in vivo. In mammalian cells, TDP-43 limited the activity of both miR-1 and miR-206, but not the miR-133 family, by disrupting their RISC association. Consistent with TDP-43 dampening miR-1/206 activity, protein levels of the miR-1/206 targets, IGF-1 and HDAC4, were elevated in TDP-43 transgenic mouse muscle. This occurred without corresponding Igf-1 or Hdac4 mRNA increases and despite higher miR-1 and miR-206 expression. Our findings reveal that TDP-43 negatively regulates the activity of the miR-1 family of miRNAs by limiting their bioavailability for RISC loading and suggest a processing-independent mechanism for differential regulation of miRNA activity.  相似文献   

6.
A miRNA signature of prion induced neurodegeneration   总被引:1,自引:0,他引:1  
MicroRNAs (miRNAs) are small, non-coding RNA molecules which are emerging as key regulators of numerous cellular processes. Compelling evidence links miRNAs to the control of neuronal development and differentiation, however, little is known about their role in neurodegeneration. We used microarrays and RT-PCR to profile miRNA expression changes in the brains of mice infected with mouse-adapted scrapie. We determined 15 miRNAs were de-regulated during the disease processes; miR-342-3p, miR-320, let-7b, miR-328, miR-128, miR-139-5p and miR-146a were over 2.5 fold up-regulated and miR-338-3p and miR-337-3p over 2.5 fold down-regulated. Only one of these miRNAs, miR-128, has previously been shown to be de-regulated in neurodegenerative disease. De-regulation of a unique subset of miRNAs suggests a conserved, disease-specific pattern of differentially expressed miRNAs is associated with prion-induced neurodegeneration. Computational analysis predicted numerous potential gene targets of these miRNAs, including 119 genes previously determined to be also de-regulated in mouse scrapie. We used a co-ordinated approach to integrate miRNA and mRNA profiling, bioinformatic predictions and biochemical validation to determine miRNA regulated processes and genes potentially involved in disease progression. In particular, a correlation between miRNA expression and putative gene targets involved in intracellular protein-degradation pathways and signaling pathways related to cell death, synapse function and neurogenesis was identified.  相似文献   

7.
MiRNAs are known to regulate gene expression and in the context of cancer have been shown to regulate metastasis, cell proliferation and cell death. In this report we describe potential miRNA regulatory roles with respect to induction of cell death by pharmacologic dose of Epidermal Growth Factor (EGF). Our previous work suggested that multiple pathways are involved in the induction of apoptosis, including interferon induced genes, cytokines, cytoskeleton and cell adhesion and TP53 regulated genes. Using miRNA time course expression profiling of EGF treated A431 cells and coupling this to our previous gene expression and proteomic data, we have been able to implicate a number of additional miRNAs in the regulation of apoptosis. Specifically we have linked miR-134, miR-145, miR-146b-5p, miR-432 and miR-494 to the regulation of both apoptotic and anti-apoptotic genes expressed as a function of EGF treatment. Whilst additional miRNAs were differentially expressed, these had the largest number of apoptotic and anti-apoptotic targets. We found 5 miRNAs previously implicated in the regulation of apoptosis and our results indicate that an additional 20 miRNAs are likely to be involved based on their correlated expression with targets. Certain targets were linked to multiple miRNAs, including PEG10, BTG1, ID1, IL32 and NCF2. Some miRNAs that target the interferon pathway were found to be down regulated, consistent with a novel layer of regulation of interferon pathway components downstream of JAK/STAT. We have significantly expanded the repertoire of miRNAs that may regulate apoptosis in cancer cells as a result of this work.  相似文献   

8.
MicroRNA (miRNA) is an endogenous non-coding RNA species that either inhibits RNA translation or promotes degradation of target mRNAs. miRNAs often regulate cellular signaling by targeting multiple genes within the pathways. In the present study, using Gene Set Analysis, a useful bioinformatics tool to identify miRNAs with multiple target genes in the same pathways, we identified miR-185 as a key candidate regulator of cardiac hypertrophy. Using a mouse model, we found that miR-185 was significantly down-regulated in myocardial cells during cardiac hypertrophy induced by transverse aortic constriction. To confirm that miR-185 is an anti-hypertrophic miRNA, genetic manipulation studies such as overexpression and knock-down of miR-185 in neonatal rat ventricular myocytes were conducted. The results showed that up-regulation of miR-185 led to anti-hypertrophic effects, while down-regulation led to pro-hypertrophic effects, suggesting that miR-185 has an anti-hypertrophic role in the heart. Our study further identified Camk2d, Ncx1, and Nfatc3 as direct targets of miR-185. The activity of Nuclear Factor of Activated T-cell (NFAT) and calcium/calmodulin-dependent protein kinase II delta (CaMKIIδ) was negatively regulated by miR-185 as assessed by NFAT-luciferase activity and western blotting. The expression of phospho-phospholamban (Thr-17), a marker of CaMKIIδ activity, was also significantly reduced by miR-185. In conclusion, miR-185 effectively blocked cardiac hypertrophy signaling through multiple targets, rendering it a potential drug target for diseases such as heart failure.  相似文献   

