首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xylan 1,4-β-D-xylosidase catalyzes hydrolysis of non-reducing end xylose residues from xylooligosaccharides. The enzyme is currently used in combination with β-xylanases in several large-scale processes for improving baking properties of bread dough, improving digestibility of animal feed, production of d-xylose for xylitol manufacture, and deinking of recycled paper. On a grander scale, the enzyme could find employment alongside cellulases and other hemicellulases in hydrolyzing lignocellulosic biomass so that reaction product monosaccharides can be fermented to biofuels such as ethanol and butanol. Catalytically efficient enzyme, performing under saccharification reactor conditions, is critical to the feasibility of enzymatic saccharification processes. This is particularly important for β-xylosidase which would catalyze breakage of more glycosidic bonds of hemicellulose than any other hemicellulase. In this paper, we review applications and properties of the enzyme with emphasis on the catalytically efficient β-d-xylosidase from Selenomonas ruminantium and its potential use in saccharification of lignocellulosic biomass for producing biofuels.  相似文献   

2.
The tetrameric β-xylosidase from Selenomonas ruminantium is very stable in alkaline pH allowing it to easily immobilize by multipoint covalent attachments on highly activated glyoxyl agarose gels. Initial immobilization resulted only in slight stabilization in relation to the free enzyme, since involvement of all subunits was not achieved. Coating the catalyst with aldehyde-dextran or polyethylenimine, fully stabilized the quaternary structure of the enzyme rendering much more stabilization to the biocatalyst. The catalyst coated with polyethylenimine of molecular weight 1300 is the most stable one exhibiting an interesting half-life of more than 10 days at pH 5.0 and 50?°C, being, therefore, 240-fold more stable than free enzyme. Optimum activity was observed in the pH range 4.0–6.0 and at 55?°C. The catalyst retained its side activity against p-nitrophenyl α-l-arabinofuranoside and it was inhibited by xylose and glucose. Kinetic parameters with p-nitrophenyl β-d-xylopyranoside as substrate were Vmax 0.20?μmol.min?1?mg?prot.?1, Km 0.45?mM, Kcat 0.82?s?1, and Kcat/Km 1.82?s?1?mM?1. Xylose release was observed from the hydrolysis of xylooligosaccharides with a decrease in the rate of xylose release by increasing substrate chain-length. Due to the high thermostability and the complete stability after five reuse cycles, the applicability of this biocatalyst in biotechnological processes, such as for the degradation of lignocellulosic biomass, is highly increased.  相似文献   

3.
A new site-specific endonuclease, BbeI, has been partially purified from the anaerobic bacterium, Bifidobac-terium breve. BbeI recognizes the hexanucleotide sequence
and cleaves it at the sites indicated by the arrows, producing 3′-cohesive termini four bases long.  相似文献   

4.
A strain producing a restriction endonuclease was isolated from soil samples and identified as the Arthrobacter sp. strain Ck256. The enzyme produced by this strain was termed Asi256I. The isolation procedure for this enzyme was described, and the optimal conditions for its function were determined. It was shown that the restriction endonuclease Asi256I is a true isoschizomer of MboI, it has a temperature optimum of 6°C, and can be used in molecular-biological and genetic-engineering studies performed at low temperatures.  相似文献   

5.
The monohydroxy analogue of phylloquinone found in Anacystis nidulans and Euglena gracilis has been characterized as 5′-monohydroxyphylloquinone by MS analysis.  相似文献   

6.
Abstract

A simple procedure is described for the preparation of the title compounds 1, 8 and 9. 3′-3′ or 3′-5′ or 5′-5′ TpT was reacted with a twofold molar excess of TPS in anhydrous DMF, at room temperature, for 5 min, followed by a 1 min in situ treatment of the reaction mixture with excess 7.0 N NH4OH, at 0°C. The alkaline hydrolysis of 1, 8 and 9 proceeds without the assistance of 3′- and 5′-hydroxyl groups resulting in equimolar mixtures of thymidine (4) and thymidine 3′-phosphoramidate (6) (for the 3′-3′ isomer) or thymidine 5′-phosphoramidate (7) (for the 5′-5′ isomer) or 6 and 7 in equal quantities (for the 3′-5′ isomer).  相似文献   

7.
The cyclic 35-nucleotide phosphodiesterase D3 was purified from Sinorhizobium fredii MAR-1. The native enzyme had a molecular weight of approximately 44.5kDa and a subunit molecular weight of approximately 21kDa as judged by SDS-gel electrophoresis. The pH optimum of the enzyme for the hydrolysis of cyclic AMP was approximately 6.0 with both acetate and Tris-maleate buffers. The optimum temperature for hydrolysing cyclic AMP was approximately 50C. No metal ion was required for activity and EDTA up to 2.5mM did not markedly affect the enzyme. However, methylxanthines, adenine and adenosine as well as 5-AMP, ATP, ADP and metal ions like Zn2+, Fe2+, Pb2+, Al3+ and Fe3+, were strongly inhibitory at 2.5mM.The D3 enzyme could hydrolyse both cyclic AMP and cyclic GMP with the apparent K m for cyclic AMP of approximately 0.23M.  相似文献   

8.
We describe the partial purification and characterisation of five Type II restriction endonucleases from two strains of Herpetosiphon giganteus. One of the activities, HgiJII, was the first enzyme found that cleaves DNA at the family of related sequences 5'-G-R-G-C-Y/C-3'. This enzyme may be related to the enzyme HgiAI from a different strain of the same species, and which cleaves at the sites 5'-G-W-G-C-W/C-3'. We have shown that DNAs from the strains producing HgiAI and HgiJII are resistant to both of these restriction endonucleases. The remaining four enzymes described here share recognition and cleavage specificities with other restriction endonucleases. The evolution of Type II restriction-modification systems and their role in vivo are discussed.  相似文献   

