首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The European hamster (Cricetus cricetus) is a circannual species in which the synchronization of the circannual cycle to the natural year occurs during 2 annual phases of sensitivity. Around the summer solstice, the animals are sensitive to a shortening of photoperiod. During this sensitive phase, pronounced changes in circadian output parameters are observed, indicating a different functional state of the circadian system. This special state is assumed to be necessary to develop the extreme sensitivity to short day length in European hamsters during this phase. In natural conditions, the animals are able to recognize the shortening of photoperiod already in mid-July, when the photoperiod is reduced only by 30 min. To investigate the short-day response in sensitive European hamsters on the basis of the 2-coupled oscillator model of Pittendrigh and Daan (1976), daily activity and the reproductive state of European hamsters were recorded after an asymmetrical reduction of photoperiod from long (LD 16:08) to short (LD 08:16) photoperiods. The activity pattern of the animals showed an immediate response to the short photoperiod at the day of transfer when the night was extended only into the evening, but there was a significant delay in the response time when the night was extended into the morning. Thus, the evening oscillator E is more important in inducing the photoperiodic response than the morning oscillator M. Moreover, the broad intragroup variation in the latter conditions strongly suggests that the changes in the activity pattern were endogenously induced and that the animals were not able to recognize a lengthening of the night into the morning. Gonadal regression started in both groups 3 weeks after the change in the activity pattern, indicating that this process is initiated when the circadian system has received the short-day signal either through changes in photoperiod or through the circannual clock.  相似文献   

2.
The varied carpet beetle Anthrenus verbasci L. has a circannual pupation rhythm and pupates in the spring in the wild. The change in photoperiod acts as a predominant zeitgeber for this rhythm. However, it is unclear whether the change in ambient temperature acts as a zeitgeber. The present study examines the effects of low‐temperature pulses on this circannual rhythm by exposing larvae kept under constant short‐day conditions (LD 12 : 12 h) at 20 °C to a lower temperature of 15, 10 or 5 °C for 8 or 12 weeks at various phases. Larval development and pupation are suppressed during exposure to low temperature, with this pupation being induced in sufficiently grown larvae within 2 months of a return to 20 °C. These results are attributed to the exogenous suppression and stimulation of pupation, rather than being related to the circannual rhythm (i.e. masking of the circannual rhythm by temperature). Furthermore, long‐term observations demonstrate the existence of phase‐dependent phase shifts of circannual rhythm as a result of low‐temperature pulses. Circannual phase response curves to low temperature are constructed on the basis of the phase shifts obtained. A low‐temperature pulse as a winter signal can reset the circannual rhythm of A. verbasci. It is probable that both temperature and photoperiod play a role in the entrainment of this circannual rhythm to a natural year.  相似文献   

3.
This paper describes the detailed characteristics of the circannual pupation rhythm in Anthrenus verbasci determined by laboratory experiments under various photoperiods and temperatures. The frequency distribution of larval duration showed a periodic pattern over 2-3 years and the period was 37-40 weeks under a constant short-day photoperiod (light:dark 12:12) at 20 degrees C. This rhythm showed temperature compensation to some extent under a short-day photoperiod between 17.5 degrees C and 27.5 degrees C. Under alternations of a long-day (light:dark 16:8) and a short-day photoperiod, pupation occurred 21-24.5 weeks after transfer from a long-day to a short-day photoperiod. Therefore, we concluded that the timing of pupation in A. verbasci is controlled by a circannual rhythm and its zeitgeber is a change in photoperiod. Furthermore, when larvae were transferred from a long-day to a short-day photoperiod at various ages, the larval duration after the photoperiodic transfer depended on the time of the transfer. This difference can be explained by phase-dependent phase shifts in the circannual rhythm.  相似文献   

