首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In principle, an ion channel needs no more than a single gate, but a pump requires at least two gates that open and close alternately to allow ion access from only one side of the membrane at a time. In the Na+,K+-ATPase pump, this alternating gating effects outward transport of three Na+ ions and inward transport of two K+ ions, for each ATP hydrolysed, up to a hundred times per second, generating a measurable current if assayed in millions of pumps. Under these assay conditions, voltage jumps elicit brief charge movements, consistent with displacement of ions along the ion pathway while one gate is open but the other closed. Binding of the marine toxin, palytoxin, to the Na+,K+-ATPase uncouples the two gates, so that although each gate still responds to its physiological ligand they are no longer constrained to open and close alternately, and the Na+,K+-ATPase is transformed into a gated cation channel. Millions of Na+ or K+ ions per second flow through such an open pump-channel, permitting assay of single molecules and allowing unprecedented access to the ion transport pathway through the Na+,K+-ATPase. Use of variously charged small hydrophilic thiol-specific reagents to probe cysteine targets introduced throughout the pump's transmembrane segments allows mapping and characterization of the route traversed by transported ions.  相似文献   

2.
Mechanism of amino Acid uptake by sugarcane suspension cells   总被引:13,自引:5,他引:8       下载免费PDF全文
Wyse RE  Komor E 《Plant physiology》1984,76(4):865-870
The amino acid carriers in sugarcane suspension cells were characterized for amino acid specificity and the stoichiometry of proton and potassium flux during amino acid transport.

Amino acid transport by sugarcane cells is dependent upon three distinct transport systems. One system is specific for neutral amino acids and transports all neutral amino acids including glutamine, asparagine, and histidine. The uptake of neutral amino acids is coupled to the uptake of one proton per amino acid; one potassium ion leaves the cells for charge compensation. Histidine is only taken up in the neutral form so that deprotonation of the charged imidazole nitrogen has to occur prior to uptake. The basic amino acids are transported by another system as uniport with charge-compensating efflux of protons and potassium. The acidic amino acids are transported by a third system. Acidic amino acids bind to the transport site only if the distal carboxyl group is in the dissociated form (i.e. if the acidic amino acid is anionic). Two protons are withdrawn from the medium and one potassium leaves the cell for charge compensation during the uptake of acid amino acids. Common to all three uptake systems is a monovalent positively charged amino acidproton carrier complex at the transport site.

  相似文献   

3.
Time-resolved X-ray scattering has emerged as a powerful technique for studying the rapid structural dynamics of small molecules in solution. Membrane-protein-catalyzed transport processes frequently couple large-scale conformational changes of the transporter with local structural changes perturbing the uptake and release of the transported substrate. Using light-driven halide ion transport catalyzed by halorhodopsin as a model system, we combine molecular dynamics simulations with X-ray scattering calculations to demonstrate how small-molecule time-resolved X-ray scattering can be extended to the study of membrane transport processes. In particular, by introducing strongly scattering atoms to label specific positions within the protein and substrate, the technique of time-resolved wide-angle X-ray scattering can reveal both local and global conformational changes. This approach simultaneously enables the direct visualization of global rearrangements and substrate movement, crucial concepts that underpin the alternating access paradigm for membrane transport proteins.  相似文献   

4.
We have developed an alternating access transport model that accounts well for GAT1 (GABA:Na+:Cl-) cotransport function in Xenopus oocyte membranes. To do so, many alternative models were fitted to a database on GAT1 function, and discrepancies were analyzed. The model assumes that GAT1 exists predominantly in two states, Ein and E(out). In the Ein state, one chloride and two sodium ions can bind sequentially from the cytoplasmic side. In the Eout state, one sodium ion is occluded within the transporter, and one chloride, one sodium, and one gamma-aminobutyric acid (GABA) molecule can bind from the extracellular side. When Ein sites are empty, a transition to the Eout state opens binding sites to the outside and occludes one extracellular sodium ion. This conformational change is the major electrogenic GAT1 reaction, and it rate-limits forward transport (i.e., GABA uptake) at 0 mV. From the Eout state, one GABA can be translocated with one sodium ion to the cytoplasmic side, thereby forming the *Ein state. Thereafter, an extracellular chloride ion can be translocated and the occluded sodium ion released to the cytoplasm, which returns the transporter to the Ein state. GABA-GABA exchange can occur in the absence of extracellular chloride, but a chloride ion must be transported to complete a forward transport cycle. In the reverse transport cycle, one cytoplasmic chloride ion binds first to the Ein state, followed by two sodium ions. One chloride ion and one sodium ion are occluded together, and thereafter the second sodium ion and GABA are occluded and translocated. The weak voltage dependence of these reactions determines the slopes of outward current-voltage relations. Experimental results that are simulated accurately include (a) all current-voltage relations, (b) all substrate dependencies described to date, (c) cis-cis and cis-trans substrate interactions, (d) charge movements in the absence of transport current, (e) dependencies of charge movement kinetics on substrate concentrations, (f) pre-steady state current transients in the presence of substrates, (g) substrate-induced capacitance changes, (h) GABA-GABA exchange, and (i) the existence of inward transport current and GABA-GABA exchange in the nominal absence of extracellular chloride.  相似文献   

