共查询到20条相似文献,搜索用时 15 毫秒
1.
Imaging plant cells by two-photon excitation 总被引:4,自引:0,他引:4
Summary. Along the past recent years, two-photon excitation (TPE) microscopy has moved from the realms of technical curiosity to be a standard application in many advanced cell biology laboratories. The growing body of literature covered in this review points out the obvious advantages of TPE over any other imaging method based on fluorescence, clearly improving signal-to-noise ratio and thick-tissue penetration and showing added potential for vital imaging. Like any new technology that has to gain its own space, TPE microscopy is still going through the growing pains in which reproducible protocols, probes, and applications are scarce. Yet, the published reports and unpublished results covered in this review point out that TPE can eventually accommodate most available protocols and probes, most of the times with evident advantages. Further, the potential for plant sciences is obvious, as plant cells possess many absorbing molecules and structures and are routinely more opaque than tissues of other organisms. Since prices make it one of the most expensive microscopies, TPE is coming slow to be a generalised technology, but enough data are emerging to establish it as a method with no alternative for some objectives.Correspondence and reprints: Instituto Gulbenkian de Ciência. 2780-156 Oeiras, Portugal. 相似文献
2.
The intensity-squared dependence of two-photon excitation in laser scanning microscopy restricts excitation to the focal plane and leads to decreased photobleaching in thick samples. However, the high photon flux used in these experiments can potentially lead to higher-order photon interactions within the focal volume. The excitation power dependence of the fluorescence intensity and the photobleaching rate of thin fluorescence samples ( approximately 1 microm) were examined under one- and two-photon excitation. As expected, log-log plots of excitation power versus the fluorescence intensity and photobleaching rate for one-photon excitation of fluorescein increased with a slope of approximately 1. A similar plot of the fluorescence intensity versus two-photon excitation power increased with a slope of approximately 2. However, the two-photon photobleaching rate increased with a slope > or =3, indicating the presence of higher-order photon interactions. Similar experiments on Indo-1, NADH, and aminocoumarin produced similar results and suggest that this higher-order photobleaching is common in two-photon excitation microscopy. As a consequence, the use of multi-photon excitation microscopy to study thin samples may be limited by increased photobleaching. 相似文献
3.
F?rster resonance energy transfer (FRET) is applied extensively in all fields of biological research and technology, generally as a 'nanoruler' with a dynamic range corresponding to the intramolecular and intermolecular distances characterizing the molecular structures that regulate cellular function. The complex underlying network of interactions reflects elementary reactions operating under strict spatio-temporal control: binding, conformational transition, covalent modification and transport. FRET imaging provides information about all these molecular processes with high specificity and sensitivity via probes expressed by or introduced from the external medium into the cell, tissue or organism. Current approaches and developments in the field are discussed with emphasis on formalism, probes and technical implementation. 相似文献
4.
5.
Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. 总被引:10,自引:0,他引:10 下载免费PDF全文
Multiphoton excitation (MPE) of fluorescent probes has become an attractive alternative in biological applications of laser scanning microscopy because many problems encountered in spectroscopic measurements of living tissue such as light scattering, autofluorescence, and photodamage can be reduced. The present study investigates the characteristics of two-photon excitation (2PE) in comparison with confocal one-photon excitation (1PE) for intracellular applications of fluorescence correlation spectroscopy (FCS). FCS is an attractive method of measuring molecular concentrations, mobility parameters, chemical kinetics, and fluorescence photophysics. Several FCS applications in mammalian and plant cells are outlined, to illustrate the capabilities of both 1PE and 2PE. Photophysical properties of fluorophores required for quantitative FCS in tissues are analyzed. Measurements in live cells and on cell membranes are feasible with reasonable signal-to-noise ratios, even with fluorophore concentrations as low as the single-molecule level in the sampling volume. Molecular mobilities can be measured over a wide range of characteristic time constants from approximately 10(-3) to 10(3) ms. While both excitation alternatives work well for intracellular FCS in thin preparations, 2PE can substantially improve signal quality in turbid preparations like plant cells and deep cell layers in tissue. At comparable signal levels, 2PE minimizes photobleaching in spatially restrictive cellular compartments, thereby preserving long-term signal acquisition. 相似文献
6.
