首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P. S. Alban et al. (J. Appl. Microbiol. (1998) 85, 875-882) reported that a mutant H2O2-resistant strain of Spirullum (S.) volutans showed constitutive overexpression of a protein whose amino acid sequence and molecular weight closely resembled that of a subunit of rubrerythrin, a non-heme iron protein with no known function. They also reported that the mutant strain, but not the wild-type, showed NADH peroxidase activity. Here we demonstrate that rubrerythrin and nigerythrin from Desulfovibrio vulgaris and rubrerythrin from Clostridium perfringens show NADH peroxidase activities in an in vitro system containing NADH, hydrogen peroxide, and a bacterial NADH oxidoreductase. The peroxidase specific activities of the rubrerythrins with the "classical" heme peroxidase substrate, o-dianisidine, are many orders of magnitude lower than that of horseradish peroxidase. These results are consistent with the phenotype of the H2O2-resistant strain of S. volutans. The reaction of reduced (i.e., all-ferrous) rubrerythrin with excess O2 takes several minutes, whereas the anaerobic reaction of reduced rubrerythrin with hydrogen peroxide is on the millisecond time scale and results in full oxidation of all iron centers to their ferric states. Rubrerythrins could, thus, function as the terminal components of NADH peroxidases in air-sensitive bacteria and archaea.  相似文献   

2.
Excellular hemoglobin is an extremely active oxidant of low-density lipoproteins (LDL), a phenomenon explained so far by different mechanisms. In this study, we analyzed the mechanism of met-hemoglobin oxidability by comparing its mode of operation with other hemoproteins, met-myoglobin and horseradish peroxidase (HRP) or with free hemin. The kinetics of met-hemoglobin activity toward LDL lipids and protein differed from that of met-myoglobin and HRP, both quantitatively and qualitatively. Those differences were further clarified by analyzing heme transfer from the above-mentioned hemoproteins to LDL. It appeared that met-hemoglobin transferred most of its hemin to LDL, and the presence of H(2)O(2) accelerated the process. In contrast, met-myoglobin partially released hemin, but only in the presence of H(2)O(2), while HRP could not transfer heme at all. The minor amount of hemin transferred from met-myoglobin to LDL sufficed to trigger ApoB oxidation, forming covalent aggregates via inter-bityrosines. This indicated that heme bound to high affinity site(s) is responsible for oxidation. LDL components providing the sites were analyzed by binding heme-CO monomers to LDL. Soret spectra revealed that the high affinity site of monomeric hemin is located on the LDL protein, ApoB. The complex heme-CO-ApoB underwent instantaneous oxidation to hemin-ApoB, and the bound hemin then slowly disintegrated in conjunction with LDL oxidation. Hemopexin prevented LDL oxidation by trapping hemoprotein transferable heme. We concluded that met-hemoglobin exerts its oxidative activity on LDL via transfer of heme, which serves as a vehicle for iron insertion into the LDL protein, leading to formation of atherogenic LDL aggregates.  相似文献   

3.
Oxidation of NADH by rat brain microsomes was stimulated severalfold on addition of vanadate. During the reaction, vanadate was reduced, oxygen was consumed, and H2O2 was generated with a stoichiometry of 1:1 for NADH/O2, as in the case of other membranes. Extra oxygen was found to be consumed over that needed for H2O2 generation specifically when brain microsomes were used. This appears to be due to the peroxidation of lipids known to be accompanied by a large consumption of oxygen. Occurrence of lipid peroxidation in brain microsomes in the presence of NADH and vanadate has been demonstrated. This activity was obtained specifically with the polymeric form of vanadate and with NADH, and was inhibited by the divalent cations Cu2+, Mn2+, and Ca2+, by dihydroxyphenolic compounds, and by hemin in a concentration-dependent fashion. In the presence of a small concentration of vanadate, addition of an increasing concentration of Fe2+ gave increasing lipid peroxidation. After undergoing lipid peroxidation in the presence of NADH and vanadate, the binding of quinuclidinyl benzylate, a muscarinic antagonist, to brain membranes was decreased.  相似文献   

