首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Septins are a conserved family of GTP-binding proteins that assemble into symmetric linear heterooligomeric complexes, which in turn are able to polymerize into apolar filaments and higher-order structures. In budding yeast (Saccharomyces cerevisiae) and other eukaryotes, proper septin organization is essential for processes that involve membrane remodeling, such as the execution of cytokinesis. In yeast, four septin subunits form a Cdc11-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Cdc11 heterooctameric rod that polymerizes into filaments thought to form a collar around the bud neck in close contact with the inner surface of the plasma membrane. To explore septin-membrane interactions, we examined the effect of lipid monolayers on septin organization at the ultrastructural level using electron microscopy. Using this methodology, we have acquired new insights into the potential effect of septin-membrane interactions on filament assembly and, more specifically, on the role of phosphoinositides. Our studies demonstrate that budding yeast septins interact specifically with phosphatidylinositol-4,5-bisphosphate (PIP2) and indicate that the N terminus of Cdc10 makes a major contribution to the interaction of septin filaments with PIP2. Furthermore, we found that the presence of PIP2 promotes filament polymerization and organization on monolayers, even under conditions that prevent filament formation in solution or for mutants that prevent filament formation in solution. In the extreme case of septin complexes lacking the normally terminal subunit Cdc11 or the normally central Cdc10 doublet, the combination of the PIP2-containing monolayer and nucleotide permitted filament formation in vitro via atypical Cdc12-Cdc12 and Cdc3-Cdc3 interactions, respectively.  相似文献   

2.
Mitotic yeast (Saccharomyces cerevisiae) cells express five related septins (Cdc3, Cdc10, Cdc11, Cdc12, and Shs1) that form a cortical filamentous collar at the mother-bud neck necessary for normal morphogenesis and cytokinesis. All five possess an N-terminal GTPase domain and, except for Cdc10, a C-terminal extension (CTE) containing a predicted coiled coil. Here, we show that the CTEs of Cdc3 and Cdc12 are essential for their association and for the function of both septins in vivo. Cdc10 interacts with a Cdc3-Cdc12 complex independently of the CTE of either protein. In contrast to Cdc3 and Cdc12, the Cdc11 CTE, which recruits the nonessential septin Shs1, is dispensable for its function in vivo. In addition, Cdc11 forms a stoichiometric complex with Cdc12, independent of its CTE. Reconstitution of various multiseptin complexes and electron microscopic analysis reveal that Cdc3, Cdc11, and Cdc12 are all necessary and sufficient for septin filament formation, and presence of Cdc10 causes filament pairing. These data provide novel insights about the connectivity among the five individual septins in functional septin heteropentamers and the organization of septin filaments.  相似文献   

3.
Assembly at the mother-bud neck of a filamentous collar containing five septins (Cdc3, Cdc10, Cdc11, Cdc12, and Shs1) is necessary for proper morphogenesis and cytokinesis. We show that Cdc10 and Cdc12 possess GTPase activity and appropriate mutations in conserved nucleotide-binding residues abrogate GTP binding and/or hydrolysis in vitro. In vivo, mutants unable to bind GTP prevent septin collar formation, whereas mutants that block GTP hydrolysis do not. GTP binding-defective Cdc10 and Cdc12 form soluble heteromeric complexes with other septins both in yeast and in bacteria; yet, unlike wild-type, mutant complexes do not bind GTP and do not assemble into filaments in vitro. Absence of a p21-activated protein kinase (Cla4) perturbs septin collar formation. This defect is greatly exacerbated when combined with GTP binding-defective septins; conversely, the septin collar assembly defect of such mutants is suppressed efficiently by CLA4 overexpression. Cla4 interacts directly with and phosphorylates certain septins in vitro and in vivo. Thus, septin collar formation may correspond to septin filament assembly, and requires both GTP binding and Cla4-mediated phosphorylation of septins.  相似文献   

