首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immunochemical studies have demonstrated that apoprotein B-100 and apoprotein B-48 share some antigenic determinants, but whether they are products of the same gene has remained uncertain. Utilizing a specific mouse monoclonal antibody, MB19, we recently characterized a common form of genetic polymorphism that was expressed in apo-B-100 (Young, S. G., Bertics, S. J., Curtiss, L. K., Casal, D. C., and Witztum, J.L. (1985) Proc. Natl. Acad. Sci. U.S.A., in press). Antibody MB19 binds different allotypes of apo-B-100 (MB19(1) and MB19(2] with high and low affinities, respectively. Compared to a rabbit antiserum against human low density lipoprotein, which detects 100% of apo-B mass in all individuals, antibody MB19 detects 100% of apo-B with allotype MB19(1) but less than 10% of apo-B with allotype MB19(2). Western blots demonstrate that MB19 binds to both apo-B-100 and apo-B-48. To determine if apo-B-48 and apo-B-100 from the same individual express the same polymorphism, chylomicrons and very low density lipoproteins were isolated from 23 subjects in whom the allotypes of apo-B-100 were known. Delipidated apoproteins were separated electrophoretically and then transferred to nitrocellulose membranes. Nitrocellulose membranes were incubated with 125I-MB19 (to detect the polymorphism) and 131I-antiserum to human apo-B (to quantitate total apo-B transferred to nitrocellulose membranes). Apo-B-100 and apo-B-48 bands were removed and the ratio of 125/131 counts in each band was calculated. In all 23 subjects studied, the same MB19 polymorphism was present in both apo-B-100 and apo-B-48. This observation provides strong evidence that both apoproteins are products of the same gene.  相似文献   

2.
To study the interaction between low-density lipoprotein (LDL) and granules from rat serosal mast cells in vitro, mast cells were stimulated with the degranulating agent 48/80 to induce exocytosis of the secretory granules. Subsequent incubation of the exocytosed granules with 125I-LDL resulted in binding of the labelled LDL to the granules. When increasing amounts of agent 48/80 were added to mast-cell suspensions, a dose-dependent release of granules was observed and a parallel increase in the amount of 125I-LDL bound to granules resulted. 125I-LDL bound to a single class of high-affinity binding sites on the granules. At saturation, 105 ng of LDL were bound per microgram of granule protein. The lipoprotein binding to mast-cell granules was apolipoprotein(apo)-B + E-specific. Thus 125I-LDL binding to the granules was effectively compared for by LDL (apo-B) or by dimyristoyl phosphatidylcholine vesicles containing apo-E, but not by high-density lipoprotein (HDL3) containing apo-AI as their major protein component. Neutralization by acetylation of the positively charged amino groups of apo-B of LDL or presence of a high ionic strength in the incubation medium prevented LDL from binding to the granules, indicating the presence of ionic interactions between the positively charged amino acids of LDL and negatively charged groups of the granules. It could be demonstrated that LDL bound to the negatively charged heparin proteoglycan of the granules. Thus treatment of granules with heparinase resulted in loss of their ability to bind LDL, and substances known to bind to heparin, such as Toluidine Blue, avidin, lipoprotein lipase, fibronectin and protamine, all effectively competed with LDL for binding to the granules. The results show that LDL is efficiently bound to the heparin proteoglycan component of mast-cell granules once the mast cells are stimulated to release their granules into the extracellular space.  相似文献   