5.
《Journal of molecular biology》2019,431(15):2777-2789
Proteins that perform active transport must alternate the access of a binding site, first to one side of a membrane and then to the other, resulting in the transport of bound substrates across the membrane. To better understand this process, we sought to identify mutants of the small multidrug resistance transporter EmrE with reduced rates of alternating access. We performed extensive scanning mutagenesis by changing every amino acid residue to Val, Ala, or Gly, and then screening the drug resistance phenotypes of the resulting mutants. We identified EmrE mutants that had impaired transport activity but retained the ability to bind substrate and further tested their alternating access rates using NMR. Ultimately, we were able to identify a single mutation, S64V, which significantly reduced the rate of alternating access but did not impair substrate binding. Six other transport-impaired mutants did not have reduced alternating access rates, highlighting the importance of other aspects of the transport cycle to achieve drug resistance activity in vivo. To better understand the transport cycle of EmrE, efforts are now underway to determine a high-resolution structure using the S64V mutant identified here.  相似文献   

6.
Experimental data on the ion electrogenic transport by Na+,K+-ATPase available in the literature are analyzed. Special attention is paid to the measurements of unsteady-state electric currents initiated by alternating voltage or rapid introduction of the substrate. In the final part, a physical model of the Na+,K+-ATPase functioning is discussed. According to this model, active transport is carried out by opening and closing of the access channels used for the sodium and potassium exchange between solutions on either side of the membrane. The model explains most of the experimental data, although some details (the channel size, rates of individual transport steps) need further refinement.  相似文献   

7.
The influence of chemical oscillations on membrane transport systems with mobile carriers is investigated. If dynamic asymmetry occurs so that conditions on only one side of the membrane oscillate, a type of active transport can occur. For example, permeant can be transported from region 1 where its time-average concentration is low to region 2 where time-average permeant concentration is higher when the latter concentration oscillates. No additional driving force beyond dynamic asymmetry is necessary for such active transport to occur. Fluctuations in any quantity which influences the boundary carrier-permeant complex concentration in a nonlinear fashion can alter the behavior of the membrane transport system.  相似文献   

8.
Electrogenic movements of sodium ions in cytoplasmic and extracellular access channel of the Na+,K+-ATPase have been studied by the admittance measurement technique which allows the detection of small changes of the membrane capacitance and conductance induced by phosphorylation of the ion pump. The measurements were carried out on a model system consisting of a bilayer lipid membrane, to which membrane fragments with ion pumps were adsorbed that contain the ion pumps in high density. Small changes of the membrane capacitance and conductance were induced by a fast release of ATP from caged ATP. The effect was measured at various frequencies and in solutions with different Na+ concentrations. The experimentally observed frequency dependences were explained using a theoretical model assuming that Na+ movement through the cytoplasmic access channel occurs in one step and through the extracellular access channel, in two steps. The phosphorylation of the protein by ATP leads to a block of the cytoplasmic access channel and an opening the extracellular access channel. The disappearance of electrogenic Na+ movements on the cytoplasmic side produces a negative change of capacitance and conductance, while the emergence of extracellular Na+ movements generates a positive change. Fitting the experimental dependences of capacitance and conductance by theoretical curves allowed the determination equilibrium and kinetic parameters of sodium transport in the access channels. The text was submitted by the authors in English.  相似文献   

9.
10.
Numerous models describing anion exchange across the red cell membrane by band 3 have been discussed in literature. These models are readily distinguished from one another by an experiment which tests the ability of band 3 transport sites to be recruited to one side of the membrane. In order to observe directly the transmembrane recruitment of transport sites, we have developed 35Cl NMR techniques that resolve the two transport site populations on opposite sides of the membrane. Using these techniques, we show that the inhibitors 4,4'- dinitrostilbene -2,2'-disulfonate and p- nitrobenzensulfonate each recruit all of the transport sites on both sides of the membrane to the extracellular facing conformation. This result indicates that band 3 has an alternating site transport mechanism: each band 3 transport unit possesses a single functional transport site which is alternately exposed first to one side of the membrane then to the other.  相似文献   

