首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The development of the Drosophila leg requires both Decapentaplegic (Dpp) and Wingless (Wg), two signals that establish the proximo-distal (PD) axis by activating target genes such as Distalless (Dll). Dll expression in the leg depends on a Dpp- and Wg-dependent phase and a maintenance phase that is independent of these signals. Here, we show that accurate Dll expression in the leg results from the synergistic interaction between two cis-regulatory elements. The Leg Trigger (LT) element directly integrates Wg and Dpp inputs and is only active in cells receiving high levels of both signals. The Maintenance (M) element is able to maintain Wg- and Dpp-independent expression, but only when in cis to LT. M, which includes the native Dll promoter, functions as an autoregulatory element by directly binding Dll. The "trigger-maintenance" model describes a mechanism by which secreted morphogens act combinatorially to induce the stable expression of target genes.  相似文献   

5.
In Drosophila, the homeotic gene Distal-less (Dll) has a fundamental role in the establishment of the identity of ventral appendages such as the leg and antenna. This study reports the expression pattern of Dll in the genital disc, the requirement of Dll activity for the development of the terminalia and the activation of Dll by the combined action of the morphogenetic signals Wingless (Wg) and Decapentaplegic (Dpp). During the development of the two components of the anal primordium - the hindgut and the analia - only the latter is dependent on Dll and hedgehog (hh) functions. The hindgut is defined by the expression of the homeobox gene even-skipped. The lack of Dll function in the anal primordia transforms the anal tissue into hindgut by the extension of the eve domain. Meanwhile targeted ectopic Dll represses eve expression and hindgut formation. The Dll requirement for the development of both anal plates in males and only for the dorsal anal plate in females, provides further evidence for the previously held idea that the analia arise from two primordia. In addition, evaluation was made of the requirement for the optomotor-blind (omb) gene which, as in the leg and antenna, is located downstream to Dpp. These results suggest that the terminalia show similar behaviour to the leg disc or the antennal part of the eye-antennal disc consistent with both the proposed ventral origin of the genital disc and the evolutive consideration of the terminalia as an ancestral appendage.  相似文献   

6.
7.
8.
9.
Much of our understanding of arthropod limb development comes from studies on the leg imaginal disc of Drosophila melanogaster. The fly limb is a relatively simple unbranched (uniramous) structure extending out from the body wall. The molecular basis for this outgrowth involves the overlap of two signaling molecules, Decapentaplegic (Dpp) and Wingless (Wg), to create a single domain of distal outgrowth, clearly depicted by the expression of the Distal-less gene (Dll). The expression of wg and dpp during the development of other arthropod thoracic limbs indicates that these pathways might be conserved across arthropods for uniramous limb development. The appendages of crustaceans and the gnathal appendages of insects, however, exhibit a diverse array of morphologies, ranging from those with no distal elements, such as the mandible, to appendages with multiple distal elements. Examples of the latter group include branched appendages or those that possess multiple lobes; such complex morphologies are seen for many crustacean limbs as well as the maxillary and labial appendages of many insects. It is unclear how, if at all, the known patterning genes for making a uniramous limb might be deployed to generate these diverse appendage forms. Experiments in Drosophila have shown that by forcing ectopic overlaps of Wg and Dpp signaling it is possible to generate artificially branched legs. To test whether naturally branched appendages form in a similar manner, we detailed the expression patterns of wg, dpp, and Dll in the development of the branched gnathal appendages of the grasshopper, Schistocerca americana, and the flour beetle, Tribolium castaneum. We find that the branches of the gnathal appendages are not specified through the redeployment of the Wg-Dpp system for distal outgrowth, but our comparative studies do suggest a role for Dpp in forming furrows between tissues.  相似文献   

10.
During development, global patterning events initiate signal transduction cascades which gradually establish an array of individual cell fates. Many of the genes which pattern Drosophila are expressed throughout development and specify diverse cell types by creating unique local environments which establish the expression of locally acting genes. This process is exemplified by the patterning of leg microchaete rows. hairy (h) is expressed in a spatially restricted manner in the leg imaginal disc and functions to position adult leg bristle rows by negatively regulating the proneural gene achaete, which specifies sensory cell fates. While much is known about the events that partition the leg imaginal disc and about sensory cell differentiation, the mechanisms that refine early patterning events to the level of individual cell fate specification are not well understood. We have investigated the regulation of h expression along the dorsal/ventral (D/V) axis of the leg adjacent to the anterior/posterior (A/P) compartment boundary and have found that it requires input from both D/V and A/P patterning mechanisms. Expression of the D/V axis h stripe (D/V-h) is controlled by dorsal- and ventral-specific enhancer elements which are targets of Decapentaplegic (Dpp) and Wingless (Wg) signaling, respectively, but which are also dependent on Hedgehog (Hh) signaling for activation. D/V-h expression is lost in smoothened mutant clones and is specifically activated by exogenously supplied Cubitus interruptus (Ci). D/V-h expression is also lost in clones deficient for Dpp and Wg signaling, but ectopic activation of D/V-h by Dpp and Wg is limited to the A/P compartment boundary where endogenous levels of full-length Ci are high. We propose that D/V-h expression is regulated in a non-linear pathway in which Ci plays a dual role. In addition to serving as an upstream activator of Dpp and Wg, Ci acts combinatorially with them to activate D/V-h expression.  相似文献   