3.
High-density lipoprotein (HDL) cholesteryl esters are taken up by fibroblasts via HDL particle uptake and via selective uptake, i.e., cholesteryl ester uptake independent of HDL particle uptake. In the present study we investigated HDL selective uptake and HDL particle uptake by J774 macrophages. HDL3 (d = 1.125-1.21 g/ml) was labeled with intracellularly trapped tracers: 125I-labeled N-methyltyramine-cellobiose-apo A-I (125I-NMTC-apo A-I) to trace apolipoprotein A-I (apo A-I) and [3H]cholesteryl oleyl ether to trace cholesteryl esters. J774 macrophages, incubated at 37 degrees C in medium containing doubly labeled HDL3, took up 125I-NMTC-apo A-I, indicating HDL3 particle uptake (102.7 ng HDL3 protein/mg cell protein per 4 h at 20 micrograms/ml HDL3 protein). Apparent HDL3 uptake according to the uptake of [3H]cholesteryl oleyl ether (470.4 ng HDL3 protein/mg cell protein per 4 h at 20 micrograms/ml HDL3 protein) was in significant excess on 125I-NMTC-apo A-I uptake, i.e., J774 macrophages demonstrated selective uptake of HDL3 cholesteryl esters. To investigate regulation of HDL3 uptake, cell cholesterol was modified by preincubation with low-density lipoprotein (LDL) or acetylated LDL (acetyl-LDL). Afterwards, uptake of doubly labeled HDL3, LDL (apo B,E) receptor activity or cholesterol mass were determined. Preincubation with LDL or acetyl-LDL increased cell cholesterol up to approx. 3.5-fold over basal levels. Increased cell cholesterol had no effect on HDL3 particle uptake. In contrast, LDL- and acetyl-LDL-loading decreased selective uptake (apparent uptake 606 vs. 366 ng HDL3 protein/mg cell protein per 4 h in unloaded versus acetyl-LDL-loaded cells at 20 micrograms HDL3 protein/ml). In parallel with decreased selective uptake, specific 125I-LDL degradation was down-regulated. Using heparin as well as excess unlabeled LDL, it was shown that HDL3 uptake is independent of LDL (apo B,E) receptors. In summary, J774 macrophages take up HDL3 particles. In addition, J774 cells also selectively take up HDL3-associated cholesteryl esters. HDL3 selective uptake, but not HDL3 particle uptake, can be regulated.  相似文献   

4.
The formation of large cholesterol-enriched high density lipoproteins (HDL1/HDLc) from typical HDL3 requires lecithin:cholesterol acyltransferase activity, additional cholesterol, and a source of apolipoprotein (apo-) E. The present study explores the role of apo-E in promoting HDL1/HDLc formation and in imparting to these lipoprotein particles the ability to interact with the apo-B,E(low density lipoprotein (LDL] receptor. Incubation of normal canine serum with cholesterol-loaded mouse peritoneal macrophages resulted in the formation of HDL1/HDLc that competed with 125I-LDL for binding to the apo-B,E(LDL) receptors on cultured human fibroblasts. Cholesterol efflux from macrophages was necessary because incubation of normal canine serum with nonloaded macrophages did not cause HDL1/HDLc formation. However, cholesterol delivery to the serum was not sufficient to result in HDL1/HDLc formation. Apolipoprotein E had to be available. Incubation of apo-E-depleted canine serum with cholesterol-loaded J774 cells, a macrophage cell line that does not synthesize apo-E, demonstrated that no HDL1/HDLc formation was detected even in the presence of significant cholesterol efflux. However, addition of exogenous apo-E to the serum during the incubation with cholesterol-loaded J744 cells promoted the formation of large receptor-active HDL1/HDLc. The receptor binding activity of these particles produced in vitro correlated with the amount of apo-E incorporated into the HDL1/HDLc. Apolipoproteins A-I and C-III were ineffective in promoting HDL1/HDLc formation; thus, apo-E was unique in allowing HDL1/HDLc formation. These results demonstrate that when lecithin:cholesterol acyltransferase activity, cholesterol, and apo-E are present in serum, typical HDL can be transformed in vitro into large cholesterol-rich HDL1/HDLc that are capable of binding to lipoprotein receptors.  相似文献   