4.
Epidemiological findings have indicated that red meat increases the likelihood of colorectal cancer. Aim of this study was to investigate whether hemoglobin, or its prosthetic group heme, in red meat, is a genotoxic risk factor for cancer. Human colon tumor cells (HT29 clone 19A) and primary colonocytes were incubated with hemoglobin/hemin and DNA damage was investigated using the comet assay. Cell number, membrane damage, and metabolic activity were measured as parameters of cytotoxicity in both cell types. Effects on cell growth were determined using HT29 clone 19A cells. HT29 clone 19A cells were also used to explore possible pro-oxidative effects of hydrogen peroxide (H2O2) and antigenotoxic effects of the radical scavenger dimethyl sulfoxide (DMSO). Additionally we determined in HT29 clone 19A cells intracellular iron levels after incubation with hemoglobin/hemin. We found that hemoglobin increased DNA damage in primary cells (> or =10 microM) and in HT29 clone 19A cells (> or =250 microM). Hemin was genotoxic in both cell types (500-1000 microM) with concomitant cytotoxicity, detected as membrane damage. In both cell types, hemoglobin and hemin (> or =100 microM) impaired metabolic activity. The growth of HT29 clone 19A cells was reduced by 50 microM hemoglobin and 10 microM hemin, indicating cytotoxicity at genotoxic concentrations. Hemoglobin or hemin did not enhance the genotoxic activity of H2O2 in HT29 clone 19A cells. On the contrary, DMSO reduced the genotoxicity of hemoglobin, which indicated that free radicals were scavenged by DMSO. Intracellular iron increased in hemoglobin/hemin treated HT29 clone 19A cells, reflecting a 40-50% iron uptake for each compound. In conclusion, our studies show that hemoglobin is genotoxic in human colon cells, and that this is associated with free radical mechanisms and with cytotoxicity, especially for hemin. Thus, hemoglobin/hemin, whether available from red meat or from bowel bleeding, may pose genotoxic and cytotoxic risks to human colon cells, both of which contribute to initiation and progression of colorectal carcinogenesis.  相似文献   

5.
Cytochrome c catalyzed the oxidation of various electron donors in the presence of hydrogen peroxide (H2O2), including 2-2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), 4-aminoantipyrine (4-AP), and luminol. With ferrocytochrome c, oxidation reactions were preceded by a lag phase corresponding to the H2O2-mediated oxidation of cytochrome c to the ferric state; no lag phase was observed with ferricytochrome c. However, brief preincubation of ferricytochrome c with H2O2 increased its catalytic activity prior to progressive inactivation and degradation. Superoxide (O2-) and hydroxyl radical (.OH) were not involved in this catalytic activity, since it was not sensitive to superoxide dismutase (SOD) or mannitol. Free iron released from the heme did not play a role in the oxidative reactions as concluded from the lack of effect of diethylenetriaminepentaacetic acid. Uric acid and tryptophan inhibited the oxidation of ABTS, stimulation of luminol chemiluminescence, and inactivation of cytochrome c. Our results are consistent with an initial activation of cytochrome c by H2O2 to a catalytically more active species in which a high oxidation state of an oxo-heme complex mediates the oxidative reactions. The lack of SOD effect on cytochrome c-catalyzed, H2O2-dependent luminol chemiluminescence supports a mechanism of chemiexcitation whereby a luminol endoperoxide is formed by direct reaction of H2O2 with an oxidized luminol molecule, either luminol radical or luminol diazoquinone.  相似文献   