4.
The septins are a family of proteins required for cytokinesis in a number of eukaryotic cell types. In budding yeast, these proteins are thought to be the structural components of a filament system present at the mother–bud neck, called the neck filaments. In this study, we report the isolation of a protein complex containing the yeast septins Cdc3p, Cdc10p, Cdc11p, and Cdc12p that is capable of forming long filaments in vitro. To investigate the relationship between these filaments and the neck filaments, we purified septin complexes from cells deleted for CDC10 or CDC11. These complexes were not capable of the polymerization exhibited by wild-type preparations, and analysis of the neck region by electron microscopy revealed that the cdc10Δ and cdc11Δ cells did not contain detectable neck filaments. These results strengthen the hypothesis that the septins are the major structural components of the neck filaments. Surprisingly, we found that septin dependent processes like cytokinesis and the localization of Bud4p to the neck still occurred in cdc10Δ cells. This suggests that the septins may be able to function in the absence of normal polymerization and the formation of a higher order filament structure.  相似文献   

5.
Septins are a conserved family of eukaryotic GTP-binding, filament-forming proteins. In Saccharomyces cerevisiae, five septins (Cdc3p, Cdc10p, Cdc11p, Cdc12p, and Shs1p) form a complex and colocalize to the incipient bud site and as a collar of filaments at the neck of budded cells. Septins serve as a scaffold to localize septin-associated proteins involved in diverse processes and as a barrier to diffusion of membrane-associated proteins. Little is known about the role of nucleotide binding in septin function. Here, we show that Cdc3p, Cdc10p, Cdc11p, and Cdc12p all bind GTP and that P-loop and G4 motif mutations affect nucleotide binding and result in temperature-sensitive defects in septin localization and function. Two-hybrid, in vitro, and in vivo analyses show that for all four septins nucleotide binding is important in septin-septin interactions and complex formation. In the absence of complete complexes, septins do not localize to the cortex, suggesting septin localization factors interact only with complete complexes. When both complete and partial complexes are present, septins localize to the cortex but do not form a collar, perhaps because of an inability to form filaments. We find no evidence that nucleotide binding is specifically involved in the interaction of septins with septin-associated proteins.  相似文献   

6.
Iwase M  Luo J  Bi E  Toh-e A 《Genetics》2007,177(1):215-229
In Saccharomyces cerevisiae, five septins (Cdc3, Cdc10, Cdc11, Cdc12, and Shs1/Sep7) form the septin ring at the bud neck during vegetative growth. We show here that disruption of SHS1 caused cold-sensitive growth in the W303 background, with cells arrested in chains, indicative of a cytokinesis defect. Surprisingly, the other four septins appeared to form an apparently normal septin ring in shs1Delta cells grown under the restrictive condition. We found that Myo1 and Iqg1, two components of the actomyosin contractile ring, and Cyk3, a component of the septum formation, were either delocalized or mislocalized in shs1Delta cells, suggesting that Shs1 plays supportive roles in cytokinesis. We also found that deletion of SHS1 enhanced or suppressed the septin defect in cdc10Delta and cdc11Delta cells, respectively, suggesting that Shs1 is involved in septin organization, exerting different effects on septin-ring assembly, depending on the composition of the septin subunits. Furthermore, we constructed an shs1-100c allele that lacks the coding sequence for the C-terminal 32 amino acids. This allele still displayed the genetic interactions with the septin mutants, but did not show cytokinesis defects as described above, suggesting that the roles of Shs1 in septin organization and cytokinesis are separable.  相似文献   