5.
Comparative studies were made of the metabolism of plasma high density lipoprotein (HDL) and low density lipoprotein (LDL) by cultured normal human fibroblasts. On a molar basis, the surface binding of (125)I-HDL was only slightly less than that of (125)I-LDL, whereas the rates of internalization and degradation of (125)I-HDL were very low relative to those of (125)I-LDL. The relationships of internalization and degradation to binding suggested the presence of a saturable uptake mechanism for LDL functionally related to high-affinity binding. This was confirmed by the finding that the total uptake of (125)I-LDL (internalized plus degraded) at 5 micro g LDL protein/ml was 100-fold greater than that attributable to fluid or bulk pinocytosis, quantified with [(14)C]sucrose, and 10-fold greater than that attributable to the sum of fluid endocytosis and adsorptive endocytosis. In contrast, (125)I-HDL uptake could be almost completely accounted for by the uptake of medium during pinocytosis and by invagination of surface membrane (bearing bound lipoprotein) during pinocytosis. These findings imply that, at most, only a small fraction of bound HDL binds to the high-affinity LDL receptor and/or that HDL binding there is internalized very slowly. The rate of (125)I-HDL degradation by cultured fibroblasts (per unit cell mass) exceeded an estimate of the turnover rate of HDL in vivo, suggesting that peripheral tissues may contribute to HDL catabolism. In accordance with their differing rates of uptake and cholesterol content, LDL increased the cholesterol content of fibroblasts and selectively inhibited sterol biosynthesis, whereas HDL had neither effect.  相似文献   

6.
Freshly prepared plasma membranes from rat corpora lutea were examined for the presence of low density lipoprotein (LDL) and high density lipoprotein (HDL) receptors by determining the specific binding of 125I-LDL and 125I-HDL. These membranes have two types of binding site for 125I-LDL, one with high affinity (Kd = 7.7 micrograms of LDL protein/ml), the other with low affinity (Kd = 213 micrograms of LDL protein/ml) and one type of binding site for 125I-HDL with Kd = 17.8 micrograms of HDL protein/ml. LDL receptor is sensitive to pronase and trypsin; HDL receptor, however, is resistant. The binding reaction was further characterized with respect to effect of time and temperature of incubation, requirement of divalent metal ion, influence of ionic strength, and binding specificity. In vivo pretreatment of rats with human choriogonadotropin (hCG) resulted in induction of both LDL and HDL receptors in a dose- and time-dependent manner when compared with saline-injected controls. The induction of lipoprotein receptors by hCG treatment is target organ-specific since the increase was seen only in the ovarian tissue. Membranes prepared from liver, kidney, and heart did not show an increase in lipoprotein receptors after hCG injection. An examination of the equilibrium dissociation constants for 125I-LDL and 125I-HDL binding after hCG administration revealed that the increase in binding activity was due to an increase in the number of binding sites rather than to a change in the binding affinity. In conclusion, rat corpus luteum possesses specific receptors for both LDL and HDL and these receptors are regulated by gonadotropins.  相似文献   

7.
125I-Low density lipoprotein (125I-LDL)1 binds tightly to glass beads at physiologic pH and ionic strength. This binding shows saturability, high affinity (half maximal binding achieved at 10–15 μg protein/ml), and specificity (unlabeled LDL but not HDL or albumin competes with 125I-LDL for binding to the glass beads). In contrast to the binding of 125I-LDL to the physiologic LDL receptor on the surface of human fibroblasts and lymphocytes, the binding of 125I-LDL to bind to inert substances such as glass must be considered in the interpretation of studies in which 125I-LDL binding to membrane receptors is measured. The data emphasize the importance of correlating observed 125I-LDL binding with a physiologic action of the lipoprotein.  相似文献   

8.
The sulfated glycosaminoglycan, heparin, was found to release 125I-labeled low density lipoprotein (125I-LDL) from its receptor site on the surface of normal human fibroblasts. Measurement of the amount of 125I-LDL released by heparin permitted the resolution of the total cellular uptake of 125I-LDL at 37 degrees C into two components: first, an initial rapid, high affinity binding of the lipoprotein to the surface receptor, from which the 125I-LDL could be released by heparin, and second, a slower process attributable to an endocytosis of the receptor-bound lipoprotein, which rendered it resistant to heparin release. At 4 degrees C the amount of heparin-releasable 125I-LDL was similar to that at 37 degrees C, but interiorization of the lipoprotein did not occur at the lower temperature. The physiologic importance of the cell surface LDL receptor was emphasized by the finding that mutant fibroblasts from a subject with homozygous Familial Hypercholesterolemia, which lack the ability to take up 125I-LDL at 37 degrees C, did not show cell surface binding of 125I-LDL, as measured by heparin release, at either 4 degrees C or 37 degrees C. Although heparin released 125I-LDL from its binding site, it did not release 3H-concanavalin A from its surface receptor, and conversely, alpha-methyl-D-mannopyranoside, which released 3H-concanavalin A, did not release surface-bound 125I-LDL. When added to the culture medium simultaneously with LDL, heparin prevented the binding of LDL to its receptor and hence prevented the LDL-mediated suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity. The uptake of LDL by fibroblasts is proposed as a model of receptor-mediated adsorptive endocytosis of macromolecules in human cells.  相似文献   