6.
To clarify the significance of catalase in peroxisomes, we have examined the effect of aminotriazole treatment of rats on the activity of beta-hydroxybutyryl-CoA dehydrogenase in liver peroxisomes. When the effect of H2O2 on the dehydrogenase activity was examined using an extract of liver peroxisomes from aminotriazole-treated rats, the acetoacetyl-CoA-dependent oxidation of NADH was found to increase considerably on the addition of dilute H2O2. Such an effect of H2O2 was not seen on the beta-hydroxybutyryl-CoA-dependent reduction of NAD nor with extracts from untreated animals. We then noticed that similar NADH oxidation was caused non-enzymatically by a mixture of acetoacetyl-CoA and H2O2. The oxidation was dependent on both acetoacetyl-CoA and H2O2, and was blocked by scavengers of oxyradicals such as ascorbate and ethanol. Degradation products formed during the reaction of acetoacetyl-CoA with H2O2 had no NADH oxidizing activity, indicating that effective oxidant(s) were generated during the reaction of H2O2 with acetoacetyl-CoA. No other fatty acyl-CoA so far examined nor acetoacetate could replace acetoacetyl-CoA in this reaction. Therefore, if H2O2 were to be accumulated in peroxisomes, it would decrease both NADH and acetoacetyl-CoA, thus affecting the fatty acyl-CoA beta-oxidation system. These results, together with our previous finding that peroxisomal thiolase was significantly inactivated by H2O2 [Hashimoto, F. & Hayashi, H. (1987) Biochim. Biophys. Acta 921, 142-150] suggest that the role of catalase in peroxisomes is at least in part to protect the fatty acyl-CoA beta-oxidation system from the deleterious action of H2O2.  相似文献   

7.
Pyocyanin (1-hydroxy-N-methylphenazine) is a cytotoxic pigment secreted by the bacterial species Pseudomonas aeruginosa, which frequently infects the lungs of immunosuppressed patients as well as those with cystic fibrosis. Pyocyanin toxicity results presumably from the ability of the compound to undergo reduction by NAD(P)H and subsequent generation of superoxide and H2O2 directly in the lungs. We report that in the presence of peroxidase mimics, microperoxidase 11, or hemin, pyocyanin undergoes oxidation by H2O2, as evidenced by loss of the pigment's characteristic absorption spectrum and by EPR detection of a free radical metabolite. The oxidation of pyocyanin is irreversible, suggesting an extensive modification of the pigment's phenazine chromophore. Oxidation of pyocyanin was observed also when exogenous H2O2 was replaced by a H2O2-generating system consisting of NADH and the pigment itself. That the oxidation involves the phenolate group of pyocyanin was verified by the observation that a related pigment, phenazine methosulfate, which is devoid of this group, does not undergo oxidation by microperoxidase 11/H2O2. In contrast to intact pyocyanin, oxidized pyocyanin was less efficient in NADH oxidation and stimulation of interleukin-8 release by human alveolar epithelial A549 cells in vitro, suggesting that oxidation of pyocyanin leads to its inactivation. This study demonstrates that pyocyanin may play a dual role in biological systems, first as an oxidant and ROS generator, and second as a substrate for peroxidases, contributing to H2O2 removal. This latter property may cause pyocyanin degradation and inactivation, which may be of considerable biomedical interest.  相似文献   

8.
When l-thyroxine activates the oxidation of NADH by peroxidase+H(2)O(2), little removal of phenolic-ring iodine atoms becomes apparent until most of the NADH has been oxidized, after which it increases markedly. This extensive deiodination is accompanied by loss of the ability of thyroxine to catalyse the oxidation of NADH by peroxidase+H(2)O(2). The slight deiodination observed before the appearance of extensive deiodination is somewhat higher when the effect of thyroxine on NADH oxidation is greater, and lower when thyroxine has exerted a slighter effect. ICN (but not I(2) or thyronine) catalyses NADH oxidation, in both the presence and the absence of peroxidase+H(2)O(2): thyroxine+peroxidase+H(2)O(2) are thus comparable with ICN alone in their effects on NADH oxidation. The obvious conclusion from the above observation, namely that the active moiety is the halogen liberated from thyroxine (or ICN) is, however, not directly supported by some of the results obtained by measuring the degree of deiodination of thyroxine in the system. In an attempt to reconcile some apparently contradictory conclusions, it is suggested that, when thyroxine activates oxidation of NADH by peroxidase+H(2)O(2), the diphenyl ether structure is undergoing cyclic deiodination and iodination. This would be accompanied by the maintenance in the reaction medium of an oxidized form of iodine, similar to that liberated by ICN, which would be the actual active moiety, until the NADH concentration becomes so low that the diphenyl ether structure is ruptured oxidatively. An alternative explanation is that thyroxine is oxidized to a form that either oxidizes NADH or loses iodine in competing reactions.  相似文献   