4.
Aging involves many alterations in circadian rhythms, including a loss of sensitivity to both photic and nonphotic time signals. This study investigated the sensitivity of young and old hamsters to the phase advancing effect of a 6-h dark pulse on the locomotor activity rhythm. Each hamster was tested four times during a period of approximately 9 mo; periods of exposure to a 14-h photoperiod were alternated with the periods of exposure to constant light (20-80 lx), during which the dark pulses were administered. There was no significant difference in the phase shifts exhibited by the young (4-10 mo) and old hamsters (19-25 mo) or in the amount of wheel running activity displayed during each dark pulse. However, young hamsters had a significantly greater propensity to exhibit split rhythms immediately after the dark pulses. These results suggest that, although aging does not reduce the sensitivity of the circadian pacemaker to this nonphotic signal, it alters one property of the pacemaker, i.e., the flexibility of the coupling of its component oscillators.  相似文献   

5.
We know that entrainment, a stable phase relationship with an environmental cycle, must be established for a biological clock to function properly. Phase response curves (PRCs), which are plots of phase shifts that result as a function of the phase of a stimulus, have been created to examine the mode of entrainment. In circadian rhythms, single-light pulse PRCs have been obtained by giving a light pulse to various phases of a free-running rhythm under continuous darkness. This successfully explains the entrainment to light-dark cycles. Some organisms show circannual rhythms. In some of these, changes in photoperiod entrain the circannual rhythms. However, no single-pulse PRCs have been created. Here we show the PRC to a long-day pulse superimposed for 4 weeks over constant short days in the circannual pupation rhythm in the varied carpet beetle Anthrenus verbasci. Because the shape of that PRC closely resembles that of the Type 0 PRC with large phase shifts in circadian rhythms, we suggest that an oscillator having a common feature in the phase response with the circadian clock, produces a circannual rhythm.  相似文献   

6.
An endogenous circannual rhythm drives the seasonal reproductive cycle of a broad spectrum of species. This rhythm is synchronized to the seasons (i.e., entrained) by photoperiod, which acts by regulating the circadian pattern of melatonin secretion from the pineal gland. Prior work has revealed that melatonin patterns secreted in spring/summer entrain the circannual rhythm of reproductive neuroendocrine activity in sheep, whereas secretions in winter do not. The goal of this study was to determine if inability of the winter-melatonin pattern to entrain the rhythm is due to the specific melatonin pattern secreted in winter or to the stage of the circannual rhythm at that time of year. Either a summer- or a winter-melatonin pattern was infused for 70 days into pinealectomized ewes, centered around the summer solstice, when an effective stimulus readily entrains the rhythm. The ewes were ovariectomized and treated with constant-release estradiol implants, and circannual cycles of reproductive neuroendocrine activity were monitored by serum LH concentrations. Only the summer-melatonin pattern entrained the circannual reproductive rhythm. The inability of the winter pattern to do so indicates that the mere presence of a circadian melatonin pattern, in itself, is insufficient for entrainment. Rather, the characteristics of the melatonin pattern, in particular a pattern that mimics the photoperiodic signals of summer, determines entrainment of the circannual rhythm of reproductive neuroendocrine activity in the ewe.  相似文献   

7.
The circadian system of the Turkish hamster controlling wheel-running activity responded to single 1-hr light pulses and to repeated 1-hr pulses in a similar way as that of Syrian hamsters studied previously. At constant light of 100 lx, the period length (tau) of the freerunning activity rhythm of Turkish hamsters was longer and the activity time (alpha) was shorter than that of Syrian hamsters. Among individuals, the ability of the system to be entrained by one 1-hr light pulse per cycle was related to the range (advance plus delay amplitude) of the phase response curve (PRC) derived from single light pulses and to the compression of alpha caused by the pulse Zeitgeber. The data support the hypothesis derived from experiments on Syrian hamsters that the range of the PRC is functionally related with alpha, possibly reflecting the phase relations (coupling) between two oscillators.  相似文献   