9.
The relationships of plasma lipid and apolipoprotein (apo) concentrations to hepatic low-density lipoprotein (LDL) receptor activity were examined in 21 subjects (16 females, 5 males), who were undergoing laparotomy for non-neoplastic disease (cholecystectomy in 16). None had familial hypercholesterolemia, or renal, endocrine or hepatic disease. Ages were 37-77 years (mean, 58 years), plasma cholesterol concentrations 4.09-6.72 mmol/l (5.38) and plasma triacylglycerol concentrations 0.75-2.35 mmol/l (1.36). Receptor activity was quantified in vitro as the total saturable binding and EDTA-suppressible binding (representing apoB,E receptors) of 125I-labelled human LDL (15 micrograms protein/ml) by liver homogenate at 37 degrees C. There were no significant differences between men and women in 125I-labeled LDL binding. In the pooled data, EDTA-suppressible binding averaged 50 ng 125I-LDL protein/mg cell protein (S.D., 15). Total saturable binding averaged 2-fold greater (mean, 101 ng/mg; S.D., 32). Plasma cholesterol, LDL cholesterol and apoB concentrations were negative functions of both EDTA-suppressible binding and total saturable binding, but the correlations with EDTA-suppressible binding were stronger (cholesterol: r = -0.59, P less than 0.01; LDL cholesterol: r = -0.48, P less than 0.05; apoB: r = -0.61, P less than 0.01). Plasma triacylglycerol, high-density lipoprotein cholesterol and apoA-I concentrations were not related to either measure of receptor activity. These results provide evidence that the activity of apoB,E receptors in the liver is a major determinant of the plasma LDL concentration in middle-aged and elderly humans.  相似文献   

10.
Canine HDL1 and canine and swine HDLc were fractionated into several lipoprotein subpopulations by heparin/manganese precipitation. The ability of the various subfractions of HDL1 or HDLc to compete with 125I-labeled low density lipoproteins (LDL) for binding and degradation by human fibroblasts was compared. The HDL1 or HDLc which precipitated at the lowest concentration of heparin (a concentration which precipitates LDL) were the most effective in competing with 125I-LDL for binding, internalization, and degradation. A striking characteristic of these lipoproteins was the occurrence of a prominence of the arginine-rich apoprotein. The HDL1 or HDLc subfractions which were not precipitated by heparin/managanese lacked detectable arginine-rich apoprotein and did not compete significantly with the 125I-LDL for binding and degradation. Furthermore, the lipid to protein ratio differed in the precipitable and nonprecipitable lipoproteins, with those which were most efficiently bound and degraded containing more cholesterol. Specific lipoprotein interaction with heparin and with the cell surface receptors may occur by a common mechanism; namely, through a positively charged region on the lipoprotein surface which may reside with the B and arginine-rich apoproteins.  相似文献   

11.
125I-labeled low density lipoprotein (LDL) binding to purified plasma membranes prepared from freshly isolated human adipocytes was saturable, specific, and displaceable by unlabeled ligand. The maximum specific binding capacity measured at saturating concentrations of 125I-LDL was 1.95 +/- 1.17 micrograms of LDL bound/mg of membrane protein (mean +/- S.D., n = 16). In contrast to cultured fibroblasts, specific binding of LDL to adipocyte membranes was calcium-independent, was not affected by EDTA or NaCl, and was not destroyed by pronase. Plasma membranes purified directly from homogenized adipose tissue also showed calcium-independent LDL specific binding (0.58 +/- 0.33 micrograms of LDL bound/mg of membrane protein, mean +/- S.D. n = 11). Specific binding, internalization, and degradation of 125I-methylated LDL was demonstrated in isolated adipocytes and competition experiments showed that native and methylated LDL interacted with adipocytes through some common recognition mechanism(s). Compared to native LDL, specific binding of methylated LDL to adipocyte membranes was significantly reduced (43%), indicating that interaction of LDL with adipocyte was dependent in part on the lysine residues of apolipoprotein B. LDL binding to adipocyte plasma membranes was also competitively inhibited by human high density lipoprotein subfractions HDL2 and HDL3. Thus, LDL metabolism in mature adipocytes appears to be regulated by mechanisms distinctly different from a variety of cultured mesenchymal cells. In addition, the ability of adipocytes to bind, internalize, and degrade significant amounts of methylated LDL supports the view that adipose tissue is involved in the metabolism of modified lipoproteins in vivo.  相似文献   