11.
We have investigated the conduction states of human serotonin transporter (hSERT) using the voltage clamp, cut-open frog oocyte method under different internal and external ionic conditions. Our data indicate discrepancies in the alternating access model of cotransport, which cannot consistently explain substrate transport and electrophysiological data. We are able simultaneously to isolate distinct external and internal binding sites for substrate, which exert different effects upon currents conducted by hSERT, in contradiction to the alternating access model. External binding sites of coupled Na ions are likewise simultaneously accessible from the internal and external face. Although Na and Cl are putatively cotransported, they have opposite effects on the internal face of the transporter. Finally, the internal K ion does not compete with internal 5-hydroxytryptamine for empty transporters. These data can be explained more readily in the language of ion channels, rather than carrier models distinguished by alternating access mechanisms: in a channel model of coupled transport, the currents represent different states of the same permeation path through hSERT and coupling occurs in a common pore.  相似文献   

12.
Secondary active transporters couple the free energy of the electrochemical potential of one solute to the transmembrane movement of another. As a basic mechanistic explanation for their transport function the model of alternating access was put forward more than 40 years ago, and has been supported by numerous kinetic, biochemical and biophysical studies. According to this model, the transporter exposes its substrate binding site(s) to one side of the membrane or the other during transport catalysis, requiring a substantial conformational change of the carrier protein. In the light of recent structural data for a number of secondary transport proteins, we analyze the model of alternating access in more detail, and correlate it with specific structural and chemical properties of the transporters, such as their assignment to different functional states in the catalytic cycle of the respective transporter, the definition of substrate binding sites, the type of movement of the central part of the carrier harboring the substrate binding site, as well as the impact of symmetry on fold-specific conformational changes. Besides mediating the transmembrane movement of solutes, the mechanism of secondary carriers inherently involves a mechanistic coupling of substrate flux to the electrochemical potential of co-substrate ions or solutes. Mainly because of limitations in resolution of available transporter structures, this important aspect of secondary transport cannot yet be substantiated by structural data to the same extent as the conformational change aspect. We summarize the concepts of coupling in secondary transport and discuss them in the context of the available evidence for ion binding to specific sites and the impact of the ions on the conformational state of the carrier protein, which together lead to mechanistic models for coupling.  相似文献   

13.
Quantum chemical model calculations were carried out for modeling the ion transport through an isolated ion channel of a cell membrane. An isolated part of a natural ion channel was modeled. The model channel was a calixarene derivative, hydrated sodium and potassium ions were the models of the transported ion. The electrostatic potential of the channel and the energy of the channel-ion system were calculated as a function of the alkali ion position. Both attractive and repulsive ion-channel interactions were found. The calculations - namely the dependence of the system energy and the atomic charges of the water molecules with respect to the position of the alkali ion in the channel - revealed the molecular-structural background of the potassium selectivity of this artificial ion channel. It was concluded that the studied ion channel mimics real biological ion channel quite well.  相似文献   

14.
Following the theory 'Fluctuations of barrier structure in ionic channels' (L?uger, P., Stephan, W. and Frehland, E. (1980) Biochim. Biophys. Acta 602, 167-180), we constructed a model of a channels with several conformational states. The origin of these conformational states and the source for the transitions from one to the other are given explicitly for the presented model. In this work the effect of multiple conformational states on the ion transport process is analyzed. We considered a channel protein with two main barriers and one binding site. The site is surrounded by dipolar groups. The dipole moment of these groups can be reoriented by thermal activity and also by electrical interaction with the transported ions. Differently polarized states generate different activation energy barriers for the ions. The set of conformational states of the channel is constituted by all the possible polarized states of the binding site. Using the rate-theory analysis of ion transport (Gl?sstone, S., Laider, K.J. and Eyring, H. (1941) The theory of rate processes, McGraw-Hill, New York), the possible coupling between ion flux and the channel conformational transitions has been incorporated into the model by considering the dependence of the rate constants on the heights of the energy barriers. The resulting multistate kinetic equations have been solved numerically. It was shown that the simple saturation characteristic of the flux-concentration curve was obtained. For certain values of the model parameters, the channel shows a strongly different conductance for anions compared to cations. In fact, the model contains an interesting mechanism that exhibits selectivity with respect to the charge of the ions.  相似文献   

15.
Alternating currents were measured through transmembrane ion channels formed by Staphylococcus aureus alpha-hemolysin proteins in planar bilayer membranes as part of an investigation to determine the channel's frequency response and the appropriateness of an equivalent circuit commonly used to model electrical interactions at the surface of cells. The experimental approach includes a novel method for separating the alternating current through one or more channels, which is conductive in nature, from the capacitively coupled current through the membrane. Separation of the conductive and capacitive alternating currents made it possible to measure the frequency response of the alpha-hemolysin channels. The results of the study are consistent with an equivalent circuit of a membrane capacitor in parallel with one or more channel resistors over the frequency range 30-120 Hz. The possible usefulness of frequency response data for ion channels in cell membranes during investigations of biological effects of time-varying magnetic fields is briefly discussed.  相似文献   