7.
Septins are filament-forming GTPases involved in cytokinesis and cortical organization. In the yeast Saccharomyces cerevisiae, the septins encoded by CDC3, CDC10, CDC11, and CDC12 form a high-molecular-weight complex, localized at the cytoplasmic face of the plasma membrane in the mother-bud neck. While septin function at the cellular level is fairly well understood, progress on structure-function analysis of these proteins has been slow and limited by the lack of large amounts of pure complex. While monomeric septins form apparently non-native aggregates, stable recombinant complexes of two, three, or four yeast septins can be produced by co-expression from bi-cistronic vectors in E. coli. The septin polypeptides show various degrees of saturation with guanine nucleotides in different complexes. The binary core Cdc3p-Cdc12p complex contains no bound nucleotide. While ternary complexes are partially saturated and can bind extraneously added nucleotide with micromolar affinity, only the complete four-component septin complex is fully coordinated with tightly bound GDP/GTP after chromatographic purification. We show here that the nucleotide-binding sites of the septins show drastic changes on formation of higher oligomers. Although the binary core Cdc3p-Cdc12p complex does not form filaments, the ternary and quaternary complexes form bundles of paired filaments. In the case of ternary complexes, filament formation is stimulated by guanine nucleotide, but is not dependent on the presence or absence of the gamma-phosphate.  相似文献   

8.
Septins are conserved proteins found in hetero-oligomeric complexes that are incorporated into distinct structures during cell division and differentiation; yeast septins Cdc3, Cdc10, Cdc11, and Cdc12 form hetero-octamers and polymerize into filaments, which form a "collar" at the mother-bud neck [1]. Posttranslational modifications, nucleotide binding, and protein-protein and protein-lipid interactions influence assembly and disassembly of septin structures [2], but whether individual septins are used repeatedly to build higher-order assemblies was not known. We used fluorescence-based pulse-chase methods to visualize the fate of pre-existing (old) and newly synthesized (new) molecules of two septins, Cdc10 and Cdc12. They were recycled through multiple mitotic divisions, and old and new molecules were incorporated indistinguishably into the collar. Likewise, old and new subunits intermixed within hetero-octamers, indicating that exchange occurs at this organizational level. Remarkably, in meiosis, Cdc10 made during vegetative growth was reutilized to build sporulation-specific structures and reused again during spore germination for budding and during subsequent mitotic divisions. Although Cdc12 also persisted during sporulation, it was excluded from septin structures and replaced by another subunit, Spr3; only new Cdc12 populated the collar of germinating spores. Thus, mechanisms governing septin incorporation are specific to each subunit and to the developmental state of the cell.  相似文献   

9.
In the budding yeast Saccharomyces cerevisiae, the Cdc3p, Cdc10p, Cdc11p, Cdc12p, and Sep7p/Shs1p septins assemble early in the cell cycle in a ring that marks the future cytokinetic site. The septins appear to be major structural components of a set of filaments at the mother-bud neck and function as a scaffold for recruiting proteins involved in cytokinesis and other processes. We isolated a novel gene, BNI5, as a dosage suppressor of the cdc12-6 growth defect. Overexpression of BNI5 also suppressed the growth defects of cdc10-1, cdc11-6, and sep7Delta strains. Loss of BNI5 resulted in a cytokinesis defect, as evidenced by the formation of connected cells with shared cytoplasms, and deletion of BNI5 in a cdc3-6, cdc10-1, cdc11-6, cdc12-6, or sep7Delta mutant strain resulted in enhanced defects in septin localization and cytokinesis. Bni5p localizes to the mother-bud neck in a septin-dependent manner shortly after bud emergence and disappears from the neck approximately 2 to 3 min before spindle disassembly. Two-hybrid, in vitro binding, and protein-localization studies suggest that Bni5p interacts with the N-terminal domain of Cdc11p, which also appears to be sufficient for the localization of Cdc11p, its interaction with other septins, and other critical aspects of its function. Our data suggest that the Bni5p-septin interaction is important for septin ring stability and function, which is in turn critical for normal cytokinesis.  相似文献   