12.
We previously identified a defect in the in vivo catabolism of low density lipoprotein (LDL) from hypercholesterolemic pigs carrying a mutant apolipoprotein B allele. In the present studies, we examined the in vitro metabolism of mutant LDL in cultured pig fibroblasts. A 3-fold higher concentration of mutant LDL (compared to control) was needed to displace 50% of control 125I-LDL binding. Mutant LDL had a 6-fold higher dissociation constant than control LDL. Scatchard plots of the binding data were concave upward, suggesting multiple classes of binding sites or negative cooperativity. The mutant LDL degradation rate was reduced by 40%; this decrease could be attributed to a dense LDL subspecies. Mutant and control buoyant LDL subspecies were degraded more slowly than the corresponding dense LDL subspecies. Together, these studies show that diminished LDL receptor binding can result from mutations in apolipoprotein B and from changes in the lipid composition of LDL particles.  相似文献   

13.
An apolipoprotein (apo) B-specific monoclonal antibody, MB19, detects a commonly occurring two-allele genetic polymorphism in human apoB (Young, S. G., S. J. Bertics, L. K. Curtiss, D. C. Casal, and J. L. Witztum. 1986. Proc. Natl. Acad. Sci. USA. 83: 1101-1105). Antibody MB19 binds to two different allotypes of apoB, MB19(1) and MB19(2), with high and low affinity, respectively. The epitope for antibody MB19 is located within apoB-100 thrombolytic fragment T4 (apoB-100 amino acid residues 1-1297). In this study, we examined the relationship of the MB19 polymorphism to a C----T nucleotide substitution at apoB cDNA nucleotide 421. This nucleotide substitution results in a Thr----Ile substitution at apoB-100 amino acid 71, and it changes an ApaLI restriction endonuclease site in the apoB gene. The nucleotide substitution was easily detectable by ApaLI digestion of a 141-base pair fragment of the apoB gene obtained by enzymatic amplification of genomic DNA. In 62 subjects, the MB19 phenotype, as determined by radioimmunoassays, correlated perfectly with the ApaLI restriction site polymorphism in the amplified DNA. The apoB allotype MB19(1) is associated with an Ile at residue 71 and the absence of the ApaLI site, whereas the apoB allotype MB19(2) is associated with a Thr at residue 71 and the presence of the ApaLI site. We conclude that the amino acid substitution at residue 71 probably accounts for the MB19 polymorphism in apoB.  相似文献   

14.
Low-density lipoproteins (LDL) are taken up by LDL receptor (LDLr)-dependent and -independent pathways; the role and importance of the latest being less well defined. We analyzed the importance of these pathways in the mouse by comparing LDL binding to primary cultures of hepatocytes from LDLr knockout (LDLr KO) and normal C57BL/6J mice. Saturation curve analysis shows that (125)I-LDL bind specifically to normal and LDLr KO mouse hepatocytes with similar dissociation constants (K(d)) (31.2 and 22.9 microg LDL-protein/ml, respectively). The maximal binding capacity (B(max)) is, however, reduced by 48% in LDLr KO mouse hepatocytes in comparison to normal hepatocytes. Conducting the assay in the presence of a 200-fold excess of high-density lipoprotein-3 (HDL3) reduced by 39% the binding of (125)I-LDL to normal hepatocytes and abolished the binding to the LDLr KO mouse hepatocytes. These data indicate that in normal mouse hepatocytes, the LDLr is responsible for approximately half of the LDL binding while a lipoprotein binding site (LBS), interacting with both LDL and HDL3, is responsible for the other half. It can also be deduced that both receptors/sites have a similar affinity for LDL. The metabolism of LDL-protein and cholesteryl esters (CE) was analyzed in both types of cells. (125)I-LDL-protein degradation was reduced by 95% in LDLr KO hepatocytes compared to normal hepatocytes. Comparing the association of (125)I-LDL and (3)H-CE-LDL revealed a CE-selective uptake of 35.6- and 22-fold for normal and LDLr KO mouse hepatocytes, respectively. Adding a 200-fold excess of HDL3 in the assay reduced by 71% the CE-selective uptake in LDLr KO hepatocytes and by 96% in normal hepatocytes. This indicates that mouse hepatocytes are able to selectively take up CE from LDL by the LBS. The comparison of LDL-CE association also showed that the LBS pathway provides 5-fold more LDL-CE to the cell than the LDLr. Overall, our results indicate that in mouse hepatocytes, LDLr is almost completely responsible for LDL-protein degradation while the LBS is responsible for the major part of LDL-CE entry by a CE-selective uptake pathway.  相似文献   