8.
Djungarian hamsters bred at the authors' institute reveal two distinct circadian phenotypes, the wild-type (WT) and DAO type. The latter is characterized by a delayed activity-onset, probably due to a deficient mechanism for photic entrainment. Experiments with zeitgeber shifts have been performed to gain further insight into the mechanisms underlying this phenomenon. Advancing and delaying phase shifts were produced by a single lengthening or shortening of the dark (D) or light (L) time by 6?h. Motor activity was recorded by passive infrared motion detectors. All WT hamsters re-entrained following various zeitgeber shifts and nearly always in the same direction as the zeitgeber shift. On the other hand, a considerable proportion of the DAO animals failed to re-entrain and showed, instead, diurnal, arrhythmic, or free-running activity patterns. All but one of those hamsters that re-entrained did so by delaying their activity rhythm independently of the direction of the LD shift. Resynchronization occurred faster following a delayed than an advanced shift and also after changes of D rather than L. WT animals tended to re-entrain faster, particularly following a zeitgeber advance (where DAO hamsters re-entrained by an 18-h phase delay instead of a 6-h phase advance). However, the difference between phenotypes was statistically significant only with a shortening of L. To better understand re-entrainment behavior, Type VI phase-response curves (PRCs) were constructed. To do this, both WT and DAO animals were kept under LD conditions, and light pulses (15 min, 100 lux) were applied at different times of the dark span. In WT animals, activity-offset always showed phase advances, whereas activity-onset was phase delayed by light pulses applied during the first half of the dark time and not affected by light pulses applied during the second half. When the light pulse was given at the beginning of D, activity-onset responded more strongly, but light pulses given later in D produced significant changes only in activity-offset. In accord with the delayed activity-onset in DAO hamsters, no or only very weak phase-responses were observed when light pulses were given during the first hours of D. However, the second part of the PRCs was similar to that of WT hamsters, even though it was compressed to an interval of only a few hours and the shifts were smaller. Due to these differences, the first light-on or light-off following an LD shift fell into different phases of the PRC and thus caused different re-entrainment behavior. The results show that it is not only steady-state entrainment that is compromised in DAO hamsters but also their re-entrainment behavior following zeitgeber shifts. (Author correspondence: weinert@zoologie.uni-halle.de)  相似文献   

9.
The present study examines the ovulatory activity of wild and domesticated ewes subjected to either a constant photoperiod of long days (16L:8D) or natural changes in daily photoperiod for 16 mo. The aim was to determine whether an endogenous reproductive rhythm controls seasonal reproductive activity in these sheep, and how the photoperiod might affect this. The effects of long-day photoperiods on long-term changes in prolactin and melatonin secretion were also evaluated. The two species showed changes in reproductive activity under the constant photoperiod conditions, suggesting the existence of an endogenous rhythm of reproduction. This rhythm was differently expressed in the two types of ewe (P < 0.05), with the domestic animals exhibiting much greater sensitivity to the effects of long days. A circannual rhythm of plasma prolactin concentration was also seen in both species and under both photoperiod conditions, although in both species the amplitude was always lower in the long-day animals (P < 0.01). The duration of the nocturnal melatonin plasma concentrations reflected the duration of darkness in both species and treatments. The peak melatonin concentration did not differ between seasons either under natural or long-day photoperiods.  相似文献   