11.
昆虫躯干外着生有一系列附属器官,主要包括背侧附器和腹侧附器,其中腹肢的多样性表现尤为突出。腹肢的发育过程受到多种调控因子的作用。本文就腹肢发育相关基因的表达、功能及调控因子间的相互作用等方面进行简要的综述。一方面,腹肢作为整体受Hox基因和成形素基因(Dpp/Wg)的调控,Hox基因直接决定腹肢的有无,Dpp/Wg通过其表达产物形成浓度梯度调控整个腹肢的发育,两者在腹肢整体发育中的作用不可取代。另一方面,腹肢基部、中部及远端部位分别受到各自特异的调控因子的作用。其中hth,tsh及al等均主要调节腹肢基部的发育,dac通过与Dll和Dpp/Wg相互作用从而调节腹肢中部的发育,bab,Dll及Lim1等对腹肢远端发育发挥重要作用。关节的形成对腹肢分节的形成至关重要,Notch信号通路相关因子如配体基因Dl和Ser,修饰物基因fng及下游靶基因odd,sob,drm和bowl等调节该过程。因此,研究昆虫腹肢发育相关基因,对于深入揭示腹肢的发育及其在进化过程中多样性形成的分子机制具有至关重要的作用。  相似文献   

12.
Apoptotic cells of Drosophila not only activate caspases, but also are able to secrete developmental signals like Hedgehog (Hh), Decapentaplegic (Dpp) and Wingless (Wg) before dying. Since Dpp and Wg are secreted in growing tissues and behave as growth factors, it was proposed that they play a role in compensatory proliferation, the process by which a growing blastema can restore normal size after massive apoptosis. We discuss recent results showing that there is normal compensatory proliferation in the absence of Dpp/Wg signaling, thus indicating it has no significant role in the process. Furthermore, we argue that Dpp/Wg signaling is not a resident feature of apoptotic cells, but a side effect of the necessary activation of the JNK pathway. Nevertheless, the ectopic JNK/Dpp/Wg signaling may have an important role in tissue regeneration. Recent work in other organisms suggests that paracrine signaling from apoptotic cells may be of general significance in wound healing and tissue regeneration in metazoans.  相似文献   

13.
Secreted signaling molecules such as Wingless (Wg) and Decapentaplegic (Dpp) organize positional information along the proximodistal (PD) axis of the Drosophila wing imaginal disc. Responding cells activate different downstream targets depending on the combination and level of these signals and other factors present at the time of signal transduction. Two such factors, teashirt (tsh) and homothorax (hth), are initially co-expressed throughout the entire wing disc, but are later repressed in distal cells, permitting the subsequent elaboration of distal fates. Control of tsh and hth repression is, therefore, crucial for wing development, and plays a role in shaping and sizing the adult appendage. Although both Wg and Dpp participate in this control, their specific contributions remain unclear. In this report, we analyze tsh and hthregulation in the wing disc, and show that Wg and Dpp act independently as the primary signals for the repression of tsh and hth, respectively. In cells that receive low levels of Dpp, hth repression also requires Vestigial (Vg). Furthermore, although Dpp is required continuously for hth repression throughout development, Wg is only required for the initiation of tsh repression. Instead, the maintenance of tsh repression requires Polycomb group (PcG) mediated gene silencing, which is dispensable for hth repression. Thus, despite their overall similar expression patterns, tsh and hth repression in the wing disc is controlled by two very different mechanisms.  相似文献   