9.
10.
11.
Brenner JL  Kemp BJ  Abbott AL 《PloS one》2012,7(5):e37185
The mir-51 family of microRNAs (miRNAs) in C. elegans are part of the deeply conserved miR-99/100 family. While loss of all six family members (mir-51-56) in C. elegans results in embryonic lethality, loss of individual mir-51 family members results in a suppression of retarded developmental timing defects associated with the loss of alg-1. The mechanism of this suppression of developmental timing defects is unknown. To address this, we characterized the function of the mir-51 family in the developmental timing pathway. We performed genetic analysis and determined that mir-51 family members regulate the developmental timing pathway in the L2 stage upstream of hbl-1. Loss of the mir-51 family member, mir-52, suppressed retarded developmental timing defects associated with the loss of let-7 family members and lin-46. Enhancement of precocious defects was observed for mutations in lin-14, hbl-1, and mir-48(ve33), but not later acting developmental timing genes. Interestingly, mir-51 family members showed genetic interactions with additional miRNA-regulated pathways, which are regulated by the let-7 and mir-35 family miRNAs, lsy-6, miR-240/786, and miR-1. Loss of mir-52 likely does not suppress miRNA-regulated pathways through an increase in miRNA biogenesis or miRNA activity. We found no increase in the levels of four mature miRNAs, let-7, miR-58, miR-62 or miR-244, in mir-52 or mir-52/53/54/55/56 mutant worms. In addition, we observed no increase in the activity of ectopic lsy-6 in the repression of a downstream target in uterine cells in worms that lack mir-52. We propose that the mir-51 family functions broadly through the regulation of multiple targets, which have not yet been identified, in diverse regulatory pathways in C. elegans.  相似文献   

12.
《Genomics》2021,113(4):1790-1801
There is growing evidence of the importance of miRNAs for intestinal functional properties and nutritional uptake. Comparative miRNAs profiles of the jejunal mucosa were established against two genetic backgrounds (Lohmann Brown-Classic (LB) and Lohmann LSL-Classic (LSL), which are similar in egg production but differ in physiological traits including mineral utilization, along the production periods of laying hens. The target genes of miRNAs higher expressed in LB vs. LSL (miR-126-3p, miR-214, miR-24-3p, miR-726-5p, miR-29b-3p) were enriched for energy pathways at all stages. The target genes of the miRNAs higher in LSL (miR-1788-5p, miR-103-3p, miR-22-5p, miR-221-3p, miR-375) were more enriched for immune and the bone signalling pathways. The most prominent expression differences were between 16 and 24 weeks of age before and after onset of laying. Our results evidence central roles of intestinal miRNAs as regulators of gene expression, influencing intestinal homeostasis and adaptation to environment in different strains and production phases.  相似文献   

13.
Acute liver failure (ALF) still has an unacceptable high mortality rate, despite substantial improvements with multidisciplinary care. The precise underlying mechanism of ALF remains to be explored. It has been reported that microRNAs (miRNAs) are novel regulators in a number of liver diseases, but the role of miRNAs in the development of ALF is not fully understood. An ALF murine model was generated by ip injection of D: -GalN/LPS, which was confirmed with histopathology and biochemistry. The hepatic miRNA expression profile in ALF was determined by microarray and verified by qRT-PCR. The functions and signal pathways of the targeted genes of these deregulated miRNAs were predicted, using bioinformatics analysis. The possible underlying mechanism was investigated by exploring the relationship between miRNA modification and hepatocyte apoptosis. There were a total of 95 significantly changed miRNAs in ALF compared to mock-treated (P < 0.01). Among these 95 miRNAs, 20 were up-regulated and 26 were down-regulated at both 5 and 7 h time points. Bioinformatics analysis predicted that some of these 46 miRNAs were involved in apoptosis. Among the up-regulated miRNAs involved in apoptosis, miR-15b and miR-16 showed the highest enrichment and targeted the common anti-apoptotic gene, BCL2. Our in vitro data demonstrated that miR-15b and/or miR-16 regulated BCL2 at the protein level. Inhibition of miR-15b and/or miR-16 reduced hepatic apoptosis and TNF production. These data suggest that miR-15b and miR-16 regulate TNF mediated hepatic apoptosis via BCL2 during ALF, and may shed light on the development of a therapeutic strategy for treatment of ALF.  相似文献   