10.
Djungarian hamsters bred at the authors' institute reveal two distinct circadian phenotypes, the wild-type (WT) and DAO type. The latter is characterized by a delayed activity-onset, probably due to a deficient mechanism for photic entrainment. Experiments with zeitgeber shifts have been performed to gain further insight into the mechanisms underlying this phenomenon. Advancing and delaying phase shifts were produced by a single lengthening or shortening of the dark (D) or light (L) time by 6?h. Motor activity was recorded by passive infrared motion detectors. All WT hamsters re-entrained following various zeitgeber shifts and nearly always in the same direction as the zeitgeber shift. On the other hand, a considerable proportion of the DAO animals failed to re-entrain and showed, instead, diurnal, arrhythmic, or free-running activity patterns. All but one of those hamsters that re-entrained did so by delaying their activity rhythm independently of the direction of the LD shift. Resynchronization occurred faster following a delayed than an advanced shift and also after changes of D rather than L. WT animals tended to re-entrain faster, particularly following a zeitgeber advance (where DAO hamsters re-entrained by an 18-h phase delay instead of a 6-h phase advance). However, the difference between phenotypes was statistically significant only with a shortening of L. To better understand re-entrainment behavior, Type VI phase-response curves (PRCs) were constructed. To do this, both WT and DAO animals were kept under LD conditions, and light pulses (15 min, 100 lux) were applied at different times of the dark span. In WT animals, activity-offset always showed phase advances, whereas activity-onset was phase delayed by light pulses applied during the first half of the dark time and not affected by light pulses applied during the second half. When the light pulse was given at the beginning of D, activity-onset responded more strongly, but light pulses given later in D produced significant changes only in activity-offset. In accord with the delayed activity-onset in DAO hamsters, no or only very weak phase-responses were observed when light pulses were given during the first hours of D. However, the second part of the PRCs was similar to that of WT hamsters, even though it was compressed to an interval of only a few hours and the shifts were smaller. Due to these differences, the first light-on or light-off following an LD shift fell into different phases of the PRC and thus caused different re-entrainment behavior. The results show that it is not only steady-state entrainment that is compromised in DAO hamsters but also their re-entrainment behavior following zeitgeber shifts.  相似文献   

11.
When a light pulse of 1 h duration was given 3 h after lights off in a photoperiod of 11 h light : 13 h dark (LD 11 : 13) at 20°C, the phase of the major peak of locomotor activity rhythm in Delia antiqua was delayed for approximately 0.6 h. In contrast, it was advanced by approximately 0.6 h by a light pulse given 9 h after lights off. It is suggested that in the circadian clock, a pulse falling in the early scotophase is taken as a new dusk and a pulse falling in the late scotophase is taken as a new dawn. Although a sharply defined critical photoperiod did not exist in the diapause response to photoperiod in D. antiqua, the percentage of pupal diapause decreased by these pulses in LD 11 : 13 at 20°C. The effect of a 15 min light pulse on both locomotor activity rhythm and pupal diapause induction was stronger at 3 h than at 9 h after lights off, while a 1 min light pulse was ineffective at both times. The parallel effects of light pulse on locomotor activity rhythm and diapause response might be based on the same chronobiological functions.  相似文献   

12.
Adult pallids bats collected in April or May, were maintained in short or long photoperiods (10 or 14 h light/day) for 3-6 months. In August, the short-day bats had regressed testes, epididymal spermatozoa and fully developed accessory sex glands, corresponding to the autumnal reproductive condition of field animals; long-day bats had testes undergoing spermatogenesis, few epididymal spermatozoa and undeveloped accessory sex glands (summer reproductive condition). Bats in each photoperiod manifested the expected autumnal reproductive pattern in October. We suggest that photoperiod influences the reproductive physiology of male pallid bats by affecting an endogenous circannual reproductive rhythm.  相似文献   

13.
The effects of brief light pulses (1-60 min in duration) on the circadian rhythm of locomotor activity and/or the neuroendocrine-gonadal axis was investigated in male Djungarian hamsters. Exposure of hamsters free-running in constant darkness to a single 1-h pulse of light induced phase-dependent phase shifts in the rhythm of locomotor activity. The general shape of the "phase-response curve" was similar to that observed in other animals; phase-delays and phase-advances were induced by light pulses delivered in the early and late subjective night, respectively, while light pulses during the subjective day induced little or no phase-shift in the activity rhythm. Animals exposed for 7 days to 1-min of light during the night in animals otherwise exposed to 6L:18D resulted in increased levels of serum FSH and testicular weight. Daily exposure to two 1-h or two 10-min pulses of light (but not two 1-min pulses) for 10 days resulted in stable entrainment of the activity rhythm as well as testicular weight gains and serum FSH increases. When two 10-min pulses of light were presented 8 and 16 h apart, some animals showed a short-day entrainment pattern (i.e., locomotor activity confined to the long period of darkness) while other animals showed a long-day entrainment pattern (i.e., locomotor activity confined to the short period of darkness). Importantly, the stimulatory effects of light on neuroendocrine-gonadal activity were clearly dependent on the phase-relationship between the light pulses and the circadian rhythm of locomotor activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Circadian pacemakers respond to light pulses with phase adjustments that allow for daily synchronization to 24-h light-dark cycles. In Syrian hamsters, Mesocricetus auratus, light-induced phase shifts are larger after entrainment to short daylengths (e.g., 10 h light:14 h dark) vs. long daylengths (e.g., 14 h light:10 h dark). The present study assessed whether photoperiodic modulation of phase resetting magnitude extends to nonphotic perturbations of the circadian rhythm and, if so, whether the relationship parallels that of photic responses. Male Syrian hamsters, entrained for 31 days to either short or long daylengths, were transferred to novel wheel running cages for 2 h at times spanning the entire circadian cycle. Phase shifts induced by this stimulus varied with the circadian time of exposure, but the amplitude of the resulting phase response curve was not markedly influenced by photoperiod. Previously reported photoperiodic effects on photic phase resetting were verified under the current paradigm using 15-min light pulses. Photoperiodic modulation of phase resetting magnitude is input specific and may reflect alterations in the transmission of photic stimuli.  相似文献   