14.
Cardiac induction in Drosophila relies on combinatorial Dpp and Wg signaling activities that are derived from the ectoderm. Although some of the actions of Dpp during this process have been clarified, the exact roles of Wg, particularly with respect to myocardial cell specification, have not been well defined. Our present study identifies the Dorsocross T-box genes as key mediators of combined Dpp and Wg signals during this process. The Dorsocross genes are induced within the segmental areas of the dorsal mesoderm that receive intersecting Dpp and Wg inputs. Dorsocross activity is required for the formation of all myocardial and pericardial cell types, with the exception of the Eve-positive pericardial cells. In an early step, the Dorsocross genes act in parallel with tinman to activate the expression of pannier, a cardiogenic gene encoding a Gata factor. Our loss- and gain-of-function studies, as well as the observed genetic interactions among Dorsocross, tinman and pannier, suggest that co-expression of these three genes in the cardiac mesoderm, which also involves cross-regulation, plays a major role in the specification of cardiac progenitors. After cardioblast specification, the Dorsocross genes are re-expressed in a segmental subset of cardioblasts, which in the heart region develop into inflow valves (ostia). The integration of this new information with previous findings has allowed us to draw a more complete pathway of regulatory events during cardiac induction and differentiation in Drosophila.  相似文献   

15.
16.
Wing and leg precursors of Drosophila are recruited from a common pool of ectodermal cells expressing the homeobox gene Dll. Induction by Dpp promotes this cell fate decision toward the wing and proximal leg. We report here that the receptor tyrosine kinase EGFR antagonizes the wing-promoting function of Dpp and allows recruitment of leg precursor cells from uncommitted ectodermal cells. By monitoring the spatial distribution of cells responding to Dpp and EGFR, we show that nuclear transduction of the two signals peaks at different position along the dorsoventral axis when the fates of wing and leg discs are specified and that the balance of the two signals assessed within the nucleus determines the number of cells recruited to the wing. Differential activation of the two signals and the cross talk between them critically affect this cell fate choice.  相似文献   

17.
Smooth gradients of the morphogens Hh, Dpp, and Wg are required for proper development of Drosophila imaginal discs. Here, it is reported that, when a discontinuity is generated between two adjacent cells in the reception of either the Dpp or Wg signal, then cells on either side of the discontinuity boundary undergo apoptosis by activating the c-Jun N-terminal Kinase (JNK) pathway. Furthermore, in the medial region of the wing imaginal disc, the JNK pathway is also activated if cells do not receive the proper levels of Dpp and Hh signals. These observations suggest that cells within a developing field have the ability to access their spatial positions by comparing the level of morphogen signal they receive with that of their neighbors. This phenomenon is likely related to the process of cell competition, and we suggest that it is an evolutionarily important mechanism that helps prevent abnormal tissue specification and growth during development.  相似文献   

18.
We isolated the homologue of the Drosophila gene dachshund (dac) from the beetle Tribolium castaneum. Tc'dac is expressed in all appendages except urogomphi and pleuropodia. Tc'dac is also active in the head lobes, in the ventral nervous system, in the primordia of the Malpighian tubules and in bilateral stripes corresponding to the presumptive dorsal midline. Expression of Tc'dac in the labrum lends support to the interpretation that the insect labrum is derived from a metameric appendage. The legs of Tribolium accommodate two Tc'dac domains, of which the more distal one corresponds to the single dac domain described for Drosophila leg discs. In contrast to Drosophila, where this domain is thought to intercalate between the homothorax (hth) and the Distal-less (Dll) domains, in Tribolium it arises from within the Dll domain. In embryos mutant for the Tc'Dll gene we find that the distal Tc'dac domain in the legs, as well as the expression in the labrum, are deleted while the proximal leg domain and the mandibular expression are unaffected. Based on Tc'dac expression in wild-type and mutant embryos, we demonstrate serial homology of the complete mandible with the coxa of the thoracic legs, which affirms the gnathobasic nature of the insect mandible.  相似文献   

19.
The gene homothorax (hth) is originally expressed uniformly in the wing imaginal disc but, during development, its activity is restricted to the cells that form the thorax and the hinge, where the wing blade attaches to the thorax, and eliminated in the wing pouch, which forms the wing blade. We show that hth repression in the wing pouch is a prerequisite for wing development; forcing hth expression prevents growth of the wing blade. Both the Dpp and the Wg pathways are involved in hth repression. Cells unable to process the Dpp (lacking thick veins or Mothers against Dpp activity) or the Wg (lacking dishevelled function) signal express hth in the wing pouch. We have identified vestigial (vg) as a Wg and Dpp response factor that is involved in hth control. In contrast to its repressing role in the wing pouch, wg upregulates hth expression in the hinge. We have also identified the gene teashirt (tsh) as a positive regulator of hth in the hinge. tsh plays a role specifying hinge structures, possibly in co-operation with hth.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号