N. D. Read P. S. Shacklock M. R. Knight A. J. Trewavas 《Cell biology international》1993,17(2):111-125
The central role of Ca2+ signalling in plants is now well established. Much of our recent research has been based on the premise that the direct demonstration of signal-response coupling via Ca2+ requires the imaging or measurement of cytosolic free Ca2+ in living cells. Methods (confocal microscopy, fluorescence ratio imaging and photon counting imaging) which we use for imaging Ca2+ with fluorescent dyes or recombinant aequorin, are described. Approaches for using dyes are now routine for many plant cells. However, the imaging Ca2+ in whole tissues of plants genetically transformed with the aequorin gene is a very new development. We predict that this method, first employed in our laboratory, will bring about a revolution in our understanding of Ca2+ signalling at the multicellular level. 相似文献
7.
Second-order nonlinear optical imaging of chiral crystals (SONICC), which portrays second-harmonic generation (SHG) by noncentrosymmetric crystals, is emerging as a powerful imaging technique for protein crystals in media opaque to visible light because of its high signal-to-noise ratio. Here we report the incorporation of both SONICC and two-photon excited fluorescence (TPEF) into one imaging system that allows visualization of crystals as small as ~10 μm in their longest dimension. Using this system, we then documented an inverse correlation between the level of symmetry in examined crystals and the intensity of their SHG. Moreover, because of blue-green TPEF exhibited by most tested protein crystals, we also could identify and image SHG-silent protein crystals. Our experimental data suggest that the TPEF in protein crystals is mainly caused by the oxidation of tryptophan residues. Additionally, we found that unspecific fluorescent dyes are able to bind to lysozyme crystals and enhance their detection by TPEF. We finally confirmed that the observed fluorescence was generated by a two-photon rather than a three-photon process. The capability for imaging small protein crystals in turbid or opaque media with nondamaging infrared light in a single system makes the combination of SHG and intrinsic visible TPEF a powerful tool for nondestructive protein crystal identification and characterization during crystallization trials. 相似文献
8.
High-order photobleaching of green fluorescent protein inside live cells in two-photon excitation microscopy 总被引:5,自引:0,他引:5
Chen TS Zeng SQ Luo QM Zhang ZH Zhou W 《Biochemical and biophysical research communications》2002,291(5):1272-1275
Combination of green fluorescent protein (GFP) and two-photon excitation fluorescence microscopy (TPE) has been used increasingly to study dynamic biochemical events within living cells, sometimes even in vivo. However, the high photon flux required in TPE may lead to higher-order photobleaching within the focal volume, which would introduce misinterpretation about the fine biochemical events. Here we first studied the high-order photobleaching rate of GFP inside live cells by measuring the dependence of the photobleaching rate on the excitation power. The photobleaching rate under one- and two-photon excitation increased with 1-power and 4-power of the incident intensity, respectively, implying the excitation photons might interact with excited fluorophore molecules and increase the probability of photobleaching. These results suggest that in applications where two-photon imaging of GFP is used to study dynamic molecular process, photobleaching may ruin the imaging results and attention should be paid in interpreting the imaging results. 相似文献
9.
The brain is complex and dynamic. The spatial scales of interest to the neurobiologist range from individual synapses (approximately 1 microm) to neural circuits (centimeters); the timescales range from the flickering of channels (less than a millisecond) to long-term memory (years). Remarkably, fluorescence microscopy has the potential to revolutionize research on all of these spatial and temporal scales. Two-photon excitation (2PE) laser scanning microscopy allows high-resolution and high-sensitivity fluorescence microscopy in intact neural tissue, which is hostile to traditional forms of microscopy. Over the last 10 years, applications of 2PE, including microscopy and photostimulation, have contributed to our understanding of a broad array of neurobiological phenomena, including the dynamics of single channels in individual synapses and the functional organization of cortical maps. Here we review the principles of 2PE microscopy, highlight recent applications, discuss its limitations, and point to areas for future research and development. 相似文献
10.