10.
Septin complexes display remarkable plasticity in subunit composition, yet how a new subunit assembled into higher-order structures confers different functions is not fully understood. Here, this question is addressed in budding yeast, where during meiosis Spr3 and Spr28 replace the mitotic septin subunits Cdc12 and Cdc11 (and Shs1), respectively. In vitro, the sole stable complex that contains both meiosis-specific septins is a linear Spr28–Spr3–Cdc3–Cdc10–Cdc10–Cdc3–Spr3–Spr28 hetero-octamer. Only coexpressed Spr3 and Spr28 colocalize with Cdc3 and Cdc10 in mitotic cells, indicating that incorporation requires a Spr28-Spr3 protomer. Unlike their mitotic counterparts, Spr28-Spr3–capped rods are unable to form higher-order structures in solution but assemble to form long paired filaments on lipid monolayers containing phosphatidylinositol-4,5-bisphosphate, mimicking presence of this phosphoinositide in the prospore membrane. Spr28 and Spr3 fail to rescue the lethality of a cdc11Δ cdc12Δ mutant, and Cdc11 and Cdc12 fail to restore sporulation proficiency to spr3Δ/spr3Δ spr28Δ/spr28Δ diploids. Thus, specific meiotic and mitotic subunits endow septin complexes with functionally distinct properties.  相似文献   

11.
The curvature of the membrane defines cell shape. Septins are GTP-binding proteins that assemble into heteromeric complexes and polymerize into filaments at areas of micron-scale membrane curvature. An amphipathic helix (AH) domain within the septin complex is necessary and sufficient for septins to preferentially assemble onto micron-scale curvature. Here we report that the nonessential fungal septin, Shs1, also has an AH domain capable of recognizing membrane curvature. In a septin mutant strain lacking a fully functional Cdc12 AH domain (cdc12-6), the C-terminal extension of Shs1, containing an AH domain, becomes essential. Additionally, we find that the Cdc12 AH domain is important for regulating septin filament bundling, suggesting septin AH domains have multiple, distinct functions and that bundling and membrane binding may be coordinately controlled.  相似文献   

12.
Septins are essential for cytokinesis in Saccharomyces cerevisiae, but their precise roles remain elusive. Currently, it is thought that before cytokinesis, the hourglass-shaped septin structure at the mother-bud neck acts as a scaffold for assembly of the actomyosin ring (AMR) and other cytokinesis factors. At the onset of cytokinesis, the septin hourglass splits to form a double ring that sandwiches the AMR and may function as diffusion barriers to restrict diffusible cytokinesis factors to the division site. Here, we show that in cells lacking the septin Cdc10 or the septin-associated protein Bud4, the septins form a ring-like structure at the mother-bud neck that fails to re-arrange into a double ring early in cytokinesis. Strikingly, AMR assembly and constriction, the localization of membrane-trafficking and extracellular-matrix-remodeling factors, cytokinesis, and cell-wall-septum formation all occur efficiently in cdc10Δ and bud4Δ mutants. Thus, diffusion barriers formed by the septin double ring do not appear to be critical for S. cerevisiae cytokinesis. However, an AMR mutation and a septin mutation have synergistic effects on cytokinesis and the localization of cytokinesis proteins, suggesting that tethering to the AMR and a septin diffusion barrier may function redundantly to localize proteins to the division site.  相似文献   

13.
The septins are a family of GTPases involved in cytokinesis in budding yeast, Drosophila, and vertebrates (see for review). Septins are associated with a system of 10 nm filaments at the S. cerevisiae bud neck, and heteromultimeric septin complexes have been isolated from cell extracts in a filamentous state. A number of septins have been shown to bind and hydrolyze guanine nucleotide. However, the role of GTP binding and hydrolysis in filament formation has not been elucidated. Furthermore, several lines of evidence suggest that not all the subunits of the septin complex are required for all aspects of septin function. To address these questions, we have reconstituted filament assembly in vitro by using a recombinant Xenopus septin, Xl Sept2. Filament assembly is GTP dependent; moreover, the coiled-coil domain common to most septins is not essential for filament formation. Septin polymerization is preceded by a lag phase, suggesting a cooperative assembly mechanism. The slowly hydrolyzable GTP analog, GTP-gamma-S, also induces polymerization, indicating that polymerization does not require GTP hydrolysis. If the properties of Xl Sept2 filaments reflect those of native septin complexes, these results imply that the growth or stability of septin filaments, or both, is regulated by the state of bound nucleotide.  相似文献   