9.
Zhao Y  Gao Z  Li H  Xu H 《Biochimica et biophysica acta》2004,1675(1-3):105-112
Oxidative injury has been implicated in the pathogenesis of numerous neurodegenerative diseases. Recently, it has been found that with the existence of hydrogen peroxide and nitrite, hemin catalyzes protein nitration. We hypothesize under certain pathological conditions, hemin catalyzed protein nitration may happen in the brain. In this paper, the effects of three flavonoids, i.e. quercetin, catachin and baicalein on hemin/nitrite/H2O2 induced brain homogenate oxidation and nitration were studied. The results showed that hemin/nitrite/H2O2 system could effectively induce brain homogenate protein oxidation and nitration. Quercetin, catachin and baicalein dose-dependently inhibited hemin/nitrite/H2O2 system-induced protein nitration in a dose-dependent manner, the inhibition of protein nitration was in the order of quercetin>catachin>baicalein. These compounds also inhibited hemin/H2O2 system-induced lipid peroxidation, the inhibition order was baicalein >quercetin>catachin. However, these flavonoids showed marginal effect on hemin/nitrite/H2O2 system caused protein oxidation and thiol oxidation. The inhibition activities of flavonoids on hemin/nitrite/H2O2 system-induced protein nitration may closely relate to their radical scavenging activities, since the inhibition order of protein nitration is the same as the radical scavenging order. These results indicate hemin/nitrite/H2O2 system induces different types of oxidative assault on bio-molecules. Flavonoids could act as antioxidants inhibiting ROS and RNS caused brain damage.  相似文献   

10.
Catalase conjugates with 3, 7, 9 and 42 progesterone molecules were obtained by the reaction between the enzyme and N-oxy-succinimide ether of 3-0-carboxymethyloxime of progesterone. The enzyme modified by 42 progesterone molecules is effective in o-dianisidine oxidation by hydrogen peroxide and has a kcat/KM value of 512 M-1 s-1. The catalase conjugates with 3, 7 and 9 progesterone molecules exhibit a high activity during o-dianisidine oxidation by cumene hydroperoxide. The activity of conjugates is higher than that of the native non-modified enzyme in the same reaction. The maximum effectiveness was observed for catalase modified by 7 progesterone molecules. This conjugate is characterized by kcat/KM of 99,000 M-1 s-1 at 30 degrees C. The effect of the degree of enzyme modification on the kinetic parameters of o-dianisidine oxidation by H2O2 and cumene hydroperoxide is discussed.  相似文献   

11.
The interaction of Cu,ZnSOD with H2O2 generates an oxidant at the active site that can then cause either the inactivation of this enzyme or the oxidation of a variety of exogenous substrates. We show that the rate of inactivation, imposed by 10-mM H2O2 at 25 degrees C and pH 7.2, is not influenced by 10-mM HCO3-; whereas the oxidation of 2,2'-azino-bis-[3-ethylbenzothiazoline sulfonate] (ABTS=) is virtually completely dependent upon HCO3-. The reduction of the active site Cu(II) by H2O2, which precedes inactivation of the enzyme, occurred at the same rate in phosphate buffer with or without bicarbonate added. These results indicate that HCO3- does not play a role in facilitating the interaction of H2O2 with the active site copper, but they can be accommodated by the proposal that HCO3- is oxidized to HCO3*, which then diffuses from that site and causes the oxidation of substrates, such as ABTS=, that are too large to traverse the solvent access channel to the Cu(II).  相似文献   