15.
Using human and rabbit hepatocyte cultures, the effects of khellin and timefurone on lipoprotein metabolism were studied with special reference to the following parameters: i) binding and degradation of 125I-labeled low density lipoproteins (LDL); ii) apoprotein B (apo-B) secretion measured by immunoenzymatic assay, iii) [35S]methionine labeled apo-B and apo-E within the composition of very low density lipoproteins (VLDL); iiii) total cholesterol synthesis and cholesterol secretion within the composition of VLDL. The therapeutic concentrations (0.1-10 micrograms/ml) of the above drugs had no appreciable effect on the binding and degradation of 125I-LDL but inhibited the secretion of apo-B VLDL, leaving the apo-E VLDL unaffected. This was paralleled with inhibition of cholesterol synthesis (by 30-50%) and VLDL secretion. These results suggest that khellin and timefurone mediate the hypolipidemic effect via the reduction of the intracellular synthesis of cholesterol and secretion of apo-B containing VLDL by hepatocytes.  相似文献   

16.
Using thrombin and trypsin as probes, we determined: first, that low-density lipoprotein (LDL) receptor binding determinants switch from apolipoprotein (apo) E to apo-B within the very-low-density lipoprotein (VLDL) Sf 20-60 region of the metabolic cascade from VLDL1 (Sf 100-400) of hypertriglyceridemic (HTG) human subjects to LDL. Second, two different conformations of apo-E exist in HTG-VLDL Sf greater than 60, one accessible (greater than or equal to 1 mol/mol of particle) and one inaccessible (1-2 mol/mol) to both thrombin and the LDL receptor; normal VLDL (Sf greater than 60) have only the inaccessible conformation and therefore do not bind to the LDL receptor. Third, thrombin degrades apo-B into large fragments, three of which have electrophoretic mobilities similar to B-48, B-74, and B-26; this, however, has no effect on apo-B-mediated receptor binding. Fibroblast studies showed that thrombin could abolish receptor uptake of HTG-VLDL1 and HTG-VLDL2 (Sf 60-100), had little or no effect on HTG-VLDL3 (Sf 20-60), and no effect on uptake of intermediate-density lipoprotein (IDL) or LDL. Trypsin abolished the binding of HTG-VLDL1 and HTG-VLDL2, reduced that of HTG-VLDL3, but had little to no effect on IDL or LDL binding. Immunochemical techniques revealed that thrombin cleaved some apo-E into the E-22 and E-12 fragments; after trypsin treatment no apo-E was detected in any HTG-lipoprotein. Normal VLDL subclasses contained less apo-E than the corresponding HTG-VLDL subclasses and it was not cleaved by thrombin. Apo-B immunoreactivities of VLDL subclasses were not significantly changed after treatment with thrombin, although thrombin cleaved some of the B-100 of each VLDL subclass, and all apo-B in IDL and LDL, into 4-6 major large fragments. Trypsin converted all of the apo-B of each lipoprotein into smaller fragments (Mr less than 100,000). We conclude that apo-E of the thrombin-accessible conformation mediates uptake of HTG-VLDL1 and HTG-VLDL2 but that apo-B alone is sufficient to mediate receptor binding of IDL and LDL; the switch from apo-E to apo-B as the primary or sufficient binding determinant occurs within the VLDL3 (Sf 20-60) region of the metabolic cascade, where receptor binding first appears in VLDL subclasses from normal subjects.  相似文献   