14.
15.
16.
17.
The miR-15/107 group of microRNA (miRNA) gene is increasingly appreciated to serve key functions in humans. These miRNAs regulate gene expression involved in cell division, metabolism, stress response, and angiogenesis in vertebrate species. The miR-15/107 group has also been implicated in human cancers, cardiovascular disease and neurodegenerative disease, including Alzheimer's disease. Here we provide an overview of the following: (1) the evolution of miR-15/107 group member genes; (2) the expression levels of miRNAs in mammalian tissues; (3) evidence for overlapping gene-regulatory functions by different miRNAs; (4) the normal biochemical pathways regulated by miR-15/107 group miRNAs; and (5) the roles played by these miRNAs in human diseases. Membership in this group is defined based on sequence similarity near the mature miRNAs' 5′ end: all include the sequence AGCAGC. Phylogeny of this group of miRNAs is incomplete; thus, a definitive taxonomic classification (e.g., designation as a “superfamily”) is currently not possible. While all vertebrates studied to date express miR-15a, miR-15b, miR-16, miR-103, and miR-107, mammals alone are known to express miR-195, miR-424, miR-497, miR-503, and miR-646. Multiple different miRNAs in the miR-15/107 group are expressed at moderate to high levels in human tissues. We present data on the expression of all known miR-15/107 group members in human cerebral cortical gray matter and white matter using new miRNA profiling microarrays. There is extensive overlap in the mRNAs targeted by miR-15/107 group members. We show new data from cultured H4 cancer cells that demonstrate similarities in mRNAs targeted by miR-16 and miR-103 and also support the importance of the mature miRNAs' 5′ seed region in mRNA target recognition. In conclusion, the miR-15/107 group of miRNA genes is a fascinating topic of study for evolutionary biologists, miRNA biochemists, and clinically oriented translational researchers alike.  相似文献   

18.
19.
4-Hydroxynonenal (HNE) is one of several lipid oxidation products that may have an impact on human pathophysiology. It is an important second messenger involved in the regulation of various cellular processes and exhibits antiproliferative and differentiative properties in various tumor cell lines. The mechanisms by which HNE affects cell growth and differentiation are only partially clarified. Because microRNAs (miRNAs) have the ability to regulate several cellular processes, we hypothesized that HNE, in addition to other mechanisms, could affect miRNA expression. Here, we present the results of a genome-wide miRNA expression profiling of HNE-treated HL-60 leukemic cells. Among 470 human miRNAs, 10 were found to be differentially expressed between control and HNE-treated cells (at p < 0.05). Six miRNAs were down-regulated (miR-181a*, miR-199b, miR-202, miR-378, miR-454-3p, miR-575) and 4 were up-regulated (miR-125a, miR-339, miR-663, miR-660). Three of these regulated miRNAs (miR-202, miR-339, miR-378) were further assayed and validated by quantitative real-time RT-PCR. Moreover, consistent with the down-regulation of miR-378, HNE also induced the expression of the SUFU protein, a tumor suppressor recently identified as a target of miR-378. The finding that HNE could regulate the expression of miRNAs and their targets opens new perspectives on the understanding of HNE-controlled pathways. A functional analysis of 191 putative gene targets of miRNAs modulated by HNE is discussed.  相似文献   

20.

Background

Chronic inflammation associated with ulcerative colitis predisposes individuals to increased colon cancer risk. The aim of these studies was to identify microRNAs that are aberrantly regulated during inflammation and may participate in transformation of colonic epithelial cells in the inflammatory setting.

Methodology/Principal Findings

We have use quantitative PCR arrays to compare microRNA (miRNA) expression in tumors and control colonic epithelial cells isolated from distal colons of chronically inflamed mice and APCMin/+ mice. Rank order statistics was utilized to identify differentially regulated miRNAs in tumors that arose due to chronic inflammation and/or to germline APC mutation. Eight high priority miRNAs were identified: miR-215, miR-137, miR-708, miR-31, and miR-135b were differentially expressed in APC tumors and miR-215, miR-133a, miR-467d, miR-218, miR-708, miR-31, and miR-135b in colitis-associated tumors. Four of these (miR-215, miR-708, miR-31, and miR-135b) were common to both tumors types, and dysregulation of these miRNAs was confirmed in an independent sample set. Target prediction and pathway analysis suggests that these microRNAs, in the aggregate, regulate signaling pathways related to MAPK, PI3K, WNT, and TGF-β, all of which are known to be involved in transformation.

Conclusions/Significance

We conclude that these four miRNAs are dysregulated at some very early stage in transformation of colonic epithelial cells. This response is not dependent on the mechanism of initiation of transformation (inflammation versus germline mutation), suggesting that the miRNAs that we have identified are likely to regulate critical signaling pathways that are central to early events in transformation of colonic epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号