12.
Bao X  Liu A  Lu X  Li JJ 《Biotechnology letters》2012,34(8):1537-1543
The vpl2 gene, encoding versatile peroxidase (VP) from Pleurotus eryngii, was synthesized with codon optimization and cloned into vector-pET-32a(+) and over-expressed in Escherichia coli BL21(DE3). An active peroxidase fused to the thioredoxin-hexahistidine tag was directly obtained by IPTG induction in the presence of hemin. Most of over-expressed protein was in the soluble form, and was purified on a nickel column with >85 % purity at a yield of 12.5 mg/l. The purified fusion protein, having an Rz value (A(407)/A(280), a measure of hemin content of the peroxidases) of 1.2, oxidized ABTS veratryl alcohol, Mn(2+), and Reactive Black 5. Activity of the enzyme increased after removing the tag. It lost only 5 % of its activity in 6.4 mM H(2)O(2). This is the first report on direct over-expression of active VP in E. coli.  相似文献   

13.
Vanadate-dependent oxidation of NADH by xanthine oxidase does not require the presence of xanthine and therefore is not due to cooxidation. Addition of NADH or xanthine had no effect on the oxidation of the other substrate. Oxidation of NADH was high at acid pH and oxidation of xanthine was high at alkaline pH. The specific activity was relatively very high with NADH. Concentration-dependent oxidation of NADH Concentration-dependent oxidation of NADH was obtained in the presence of the polymeric form of vanadate, but not orthovanadate or metavanadate. Both NADH and NADPH were oxidized, as in the nonenzymatic system. Oxidation of NADH, but not xanthine, was inhibited by KCN, ascorbate, MnCl2, cytochrome c, mannitol, Tris, epinephrine, norepinephrine, and triiodothyronine. Oxidation of NADH was accompanied by uptake of oxygen and generation of H2O2 with a stoichiometry of 1:1:1 for NADH:O2:H2O2. A 240-nm-absorbing species was formed during the reaction which was different from H2O2 or superoxide. A mechanism of NADH oxidation is suggested wherein Vv and O2 receive one electron each successively from NADH followed by VIV giving the second electron to superoxide and reducing it to H2O2.  相似文献   

14.
The kinetics of horseradish peroxidase (EC 1.11.1.7)-catalyzed oxidation of o-dianisidine by hydrogen peroxide in the presence of thiourea were studied. At the first, fast step of this process thiourea acts as a competitive reversible inhibitor with respect to o-dianisidine (Ki = 0.22 mM). The formation of a thiourea-peroxidase complex was determined by the increase in the absorbance at A495 and A638 of the enzyme. The dissociation constant for the peroxidase-thiourea complex is equal to 2.0-2.7 mM. Thiourea is not a specific substrate of peroxidase during the oxidation reaction by H2O2, but is an oxidase substrate (although not a very active one) of peroxidase. The irreversible inactivation of the enzyme during its incubation with thiourea was studied. The first-order inactivation rate constant (kin) was shown to increase with a fall in the enzyme concentration. The curve of the dependence of kin on the initial concentration of thiourea shows a maximum at 5-7 mM. The enzyme inactivation is due to its modification by intermediate free radical products of thiourea oxidation. The inhibitors of the free radical reactions (o-dianisidine) protect the enzyme against inactivation. The degree of inactivation depends on concentrations and ratio of thiourea and peroxidase. A possible mechanism of peroxidase interaction with thiourea is discussed.  相似文献   