17.
To determine the apolipoprotein specificity of high density lipoprotein (HDL) receptor, apolipoprotein A-I (apo-AI) and apolipoprotein A-II (apo-AII) purified from high density lipoprotein3 (HDL3) were reconstituted into dimyristoyl phosphatidylcholine vesicles (DMPC) and their ability to bind to luteinized rat ovarian membranes was examined. Both 125I-apo-A-I.DMPC and 125I-apo-A-II.DMPC were shown to bind to ovarian membranes with Kd = 2.87 and 5.70 micrograms of protein/ml, respectively. The binding of both 125I-apo-A-I.DMPC and 125I-apo-A-II.DMPC was inhibited by unlabeled HDL3, apo-A-I.DMPC, apo-A-II.DMPC, apo-C-I.DMPC, apo-C-II.DMPC, apo-C-III1.DMPC, and apo-C-III2.DMPC, but not by DMPC vesicles, bovine serum albumin.DMPC or low density lipoprotein. Since the binding labeled apo-A-I.DMPC and apo-A-II.DMPC was inhibited by the DMPC complexes of apo-C groups, the direct binding of 125I-apo-C-III1.DMPC was also demonstrated with Kd = 9.6 micrograms of protein/ml. In addition, unlabeled apo-A-I.DMPC, and apo-A-II.DMPC, as well as apo-C.DMPC, inhibited 125I-HDL3 binding. 125I-apo-A-I, 125I-apo-A-II, and 125I-apo-C-III1 in the absence of DMPC also bind to the membranes. These results suggest that HDL receptor recognizes apolipoprotein AI, AII, and the C group and that the binding specificity of the reconstituted lipoproteins is conferred by their apolipoprotein moiety rather than the lipid environment. In vivo pretreatment of rats with human chorionic gonadotropin resulted in an increase of 125I-apo-A-I.DMPC, 125I-apo-A-II.DMPC, and 125I-apo-C-III1.DMPC binding activities. However, no induction of binding activity was observed when the apolipoprotein was not included in DMPC vesicles. An examination of the equilibrium dissociation constant and binding capacity for 125I-apo-A-I.DMPC and 125I-apo-A-II.DMPC after human chorionic gonadotropin treatment revealed that the increase in binding activity was due to an increase in the number of binding sites rather than a change in the binding affinity. These results further support our contention that apo-A-I, apo-A-II, and the apo-C group bind to HDL receptor. In conclusion, the HDL receptor of luteinized rat ovary recognizes apolipoproteins A-I, A-II, and the C group but not low density lipoprotein, and the binding is induced by human chorionic gonadotropin in vivo.  相似文献   

18.
To identify the domain of apolipoprotein E (apo-E) involved in binding to low density lipoprotein (LDL) receptors on cultured human fibroblasts, apo-E was cleaved and the fragments were tested for receptor binding activity. Two large thrombolytic peptides (residues 1-191 and 216-299) of normal apo-E3 were combined with the phospholipid dimyristoylphosphatidylcholine (DMPC) and tested for their ability to compete with 125I-LDL for binding to the LDL (apo-B,E) receptors on human fibroblasts. The NH2-terminal two-thirds (residues 1-191) of apo-E3 was as active as intact apo-E3 . DMPC, while the smaller peptide (residues 216-299) was devoid of receptor-binding activity. When apo-E3 was digested with cyanogen bromide (CNBr) and the four largest CNBr fragments were combined with DMPC and tested, only one fragment competed with 125I-LDL for binding to cultured human fibroblasts (CNBr II, residues 126-218). This fragment possessed binding activity similar to that of human LDL. The 125I-labeled CNBr II . DMPC complex also demonstrated high affinity, calcium-dependent saturable binding to solubilized bovine adrenal membranes. The binding of CNBr II . DMPC was inhibited by 1,2-cyclohexanedione modification of arginyl residues or diketene modification of lysyl residues. In addition, the CNBr II had to be combined with DMPC before it demonstrated any receptor-binding activity. Pronase treatment of the membranes abolished the ability of this fragment to bind to the apo-B,E receptors. This same basic region in the center of the molecule has been implicated as the apo-B,E receptor-binding domain not only by this study but also by other studies showing that 1) natural mutants of apo-E that display defective binding have single amino acid substitutions at residues 145, 146, or 158; and 2) the apo-E epitope of the monoclonal antibody 1D7, which inhibits apo-E binding, is centered around residues 139-146.  相似文献   