Depth penetration and detection of pH gradients in biofilms by two-photon excitation microscopy. 总被引:3,自引:0,他引:3
J M Vroom K J De Grauw H C Gerritsen D J Bradshaw P D Marsh G K Watson J J Birmingham C Allison 《Applied and environmental microbiology》1999,65(8):3502-3511
Deep microbial biofilms are a major problem in many industrial, environmental, and medical settings. Novel approaches are needed to understand the structure and metabolism of these biofilms. Two-photon excitation microscopy (TPE) and conventional confocal laser scanning microscopy (CLSM) were compared quantitatively for the ability to visualize bacteria within deep in vitro biofilms. pH gradients within these biofilms were determined by fluorescence lifetime imaging, together with TPE. A constant-depth film fermentor (CDFF) was inoculated for 8 h at 50 ml. h(-1) with a defined mixed culture of 10 species of bacteria grown in continuous culture. Biofilms of fixed depths were developed in the CDFF for 10 or 11 days. The microbial compositions of the biofilms were determined by using viable counts on selective and nonselective agar media; diverse mixed-culture biofilms developed, including aerobic, facultative, and anaerobic species. TPE was able to record images four times deeper than CLSM. Importantly, in contrast to CLSM images, TPE images recorded deep within the biofilm showed no loss of contrast. The pH within the biofilms was measured directly by means of fluorescence lifetime imaging; the fluorescence decay of carboxyfluorescein was correlated with biofilm pH and was used to construct a calibration curve. pH gradients were detectable, in both the lateral and axial directions, in steady-state biofilms. When biofilms were overlaid with 14 mM sucrose for 1 h, distinct pH gradients developed. Microcolonies with pH values of below pH 3.0 were visible, in some cases adjacent to areas with a much higher pH (>5.0). TPE allowed resolution of images at significantly greater depths (as deep as 140 microm) than were possible with CLSM. Fluorescence lifetime imaging allowed the in situ, real-time imaging of pH and the detection of sharp gradients of pH within microbial biofilms. 相似文献
11.
Characterization of one- and two-photon excitation fluorescence resonance energy transfer microscopy 总被引:10,自引:0,他引:10
Elangovan M Wallrabe H Chen Y Day RN Barroso M Periasamy A 《Methods (San Diego, Calif.)》2003,29(1):58-73
Advances in molecular biology provide various methods to define the structure and function of the individual proteins that form the component parts of subcellular structures. The ability to see the dynamic behavior of a specific protein inside the living cell became possible through the application of advanced fluorescence resonance energy transfer (FRET) microscope techniques. The fluorophore molecule used for FRET imaging has a characteristic absorption and emission spectrum that should be considered for characterizing the FRET signal. In this article we describe the system development for the image acquisition for one- and two-photon excitation FRET microscopy. We also describe the precision FRET (PFRET) data analysis algorithm that we developed to remove spectral bleed-through and variation in the fluorophore expression level (or concentration) for the donor and acceptor molecules. The acquired images have been processed using a PFRET algorithm to calculate the energy transfer efficiency and the distance between donor and acceptor molecules. We implemented the software correction to study the organization of the apical endosome in epithelial polarized MDCK cells and dimerization of the CAATT/enhancer binding protein alpha (C/EBPalpha). For these proteins, the results revealed that the extent of correction affects the conventionally calculated energy transfer efficiency (E) and the distance (r) between donor and acceptor molecules by 38 and 9%, respectively. 相似文献
12.
Débarre D Supatto W Pena AM Fabre A Tordjmann T Combettes L Schanne-Klein MC Beaurepaire E 《Nature methods》2006,3(1):47-53
Lipid bodies have an important role in energy storage and lipid regulation. Here we show that lipid bodies are a major source of contrast in third-harmonic generation (THG) microscopy of cells and tissues. In hepatocytes, micrometer-sized lipid bodies produce a THG signal 1-2 orders of magnitude larger than other structures, which allows one to image them with high specificity. THG microscopy with approximately 1,200 nm excitation can be used to follow the distribution of lipid bodies in a variety of unstained samples including insect embryos, plant seeds and intact mammalian tissue (liver, lung). We found that epi-THG imaging is possible in weakly absorbing tissues because bulk scattering redirects a substantial fraction of the forward-generated harmonic light toward the objective. Finally, we show that the combination of THG microscopy with two-photon and second-harmonic imaging provides a new tool for exploring the interactions between lipid bodies, extracellular matrix and fluorescent compounds (vitamin A, NADH and others) in tissues. 相似文献
13.
Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons 总被引:10,自引:0,他引:10 下载免费PDF全文
A video-rate (30 frames/s) scanning two-photon excitation microscope has been successfully tested. The microscope, based on a Nikon RCM 8000, incorporates a femtosecond pulsed laser with wavelength tunable from 690 to 1050 nm, prechirper optics for laser pulse-width compression, resonant galvanometer for video-rate point scanning, and a pair of nonconfocal detectors for fast emission ratioing. An increase in fluorescent emission of 1.75-fold is consistently obtained with the use of the prechirper optics. The nonconfocal detectors provide another 2.25-fold increase in detection efficiency. Ratio imaging and optical sectioning can therefore be performed more efficiently without confocal optics. Faster frame rates, at 60, 120, and 240 frames/s, can be achieved with proportionally reduced scan lines per frame. Useful two-photon images can be acquired at video rate with a laser power as low as 2.7 mW at specimen with the genetically modified green fluorescent proteins. Preliminary results obtained using this system confirm that the yellow "cameleons" exhibit similar optical properties as under one-photon excitation conditions. Dynamic two-photon images of cardiac myocytes and ratio images of yellow cameleon-2.1, -3.1, and -3.1nu are also presented. 相似文献
14.
Imaging of the surface of living cells by low-force contact-mode atomic force microscopy. 总被引:4,自引:0,他引:4 下载免费PDF全文
C Le Grimellec E Lesniewska M C Giocondi E Finot V Vi J P Goudonnet 《Biophysical journal》1998,75(2):695-703
The membrane surface of living CV-1 kidney cells in culture was imaged by contact-mode atomic force microscopy using scanning forces in the piconewton range. A simple procedure was developed for imaging of the cell surface with forces as low as 20-50 pN, i.e., two orders of magnitude below those commonly used for cell imaging. Under these conditions, the indentation of the cells by the tip could be reduced to less than l0 nm, even at the cell center, which gave access to the topographic image of the cell surface. This surface appeared heterogeneous with very few villosities and revealed, only in distinct areas, the submembrane cytoskeleton. At intermediate magnifications, corresponding to 20-5 microm scan sizes, the surface topography likely reflected the organization of submembrane and intracellular structures on which the plasma membrane lay. By decreasing the scan size, a lateral resolution better than 20 nm was routinely obtained for the cell surface, and a lateral resolution better than 10 nm was obtained occasionally. The cell surface appeared granular, with packed particles, likely corresponding to proteins or protein-lipid complexes, between approximately 5 and 30 nm xy size. 相似文献
15.
Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy 总被引:7,自引:0,他引:7 下载免费PDF全文
The microstructural basis for the mechanical properties of blood vessels has not been directly determined because of the lack of a nondestructive method that yields a three-dimensional view of these vascular wall constituents. Here, we demonstrate that multiphoton microscopy can be used to visualize the microstructural basis of blood vessel mechanical properties, by combining mechanical testing (distension) of excised porcine coronary arteries with simultaneous two-photon excited fluorescence and second-harmonic generation microscopy. Our results show that second-harmonic generation signals derived from collagen can be spectrally isolated from elastin and smooth muscle cell two-photon fluorescence. Two-photon fluorescence signals can be further characterized by emission maxima at 495 nm and 520 nm, corresponding to elastin and cellular contributions, respectively. Two-dimensional reconstructions of spectrally fused images permit high-resolution visualization of collagen and elastin fibrils and smooth muscle cells from intima to adventitia. These structural features are confirmed by coregistration of multiphoton microscopy images with conventional histology. Significant changes in mean fibril thickness and overall wall dimension were observed when comparing no load (zero transmural pressure) and zero-stress conditions to 30 and 180 mmHg distension pressures. Overall, these data suggest that multiphoton microscopy is a highly sensitive and promising technique for studying the morphometric properties of the microstructure of the blood vessel wall. 相似文献
16.