15.
Using 4-methoxybenzoate monooxygenase from Pseudomonas putida, the substrate deuterium isotope effect on product formation and the solvent isotope effect on the stoichiometry of oxygen uptake, NADH oxidation, product and/or H2O2 (D2O2) formation for tight couplers, partial uncouplers, and uncouplers as substrates were measured. These studies revealed for the true, intrinsic substrate deuterium isotope effect on the oxygenation reaction a k1H/k2H ratio of < 2.0, derived from the inter- and intramolecular substrate isotope effects. This value favours a concerted oxygenation mechanism of the substrate. Deuterium substitution in a tightly coupling substrate initiated a partial uncoupling of oxygen reduction and substrate oxygenation, with release of H2O2 corresponding to 20% of the overall oxygen uptake. This H2O2 (D2O2) formation (oxidase reaction) almost completely disappeared when the oxygenase function was increased by deuterium substitution in the solvent. The electron transfer from NADH to oxygen, however, was not affected by deuterium substitution in the substrate and/or the solvent. With 4-trifluoromethylbenzoate as uncoupling substrate and D2O as solvent, a reduction (peroxidase reaction) of the active oxygen complex was initiated in consequence of its extended lifetime. These additional two electron-transfer reactions to the active oxygen complex were accompanied by a decrease of both NADH oxidation and oxygen uptake rates. These findings lead to the following conclusions: (a) under tightly coupling conditions the rate-limiting step must be the formation time and lifetime of an active transient intermediate within the ternary complex iron/peroxo/substrate, rather than an oxygenative attack on a suitable C-H bond or electron transfer from NADH to oxygen. Water is released after the monooxygenation reaction; (b) under uncoupling conditions there is competition in the detoxification of the active oxygen complex between its protonation (deuteronation), with formation of H2O2 (D2O2) and its further reduction to water. The additional two electron-transfer reactions onto the active oxygen complex then become rate limiting for the oxygen uptake rate.  相似文献   

16.
Vanadate (V(V)) stimulates the oxidation of NADH by xanthine oxidase and superoxide dismutase eliminates the effect of V(V). Paraquat stimulates both the oxidation of NADH by xanthine oxidase and the V(V) enhancement of that oxidation. Xanthine, which is a better substrate for xanthine oxidase than is NADH, causes a V(V)-dependent co-oxidation of NADH which is transient and eliminated by SOD. Urate inhibits the V(V)-stimulated oxidation of NADH by xanthine oxidase or by Rose Bengal plus light. Measurement of rates of both O2- production and V(V)-stimulated NADH oxidation showed that many molecules of NADH were oxidized per O2-. These chain lengths were an inverse function of overall reaction rate. Minimum chain lengths, calculated on the basis of 100% univalent reduction of O2 to O2-, were smaller than measured average chain lengths by a factor of five. All of these results are in accord with the view that V(V) does not directly affect the activity of the enzyme, but rather catalyzes the free radical chain oxidation of NADH by O2-. It was further shown that phosphate was not involved and that the active form of V(V) was orthovanadate, rather than decavanadate.  相似文献   

17.
Cell-free particulate fractions of extracts from the obligate methylotroph Methylococcus capsulatus catalyze the reduced nicotinamide adenine dinucleotide (NADH) and O2-dependent oxidation of methane (methane hydroxylase). The only oxidation product detected was formate. These preparations also catalyze the oxidation of methanol and formaldehyde to formate in the presence or absence of phenazine methosulphate with oxygen as the terminal electron acceptor. Methane hydroxylase activity cannot be reproducibly obtained from disintegrated cell suspensions even though the whole cells actively respired when methane was presented as a substrate. Varying the disintegration method or extraction medium had no significant effect on the activities obtained. When active particles were obtained, hydroxylase activity was stable at 0 C for days. Methane hydroxylase assays were made by measuring the methane-dependent oxidation of NADH by O2. In separate experiments, methane consumption and the accumulation of formate were also demonstrated. Formate is not oxidized by these particulate fractions. The effects of particle concentration, temperature, pH, and phosphate concentration on enzymic activity are described. Ethane is utilized in the presence of NADH and O2. The stoichiometric relationships of the reaction(s) with methane as substrate were not established since (i) the presumed initial product, methanol, is also oxidized to formate, and (ii) the contribution that NADH oxidase activity makes to the observed consumption of reactants could not be assessed in the presence of methane. Studies with known inhibitors of electron transport systems indicate that the path of electron flow from NADH to oxygen is different for the NADH oxidase, methane hydroxylase, and methanol oxidase activities.  相似文献   