19.
The hypothesis that the apoprotein composition of nascent very-low-density lipoprotein (VLDL) secreted by the hepatocyte is determined by the relative rates of apoprotein synthesis and their affinities of binding to VLDL was tested using chick hepatocytes in monolayer culture. Chick cells were chosen for the study of lipoprotein assembly since estradiol treatment can be used to alter the composition of the apoprotein mixture synthesized by these cells. The secretion of apoprotein (apo) B by estradiol-treated hepatocytes was elevated 4.2-fold above the basal level measured in control cells. Furthermore, estradiol-treated cells secreted apo-II, a major VLDL apoprotein not synthesized prior to estradiol treatment, at a level equivalent to that of apo-B. However, no difference in the secretion of apo-A-I and other newly identified nascent VLDL apoproteins was detected. These changes in relative rates of apoprotein synthesis altered the composition of nascent VLDL secreted by control versus estradiol-induced cells from: apo-B, 22 to 40%; apo-II, 0 to 32%; apo-37 kDa, 14 to 6%; apo-A-I, 31 to 12%; apo-17 kDa, 10 to 4%; apo-9 kDa, 15 to less than 10%; and apo-6 kDa, 8 to less than 2%. To investigate the basis for the preferential incorporation of apo-B and apo-II into nascent VLDL, the relative affinities of the apoproteins for VLDL were compared by measuring their capacities to transfer from VLDL into other lipoprotein or nonlipoprotein density classes. Culture medium containing [3H]leucine-labeled VLDL was incubated with plasma deficient in lipoproteins of rho less than 1.006 g/ml. Within 30 min of incubation at 37 degrees C, 3H-labeled apo-A-I and apo-9 kDa exchanged between VLDL and high-density lipoprotein, whereas apo-37 kDa exchanged between VLDL and the rho greater than 1.21 g/ml fraction. Neither apo-B nor apo-II underwent transfer from nascent VLDL. These results suggest that the relative rates of input of apoproteins into the secretory pathway and their affinities of binding to the nascent VLDL particle determine their extent of incorporation into, and, thus, the apoprotein composition of secreted VLDL.  相似文献   

20.
To investigate the effect of low density lipoprotein (LDL) heterogeneity on the conformation of LDL apolipoprotein B (apo-B), the immunoreactivities of 6 monoclonal antibodies against LDL apo-B were measured in 3 LDL subfractions isolated by equilibrium density gradient ultracentrifugation. To ensure a broad range of LDL particles, the LDL subfractions were prepared from normal subjects and patients with hyperapobetalipoproteinemia. With 3 of the antibodies, 1D1, 5E11, and 3A10, LDL fractions 1 (the most buoyant), 2 (the intermediate), and 3 (the densest) were equally immunoreactive and competed similarly with reference whole LDL. In contrast, with 3 other antibodies, 2D8, 3F5, and 4G3, fraction 1 was significantly more reactive than fraction 3; that is for each in turn, 290, 250, and 150% more of the densest LDL protein was required to achieve the same displacement as with fraction 1. Further, the immunoreactivities of the 3 LDL fractions with antibodies 2D8, 3F5, and 4G3 were negatively correlated with their LDL cholesterol to LDL protein ratio with r values of 0.727, 0.898, and 0.870, respectively, suggesting that as LDL particle size decreases, the conformation of the LDL apo-B changes progressively. It is of interest that the antigenic determinants recognized by 3F5 and 4G3 are close to the LDL receptor recognition site on LDL apo-B. Therefore, it is possible that the reduced immunoreactivity of these determinants in dense LDL may be the in vitro correlate of the reduced fractional catabolics rate of dense LDL compared to buoyant LDL previously observed in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号