Degradation of basement membrane is an essential step for tumor invasion. In order to study degradation in real time as well as localize the site of proteolysis, we have established an assay with living human cancer cells in which we image cleavage of quenched-fluorescent basement membrane type IV collagen (DQ-collagen IV). Accumulation of fluorescent products is imaged with a confocal microscope and localized by optically sectioning both the cells and the matrix on which they are growing. For the studies described here, we seeded U87 human glioma cells as either monolayers or spheroids on a 3-dimensional gelatin matrix in which DQ-collagen IV had been embedded. As early as 24 hours after plating as monolayers, U87 cells were present throughout the 3-dimensional matrix. Cells at all levels had accumulated fluorescent degradation products of DQ-collagen IV intracellularly within vesicles. Similar observations were made for U87 spheroids and the individual cells migrating from the spheroids into the gelatin matrix. Both the migrating cells and those within the spheroid contained fluorescent degradation products of DQ-collagen IV intracellularly within vesicles. Thus, glioma cells like breast cancer cells are able to degrade type IV collagen intracellularly, suggesting that this is an important pathway for matrix degradation. 相似文献
17.
Scanning electrochemical microscopy (SECM) is useful in probing and characterizing interfaces at high resolution. In this paper, the general principles of this technique are described and several applications of SECM to biological systems, particularly to living cells, is discussed, along with several example systems. Thiodione was detected and monitored electrochemically during the treatment of hepatocytes with cytotoxic menadione. The antimicrobial effects of silver(I) was followed by SECM through bacterial respiration. Living HeLa cells were shown to accumulate ferrocencemethanol (FcMeOH) and generated positive feedback for FcMeOH oxidation that can be further used to monitor the cell viability. Finally, individual giant liposomes, as cell models, with encapsulated redox compounds were successfully probed by SECM. In general SECM has the advantage of very high spatial resolution and versatility, especially for the detection of electroactive substances. 相似文献
18.
19.
A simple microscopic method to three-dimensionally differentiate between various members in photo-autotrophic biofilm systems is described. By dual-channel single-photon (confocal) and two-photon laser scanning microscopy, the signals in the red and far red channels as well as their combination can be simultaneously recorded. The method takes advantage of the autofluorescent signal of cyanobacteria-recorded in the red and far red channel and the autofluorescent signal of the green algae-recorded in the far red channel only. The differentiation is based on the specific pigment composition of cyanobacteria and green algae in combination with the appropriate filter settings for detection of the autofluorescent emission signals. The method allows the non-destructive, three-dimensional examination of fully hydrated interfacial microbial communities at high resolution as well as the clear separation between autofluorescent signals of cyanobacteria and green algae. Furthermore, there is a third option to record additional signals simultaneously such as nucleic acid stained bacteria, bacteria labeled with phylogenetic probes or glycoconjugates stained by using lectins. With state of the art laser scanning microscopes, even a fourth channel is available for recording yet another parameter, e.g. in the reflection (single-photon only) or fluorescence (single- and two-photon) mode. Thus the approach represents a convenient tool to study multiple parameters of complex photo-autotrophic biofilm systems. 相似文献
20.
Visceral adipose tissue (VAT) inflammation is recognized as a mechanism by which obesity is associated with metabolic diseases. The communication between adipose tissue macrophages (ATMs) and adipocytes is important to understanding the interaction between immunity and energy metabolism and its roles in obesity-induced diseases. Yet visualizing adipocytes and macrophages in complex tissues is challenging to standard imaging methods. Here, we describe the use of a multimodal nonlinear optical (NLO) microscope to characterize the composition of VATs of lean and obese mice including adipocytes, macrophages, and collagen fibrils in a label-free manner. We show that lipid metabolism processes such as lipid droplet formation, lipid droplet microvesiculation, and free fatty acids trafficking can be dynamically monitored in macrophages and adipocytes. With its versatility, NLO microscopy should be a powerful imaging tool to complement molecular characterization of the immunity-metabolism interface. 相似文献