18.
Hemin-promoted peroxidation of red cell cytoskeletal proteins   总被引:1,自引:0,他引:1  
Hemin-induced crosslinking of the erythrocyte membrane proteins was analyzed at three levels: (i) whole membranes, (ii) integrated or dissociated cytoskeletons, and (iii) isolated forms of the three main cytoskeletal proteins, spectrin, actin, and protein 4.1. Addition of H2O2 and hemoglobin to resealed membranes from without did not affect any of the membrane proteins. Hemin that can transport across the membrane induced, in the presence of H2O2, crosslinking of protein 4.1 and spectrin. Both free hemin and hemoglobin added with H2O2 induced crosslinking of integer cytoskeletons and mixtures of isolated cytoskeletal proteins, but hemin was always more active. Of the three major cytoskeletal proteins, spectrin and protein 4.1 were most active while the participation of actin was only minor. The yield of crosslinked products was increased in all reaction mixtures with pH, with an apparent pK above 9.0. Replacement of H2O2 by phenylhydrazine and tert-butyl hydroperoxide resulted in crosslinking of the same proteins, but with lower activity than H2O2. Bityrosines, which were identified by their specific fluorescence emission characteristics, were formed in reaction mixtures containing hemin and hydrogen peroxide and either spectrin or protein 4.1, but not actin. On the basis of fact that bityrosines were revealed only in reaction mixtures that produced protein adducts, formation of intermolecular bityrosines was analyzed to be involved in crosslinking of the cytoskeletal proteins. Since the levels of membrane-intercalated hemin are correlated with aggregation of membrane proteins, it is suggested that the peroxidative properties of hemin are responsible for its toxicity.  相似文献   

19.
Cytochemical localization of hydrogen peroxide production in the rat uterus   总被引:1,自引:0,他引:1  
A reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H)-dependent H2O2-generating activity of the rat uterus was investigated both electron cytochemically and biochemically. We tried to cytochemically demonstrate H2O2 generation from the oxidation of reduced NADH or NADPH using the cerium method. NADPH oxidation resulted in electron-dense deposits on the apical plasma membrane covering the microvilli of the surface epithelium of the lightly fixed endometrium. In control specimens incubated in a medium from which substrate was omitted, no such deposits were observed. The reduction of ferricytochrome c due to NADH oxidation was spectrophotometrically detected in the lightly fixed uterus. Absorption at 550 nm increased with the addition of NADH, but not with that of NAD. The reaction was weakened by preheating and adversely affected by the addition of superoxide dismutase, but it was not inhibited by adding 50 mM sodium azide. These results suggest that a kind of NAD(P)H oxidase, generating H2O2 via superoxide formation, may possibly be present on the apical plasma membrane of the rat endometrial epithelium.  相似文献   

20.
Copper ions are known to inactivate a variety of enzymes, and lactate dehydrogenase (LDH) is exceptionally sensitive to the presence of this metal. We now found that NADH strongly enhances the Cu(II)-mediated loss of LDH activity. Surprisingly, NADH was not oxidized in this process and also NAD+ promoted the Cu(II)-dependent inactivation of LDH. Catalase only partly protected the enzyme, whereas hypoxia even enhanced LDH inactivation. NAD(H) accelerated sulfhydryl (SH) group oxidation of LDH by 5,5-dithio-bis(2-nitrobenzoic acid) (DTNB), and, vice versa, LDH-mediated Cu(II) reduction. LDH activity was preserved by thiol donators and pyruvate and partially preserved by lactate and oxamate. Our results suggest that reactive oxygen species (ROS) are of minor importance for the inactivation of LDH induced by Cu(II)/NADH. We propose that conformational changes of the enzymes' active sites induced by NAD(H)-binding increase the accessibility of active sites' cysteine residues to Cu(II) thereby accelerating their oxidation and, consequently, loss of catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号