14.
Septins are guanine nucleotide-binding proteins that form hetero-oligomeric complexes, which assemble into filaments and higher-order structures at sites of cell division and morphogenesis in eukaryotes. Dynamic changes in the organization of septin-containing structures occur concomitantly with progression through the mitotic cell cycle and during cell differentiation. Septins also undergo stage-specific post-translational modifications, which have been implicated in regulating their dynamics, in some cases via purported effects on septin turnover. In our recent study, the fate of two of the five septins expressed in mitotic cells of budding yeast (Saccharomyces cerevisiae) was tracked using two complementary fluorescence-based methods for pulse-chase analysis. During mitotic growth, previously-made molecules of both septins (Cdc10 and Cdc12) persisted through multiple successive divisions and were incorporated equivalently with newly synthesized molecules into hetero-oligomers and higher-order structures. Similarly, in cells undergoing meiosis and the developmental program of sporulation, pre-existing copies of Cdc10 were incorporated into new structures. In marked contrast, Cdc12 was irreversibly excluded from septin complexes and replaced by another septin, Spr3. Here, we discuss the broader implications of these results and related findings with regard to how septin dynamics is coordinated with the mitotic cell cycle and in the yeast life cycle, and how these observations may relate to control of the dynamics of other complex multi-subunit assemblies.  相似文献   

15.
Septins are conserved guanosine triphosphate-binding cytoskeletal proteins involved in membrane remodeling. In budding yeast, five mitotic septins (Cdc3, Cdc10, Cdc11, Cdc12, and Shs1), which are essential for cytokinesis, transition during bud growth from a patch to a collar, which splits into two rings in cytokinesis and is disassembled before the next cell cycle. Cdc3, Cdc10, Cdc11, and Cdc12 form an apolar octameric rod with Cdc11 at each tip, which polymerizes into straight paired filaments. We show that Shs1 substitutes for Cdc11, resulting in octameric rods that do not polymerize into filaments but associate laterally, forming curved bundles that close into rings. In vivo, half of shs1Δ mutant cells exhibit incomplete collars and disrupted neck filaments. Importantly, different phosphomimetic mutations in Shs1 can either prevent ring formation or promote formation of a gauzelike meshwork. These results show that a single alternative terminal subunit is sufficient to confer a distinctive higher-order septin ultrastructure that can be further regulated by phosphorylation.  相似文献   

