首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A stem cell is defined as a cell with the capacity to both self-renew and generate multiple differentiated progeny. Embryonic stem cells (ESC) are derived from the blastocyst of the early embryo and are pluripotent in differentiative ability. Their vast differentiative potential has made them the focus of much research centered on deducing how to coax them to generate clinically useful cell types. The successful derivation of hematopoietic stem cells (HSC) from mouse ESC has recently been accomplished and can be visualized in this video protocol. HSC, arguably the most clinically exploited cell population, are used to treat a myriad of hematopoietic malignancies and disorders. However, many patients that might benefit from HSC therapy lack access to suitable donors. ESC could provide an alternative source of HSC for these patients. The following protocol establishes a baseline from which ESC-HSC can be studied and inform efforts to isolate HSC from human ESC. In this protocol, ESC are differentiated as embryoid bodies (EBs) for 6 days in commercially available serum pre-screened for optimal hematopoietic differentiation. EBs are then dissociated and infected with retroviral HoxB4. Infected EB-derived cells are plated on OP9 stroma, a bone marrow stromal cell line derived from the calvaria of M-CSF-/- mice, and co-cultured in the presence of hematopoiesis promoting cytokines for ten days. During this co-culture, the infected cells expand greatly, resulting in the generation a heterogeneous pool of 100 s of millions of cells. These cells can then be used to rescue and reconstitute lethally irradiated mice.  相似文献   

3.
4.
In vertebrates the extraembryonic mesoderm of the yolk sac (YS) is the first site during embryogenesis where morphologically discernible hematopoiesis may be found. Later hematopoiesis shifts into the embryo proper, first to the liver, the major fetal hematopoietic site, then to definitive hematopoietic territories, the spleen and bone marrow. It is widely accepted that in the mouse this picture reflects the migration of pluripotent hematopoietic stem cells (HSC) from the YS accompanied by subsequent colonization of the hematopoietic tissues during embryogenesis. However, there is no conclusive evidence showing unequivocally the initiating role of the YS in murine adult hematopoiesis. Recently, we have demonstrated the important role of embryo body tissues in the development of CFU-S before the establishment of definitive hematopoiesis in the fetal liver. This finding suggests that the early development of the hematopoietic system in the mouse is more complex than has been previously proposed and we consider here the early hematopoietic events in the developing mouse embryo.  相似文献   

5.
The aorta-gonad-mesonephros (AGM) region is a potent hematopoietic site within the mammalian embryo body, and the first place from which hematopoietic stem cells (HSCs) emerge. Within the complex embryonic vascular, excretory and reproductive tissues of the AGM region, the precise location of HSC development is unknown. To determine where HSCs develop, we subdissected the AGM into aorta and urogenital ridge segments and transplanted the cells into irradiated adult recipients. We demonstrate that HSCs first appear in the dorsal aorta area. Furthermore, we show that vitelline and umbilical arteries contain high frequencies of HSCs coincident with HSC appearance in the AGM. While later in development and after organ explant culture we find HSCs in the urogenital ridges, our results strongly suggest that the major arteries of the embryo are the most important sites from which definitive HSCs first emerge.  相似文献   

6.
Elucidating the mechanisms underlying hematopoietic stem cell (HSC) specification and expansion in the embryo has been hampered by the lack of analytical cell culture systems that recapitulate in vivo development. Here, we describe an ex vivo model that facilitates a rapid and robust emergence of multipotent long-term repopulating HSCs in the embryonic AGM region. Because this method includes a cell dissociation step prior to reconstruction of a three-dimensional functional tissue and preserves both stromal and hematopoietic elements, it allowed us to identify the direct ancestry of the rapidly expanding HSC pool. We demonstrate that extensive generation of definitive HSCs in the AGM occurs predominantly through the acquisition of stem characteristics by the VE-cadherin+CD45+ population.  相似文献   

7.
The molecular mechanisms specifying hematopoietic stem cells (HSCs) in the vertebrate embryo remain poorly understood. Recently in Nature, Traver and colleagues demonstrate that timed wnt to Notch relay signaling across multiple cell types serves as an early upstream mechanism of HSC induction in zebrafish (Clements et?al., 2011).  相似文献   

8.
During embryonic development, the hematopoietic system is the first to generate terminally differentiated, functional cell types. The urgent necessity for the early formation of blood and blood vessels during embryogenesis means that the induction, expansion, and maturation of these systems must be rapidly and precisely controlled. Bone morphogenic proteins (BMPs) have been implicated in hematopoietic development in the vertebrate embryo and stimulate the proliferation and/or differentiation of human cord blood hematopoietic stem cells (HSC) and embryonic stem cells in vitro. Here we review the mechanisms of action and potential roles of these soluble signaling molecules in vertebrate hematopoiesis.  相似文献   