9.
Both Metnase and Artemis possess endonuclease activities that trim 3′ overhangs of duplex DNA. To assess the potential of these enzymes for facilitating resolution of damaged ends during double-strand break rejoining, substrates bearing a variety of normal and structurally modified 3′ overhangs were constructed, and treated either with Metnase or with Artemis plus DNA-dependent protein kinase (DNA-PK). Unlike Artemis, which trims long overhangs to 4–5 bases, cleavage by Metnase was more evenly distributed over the length of the overhang, but with significant sequence dependence. In many substrates, Metnase also induced marked cleavage in the double-stranded region within a few bases of the overhang. Like Artemis, Metnase efficiently trimmed overhangs terminated in 3′-phosphoglycolates (PGs), and in some cases the presence of 3′-PG stimulated cleavage and altered its specificity. The nonplanar base thymine glycol in a 3′ overhang severely inhibited cleavage by Metnase in the vicinity of the modified base, while Artemis was less affected. Nevertheless, thymine glycol moieties could be removed by Metnase- or Artemis-mediated cleavage at sites farther from the terminus than the lesion itself. In in vitro end-joining systems based on human cell extracts, addition of Artemis, but not Metnase, effected robust trimming of an unligatable 3′-PG overhang, resulting in a dramatic stimulation of ligase IV- and XLF-dependent end joining. Thus, while both Metnase and Artemis are biochemically capable of resolving a variety of damaged DNA ends for the repair of complex double-strand breaks, Artemis appears to act more efficiently in the context of other nonhomologous end joining proteins.  相似文献   

10.
11.
12.
Two uridine 2′,3′-cyclic monophosphate (cUMP) derivatives, 5′-deoxy (DcUMP) and 5′-O-methyl (McUMP), were studied by means of quantum chemical methods. Aqueous solvent effects were estimated based on the isodensity-surface polarized-continuum model (IPCM). Gas phase calculations revealed only slight energy differences between the syn- and anti-conformers of both compounds: the relative energies of the syn-structure are −0.9 and 0.2 kcal mol-1 for DcUMP and McUMP, respectively. According to the results from the IPCM calculations, however, both syn-conformers become about 14 kcal mol-1 more stable in aqueous solution than their corresponding anti-structures. Additionally, the effects of a countercation and protonation on DcUMP were studied, revealing that the syn-structure is also favored over the anti-one for these systems.  相似文献   

13.
14.
Abstract

A series of 3′-branched 4′-azanucleoside analogues have been prepared. These compounds comprise three asymmetric atoms, two carbons and one nitrogen. They constitute nucleoside analogues imparted with a “flickering configuration”, the nitrogen inversion replacing a D-L epimerization of their natural congeners. The 1′,3′-cis and 1′,3′-trans isomers have been separated and their configuration established by 1H NMR and the X-ray diffraction structure of one crystalline example. The configurations of the frozen invertomers were assessed by low temperature 1H NMR experiments assisted by molecular mechanics simulations. None of these compounds exhibited any significant in vitro antiviral activity.  相似文献   

15.
Synthesis of the 4′-ethynyl and 4′-cyano phosphonates 811, which mimic the 5′-monophosphate of 4′-branched 2′,3′-didehydro-2′,3′-dideoxy nucleosides, was investigated by employing the 3′,4′-unsaturated nucleosides (13 and 28) as the starting material. The synthesis was initiated by the electrophilic addition of NIS/(EtO)2P(O)CH2OH to these unsaturated nucleosides. After introduction of the 2′,3′-double bond, the 4′-hydroxylmethyl group of the resulting adducts was transformed into the ethynyl or cyano group. While the 4′-cyano phosphonates 9 and 11 were not sufficiently stable to be isolated, the 4′-ethynyl counterparts (8 and 10) were obtained as their mono-ammonium salts. The adenine derivative 8 showed almost comparable anti-HIV-1 activity to that of d4T.  相似文献   

16.
Synthetic activity and existence of ppGpp and pppApp in an anthracycline-producing strain Streptomyces galilaeus were determined by radioimmunoassay and 32P-labeling method during cultivation under both the antibiotic productive and non-productive conditions. The cellular ppGpp(pppGpp)-synthesizing activity was highest at the end of exponential growth, and 3-fold higher in the antibiotic-productive cultivation than in non-productive cultivation. The intracellular level of ppGpp determined by radioimmunoassay was high at the end of exponential growth, and afterwards its level decreased by one fifth. The low level of cellular ppGpp during the period of intense antibiotic production suggests that ppGpp consumption may play an important role in antibiotic production of S. galilaeus. The concentration of pppApp was not determined intracellularly by radioimmunoassay.  相似文献   

17.
Summary Nucleoside-5-triphosphates such as 5-ATP and 5-GTP can be produced efficiently and continuously from 3-mononucleotides such as 3-AMP and 3-GMP by a series of processes consisting of two reaction phases using dried cells of Candida sp. N-25-2 (a hydrocarbon assimilating yeast). Moreover, incidentally to the 5-triphosphates, free uracil is yielded almost stoichiometrically from 3-CMP and 3-UMP which, as is well known, are main concomitant products depolymerized from RNA. Uracil is then also available for many usage.  相似文献   

18.
Abstract

To assess the structure-activity relationship for antiviral activity, a series of 3′-deoxy-3′-N-functionalized thymidine analogues were synthesized. Several of these thymidine analogues show moderate in vitro activity against HIV-1 and HIV-2.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号