15.
Circulating concentrations of prolactin were monitored for 3 yr in intact ewes kept either outdoors or indoors in a fixed equatorial photoperiod (12L:12D) and restricted range of environmental temperatures. Prolactin data were analyzed by spectral analysis. In all ewes kept outdoors, concentrations of prolactin showed robust circannual rhythms with a single predominant period of 359 days. In ewes kept indoors, the range of significant periods varied from 35 to 532 days. Although all ewes kept indoors showed a significant rhythm with a period of 354 days, this clearly was not the predominant period in all. The amplitude of the rhythm in ewes kept indoors was significantly lower (p less than 0.01) than that of ewes kept outdoors. Although the annual rhythm of circulating prolactin typical of ewes kept outdoors was significantly compromised in animals kept under a constant 12L:12D photoperiod and restricted environmental temperature range, there was evidence of an endogenous circannual rhythm.  相似文献   

16.
Kondo T 《Plant physiology》1983,73(3):605-608
A 6-hour application (6-hour pulse) of 1 millimolar azide significantly changed the phase of the potassium uptake rhythm of Lemna gibba G3. The phase response curve obtained was type 0 and very similar to that caused by a 6-hour pulse of low temperature (5°C) or darkness. The magnitude of the phase shift and the type of the phase response curve depended on the concentration of azide. However, 6-hour pulses of 3 millimolar cyanide or 10 micromolar (3-(3,4-dichlorophenyl)-1,1-dimethylurea) failed to shift the phase of the rhythm, while these pulses lowered the rate of carbon dioxide uptake or release. Azide, even at 3 micromolar, selectively reduced the amplitude of the rhythm without inhibiting the mean level of potassium uptake.  相似文献   

17.
Circadian rhythms of animals are reset by exposure to light as well as dark; however, although the parameters of photic entrainment are well characterized, the phase-shifting actions of dark pulses are poorly understood. Here, we determined the tonic and phasic effects of short (0.25 h), moderate (3 h), and long (6-9 h) duration dark pulses on the wheel-running rhythms of hamsters in constant light. Moderate- and long-duration dark pulses phase dependently reset behavioral rhythms, and the magnitude of these phase shifts increased as a function of the duration of the dark pulse. In contrast, the 0.25-h dark pulses failed to evoke consistent effects at any circadian phase tested. Interestingly, moderate- and long-dark pulses elevated locomotor activity (wheel-running) on the day of treatment. This induced wheel-running was highly correlated with phase shift magnitude when the pulse was given during the subjective day. This, together with the finding that animals pulsed during the subjective day are behaviorally active throughout the pulse, suggests that both locomotor activity and behavioral activation play an important role in the phase-resetting actions of dark pulses. We also found that the robustness of the wheel-running rhythm was weakened, and the amount of wheel-running decreased on the days after exposure to dark pulses; these effects were dependent on pulse duration. In summary, similarly to light, the resetting actions of dark pulses are dependent on both circadian phase and stimulus duration. However, dark pulses appear more complex stimuli, with both photic and nonphotic resetting properties.  相似文献   