16.
Summary Substances which uncouple oxidative phosphorylation in mitochondrial membranes usually increase the electrical conductivity of synthetic bimolecular phospholipid membranes. Among these uncouplers is a group characterized chemically as weak acids. For this group the conductivity of synthetic membranes, when measured versus pH at fixed uncoupler concentration, shows a maximum at a pH approximately equal to the pK value of the uncoupler used. Corresponding maxima in membrane electrical potential arising from ion concentration gradients are also observed. To explain such phenomena a model is proposed which assumes charge transport by the direct transfer of either protons or anions of the uncoupler between binding sites located on the membrane boundaries. A fixed surface density of such sites is assumed. The transfer of an ion requires both its presence on an initiating site and the availability of a terminal site which is not already occupied by an ion of the same species. Failure to satisfy both criteria leads to blockage of current flow at both low and high concentrations of the transported ion.On sabbatical leave for the academic year 1968–69 from the University of California, Riverside, California, USA.  相似文献   

17.
Previous theoretical models for solute-solvent coupling in epithelia that dealt only with the intercellular channel did not predict isotonic transport except when very high cell membrane permeabilities were assumed. To study this issue, we have developed the formalisms for osmotic equilibration at an alternative location, the apical cell membrane (including its adjacent unstirred layer), which are somewhat simpler than those for the channel. Much as in other models, we confirm that only rather unrealistically high values of the cell membrane permeability lead to isotonic transport. We have also found, however, that isotonic transport can occur at much lower values of the cell membrane permeability if the concentration within the cell differs slightly from that in the ambient medium. This emphasizes the importance of incorporating the intracellular concentration as an integral part to any transport model, such as in the present apical membrane version of local osmosis.  相似文献   

18.
Smirnova I  Kasho V  Kaback HR 《Biochemistry》2011,50(45):9684-9693
Crystal structures of the lactose permease of Escherichia coli (LacY) reveal 12, mostly irregular transmembrane α-helices surrounding a large cavity open to the cytoplasm and a tightly sealed periplasmic side (inward-facing conformation) with the sugar-binding site at the apex of the cavity and inaccessible from the periplasm. However, LacY is highly dynamic, and binding of a galactopyranoside causes closing of the inward-facing cavity with opening of a complementary outward-facing cavity. Therefore, the coupled, electrogenic translocation of a sugar and a proton across the cytoplasmic membrane via LacY very likely involves a global conformational change that allows alternating access of sugar- and H(+)-binding sites to either side of the membrane. Here the various biochemical and biophysical approaches that provide strong support for the alternating access mechanism are reviewed. Evidence is also presented indicating that opening of the periplasmic cavity is probably the limiting step for binding and perhaps transport.  相似文献   

19.
Membrane transport proteins transduce free energy stored in electrochemical ion gradients into a concentration gradient and are a major class of membrane proteins, many of which play important roles in human health and disease. Recently, the X-ray structure of the Escherichia coli lactose permease (LacY), an intensively studied member of a large group of related membrane transport proteins, was solved at 3.5 A. LacY is composed of N- and C-terminal domains, each with six transmembrane helices, symmetrically positioned within the molecule. The structure represents the inward-facing conformation, as evidenced by a large internal hydrophilic cavity open to the cytoplasmic side. The structure with a bound lactose homolog reveals the sugar-binding site in the cavity, and a mechanism for translocation across the membrane is proposed in which the sugar-binding site has alternating accessibility to either side of the membrane.  相似文献   

20.
The existence of the blood-brain barrier is due to tight junctions between endothelial cells preventing the passage of liquid and solute material at the capillary level. Substances can thus pass across the blood-brain barrier if they are lipophilic or if they have transport systems in the membranes of endothelial cells. The luminal membrane brings metabolites needed for the brain function, the abluminal one plays an important part in removing substances from brain, this can happen against a concentration gradient and thus needs energy. Ions are transported differently by the 2 membranes. Sodium and chloride have carriers and potassium is transported very actively by the sodium-potassium ATPase of the abluminal membrane. Blood-brain glucose influx is very important and happens by carrier transport at the 2 membranes. Efflux seems to use the same transport system as the influx. Transport of ketone bodies seems to happen only from blood to brain, the carriers being reversibly used for brain-blood transport of pyruvic and lactic acid. Amino-acid transport is very different on the luminal and abluminal membranes. On the luminal membrane there are 2 transport systems, one for basic amino acids, the other one, the L system, for neutral amino-acids. All neutral amino-acids are transported through the abluminal membrane by the L, A and ASC systems. There exists a system of transport for basic amino-acids, and a very active one for acid amino-acids. Some systems for the transport of hormones, vitamins and for some peptides exist also at the blood-brain barrier which thus plays a very important role in the regulation of brain metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号