16.
Budding yeast septins assemble into hetero‐octamers and filaments required for cytokinesis. Solvent‐exposed cysteine (Cys) residues provide sites for attaching substituents useful in assessing assembly kinetics and protein interactions. To introduce Cys at defined locations, site‐directed mutagenesis was used, first, to replace the native Cys residues in Cdc3 (C124 C253 C279), Cdc10 (C266), Cdc11 (C43 C137 C138), Cdc12 (C40 C278), and Shs1 (C29 C148) with Ala, Ser, Val, or Phe. When plasmid‐expressed, each Cys‐less septin mutant rescued the cytokinesis defects caused by absence of the corresponding chromosomal gene. When integrated and expressed from its endogenous promoter, the same mutants were fully functional, except Cys‐less Cdc12 mutants (which were viable, but exhibited slow growth and aberrant morphology) and Cdc3(C124V C253V C279V) (which was inviable). No adverse phenotypes were observed when certain pairs of Cys‐less septins were co‐expressed as the sole source of these proteins. Cells grew less well when three Cys‐less septins were co‐expressed, suggesting some reduction in fitness. Nonetheless, cells chromosomally expressing Cys‐less Cdc10, Cdc11, and Cdc12, and expressing Cys‐less Cdc3 from a plasmid, grew well at 30°C. Moreover, recombinant Cys‐less septins—or where one of the Cys‐less septins contained a single Cys introduced at a new site—displayed assembly properties in vitro indistinguishable from wild‐type. Proteins 2013; 81:1964–1979. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
18.
The septins are a conserved family of GTP-binding, filament-forming proteins. In the yeast Saccharomyces cerevisiae, the septins form a ring at the mother-bud neck that appears to function primarily by serving as a scaffold for the recruitment of other proteins to the neck, where they participate in cytokinesis and a variety of other processes. Formation of the septin ring depends on the Rho-type GTPase Cdc42p but appears to be independent of the actin cytoskeleton. In this study, we investigated further the mechanisms of septin-ring formation. Fluorescence-recovery-after-photobleaching (FRAP) experiments indicated that the initial septin structure at the presumptive bud site is labile (exchanges subunits freely) but that it is converted into a stable ring as the bud emerges. Mutants carrying the cdc42V36G allele or lacking two or all three of the known Cdc42p GTPase-activating proteins (GAPs: Bem3p, Rga1p, and Rga2p) could recruit the septins to the cell cortex but were blocked or delayed in forming a normal septin ring and had accompanying morphogenetic defects. These phenotypes were dramatically enhanced in mutants that were also defective in Cla4p or Gin4p, two protein kinases previously shown to be important for normal septin-ring formation. The Cdc42p GAPs colocalized with the septins both early and late in the cell cycle, and overexpression of the GAPs could suppress the septin-organization and morphogenetic defects of temperature-sensitive septin mutants. Taken together, the data suggest that formation of the mature septin ring is a process that consists of at least two distinguishable steps, recruitment of the septin proteins to the presumptive bud site and their assembly into the stable septin ring. Both steps appear to depend on Cdc42p, whereas the Cdc42p GAPs and the other proteins known to promote normal septin-ring formation appear to function in a partially redundant manner in the assembly step. In addition, because the eventual formation of a normal septin ring in a cdc42V36G or GAP mutant was invariably accompanied by a switch from an abnormally elongated to a more normal bud morphology distal to the ring, it appears that the septin ring plays a direct role in determining the pattern of bud growth.  相似文献   

19.
Septins comprise a eukaryotic guanine nucleotide binding protein subfamily which form filamentous heteropolymer complexes. Although mechanism of cytokinesis is diverged by species and tissues, loss of septin function results in the multinuclear phenotype in many organisms. Hence septin filaments beneath the cleavage furrow are hypothesized as a structural basis to ensure completion of cytokinesis. However, molecular mechanisms of septin assembly, disassembly and function have been elusive despite the potential importance of this ubiquitous cytoskeletal system. Meanwhile, growing evidence suggests that mammalian septins functionally or physically interact with diverse molecules such as actin, actin-binding proteins, proteins of membrane fusion machinery, Cdc42 adapter proteins, a ubiquitin-protein ligase, and phosphoinositides. Careful integration of these data may provide insights into the mechanism of mammalian septin organization and functions in cytokinesis.  相似文献   

20.
Budding cells of the yeast Saccharomyces cerevisiae possess a ring of septin filaments of unknown biochemical nature that lies under the inner surface of the plasma membrane in the neck that connects the mother cell to its bud. Mutants, defective in any of the four genes (CDC3, CDC10, CDC11, CDC12), lack these septin filaments and display a pleiotropic phenotype that involves abnormal bud growth and an inability to complete cytokinesis. The cloned CDC10 was fused to bacterial genes to generate antibodies specific for the CDC10 product was a constituent of the septin filaments. Cdc10p-specific antibodies for septin staining and actin-specific rhodamine-phalloidine were used to investigate the timing of the localization of septin and actin at the budding site using the immunofluorescence microscopic technique. In wild-type cells, the timing of the appearance and disappearance of these proteins was indistinguishable. In addition, the cdc10 mutant did not prevent actin localization at the budding site. The mutant that was blocked in the actin function also did not prevent the septin localization of the Cdc10p. This result may suggest an organizational independence between these proteins in the bud formation. Finally, the localization of septin and actin in the cdc24 mutant cell was examined. It was found that the CDC24 function was necessary for the organization of septin and actin at the budding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号