18.
This study compared phase shifting after novelty-induced running at different circadian times (CTs). In Experiment 1, hamsters were confined to novel wheels for 3 h, starting at CTs 2, 4, 6, 8, 10 or 22. The largest shifts were found at CTs 2, 4 and 6. At each CT there was a relationship between the number of revolutions during the pulse and the size of phase shift. Maximum shifts were usually observed at each CT when animals ran 5000–9000 revolutions during the pulse. In Experiment 2, hamsters were confined to novel wheels for 1 h, also starting at CTs 2, 4, 6, 8, 10 or 22. Unlike with 3-h pulses, the largest shifts with 1-h pulses occurred at CT 8. In Experiment 3, hamsters were shut into a small nest box after a 1-h pulse at CT 8; phase shifting was unaffected, showing that movement about the home cage after a 1-h pulse had ended was not required for shifting. At CTs 2, 4 and 22, 3-h pulses produced shifts but 1-h pulses did not. Possibly, there are two different mechanisms of nonphotic phase shifting that can be activated by being placed in a novel wheel, but the results can also be explained in terms of a single mechanism. Accepted: 8 August 1997  相似文献   

19.
In many birds, reproduction, molt, migration and other seasonal activities are controlled by endogenous circannual rhythmicity. Under constant conditions, this rhythm persists for many cycles with a period deviating from 12 months. Whether or not the rhythm is expressed depends on day length (photoperiod), which thus represents an important permissive factor in the process of rhythm generation. In nature, circannual rhythms are usually synchronized by the seasonal changes in photoperiod. However, equatorial birds may use daytime light intensity, which changes with the annual cycle of dry and rainy seasons, as a synchronizing zeitgeber. Photoperiod also modulates the rate of progress of the successive phases of the rhythmicity, such that an optimal adjustment to the annual environmental cycle is guaranteed. Populations of a given species may differ in their responsiveness to photoperiod in a manner that can be described as 'adaptive population-specific reaction norms'. In young migratory songbirds a circannual program determines changes in migratory direction and, at least partly, the time course and distance of migration. This circannual mechanism is replaced or supplemented in older birds by mechanisms formed on the basis of learning and memory. In general, circannual rhythms are intimately involved in the seasonal organization of a bird's behavior, providing the substrate onto which seasonal environmental factors act.  相似文献   

20.
The response of the circadian system to light varies markedly depending on photic history. Under short day lengths, hamsters exhibit larger maximal light-induced phase shifts as compared with those under longer photoperiods. However, effects of photoperiod length on sensitivity to subsaturating light remain unknown. Here, Syrian hamsters were entrained to long or short photoperiods and subsequently exposed to a 15-min light pulse across a range of irradiances (0-68.03 μW/cm(2)) to phase shift activity rhythms. Phase advances exhibited a dose response, with increasing irradiances eliciting greater phase resetting in both conditions. Photic sensitivity, as measured by the half-saturation constant, was increased 40-fold in the short photoperiod condition. In addition, irradiances that generated similar phase advances under short and long days produced equivalent phase delays, and equal photon doses produced larger delays in the short photoperiod condition. Mechanistically, equivalent light exposure induced greater pERK, PER1, and cFOS immunoreactivity in the suprachiasmatic nuclei of animals under shorter days. Patterns of immunoreactivity in all 3 proteins were related to the size of the phase shift rather than the intensity of the photic stimulus, suggesting that photoperiod modulation of light sensitivity lies upstream of these events within the signal transduction cascade. This modulation of light sensitivity by photoperiod means that considerably less light is necessary to elicit a circadian response under the relatively shorter days of winter, extending upon the known seasonal changes in sensitivity of sensory systems. Further characterizing the mechanisms by which photoperiod alters photic response may provide a potent tool for optimizing light treatment for circadian and affective disorders in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号