9.
The Mixed-Lineage Leukemia (MLL) gene encodes a Trithorax-related chromatin-modifying protooncogene that positively regulates Hox genes. In addition to their well-characterized roles in axial patterning, Trithorax and Polycomb family proteins perform less-understood functions in vertebrate hematopoiesis. To define the role of MLL in the development of the hematopoietic system, we examined the potential of cells lacking MLL. Mll-deficient cells could not develop into lymphocytes in adult RAG-2 chimeric animals. Similarly, in vitro differentiation of B cells required MLL. In chimeric embryos, Mll-deficient cells failed to contribute to fetal liver hematopoietic stem cell/progenitor populations. Moreover, we show that aorta-gonad-mesonephros (AGM) cells from Mll-deficient embryos lacked hematopoietic stem cell (HSC) activity despite their ability to generate hematopoietic progeny in vitro. These results demonstrate an intrinsic requirement for MLL in definitive hematopoiesis, where it is essential for the generation of HSCs in the embryo.  相似文献   

10.
造血干细胞(hematopoietic stem cells,HSC)的体外培养可为造血干细胞移植提供大量的造血干细胞,具有重要的临床意义。HSC体外培养方式从二维培养发展到三维培养,从静态培养发展到动态培养,其培养技术及效果日趋成熟,其中以生物反应器为主的动态三维培养具有明显的优势。本文就HSC体外培养的研究进展作一综述。  相似文献   

11.
李秀  何明生 《生物磁学》2011,(7):1376-1378
造血干细胞(hematopoietic stem cells,HSC)的体外培养可为造血干细胞移植提供大量的造血干细胞,具有重要的临床意义。HSC体外培养方式从二维培养发展到三维培养,从静态培养发展到动态培养,其培养技术及效果日趋成熟,其中以生物反应器为主的动态三维培养具有明显的优势。本文就HSC体外培养的研究进展作一综述。  相似文献   

12.
We have recently demonstrated through a chemical screen in the zebrafish embryo that prostaglandin E2 (PGE2) is an evolutionarily conserved regulator of hematopoietic stem cell (HSC) number. These results have further been confirmed by in vitro and in vivo studies in the murine model. Bioactive PGE2 derivatives have potential clinical application to accelerate recovery of the hematopoietic system following chemotherapy or irradiation. Ex vivo expansion of HSCs prior to stem cell transplantation may improve reconstitution of hematopoiesis and immune function. This article aims to summarize current knowledge of PGE2-mediated regulation of blood cell homeostasis as well as to discuss the proposed use of PGE2 to expand hematopoietic stem cells for transplantation in the clinical setting.  相似文献   

13.
造血干细胞移植已成为治疗白血病、再生障碍性贫血、重症免疫缺陷征、地中海贫血、急性放射病、某些恶性实体瘤和淋巴瘤等造血及免疫系统功能障碍性疾病的成熟技术和重要手段,另外这一技术还被尝试用于治疗艾滋病,已取得积极的效果。但是由于移植需要配型相同的供体,并且过程复杂,使得造血干细胞移植因缺少配型相同的供体来源以及费用昂贵而不能被广泛应用。胚胎干细胞是一种能够在体外保持未分化状态并且能进行无限增殖的细胞,在适合条件下能够分化为体内各种类型的细胞,研究胚胎干细胞分化为造血干细胞,不仅可作为研究动物的早期造血发生的模型,而且可以增加造血干细胞的来源,还可以通过基因剔除、治疗性克隆等方法来解决移植排斥的问题,从而为造血干细胞移植的发展扫除了障碍,因此有着重要的研究价值和应用前景。现对胚胎干细胞体外分化为造血干细胞的诱导方法,诱导过程中的调控机制,并对胚胎干细胞分化为造血干细胞的存在问题和发展前景进行讨论。  相似文献   

14.
15.
Hematopoietic stem cell (HSC) division leads to self-renewal, differentiation, or death of HSCs, and adequate balance of this process results in sustained, lifelong, high-throughput hematopoiesis. Despite their contribution to hematopoietic cell production, the majority of cells within the HSC population are quiescent at any given time. Recent studies have tackled the questions of how often HSCs divide, how divisional history relates to repopulating potential, and how many HSCs contribute to hematopoiesis. Here, we summarize these recent findings on HSC turnover from different experimental systems and discuss hypothetical models for HSC cycling and maintenance in steady-state and upon hematopoietic challenge.  相似文献   

16.
Development of the vertebrate blood lineages is complex, with multiple waves of hematopoietic precursors arising in different embryonic locations. Monopotent, or primitive, precursors first give rise to embryonic macrophages or erythrocytes. Multipotent, or definitive, precursors are subsequently generated to produce the adult hematopoietic lineages. In both the zebrafish and the mouse, the first definitive precursors are committed erythromyeloid progenitors (EMPs) that lack lymphoid differentiation potential. We have previously shown that zebrafish EMPs arise in the posterior blood island independently from hematopoietic stem cells (HSCs). In this report, we demonstrate that a fourth wave of hematopoietic precursors arises slightly later in the zebrafish aorta/gonad/mesonephros (AGM) equivalent. We have identified and prospectively isolated these cells by CD41 (itga2b) and cmyb expression. Unlike EMPs, CD41(+) AGM cells colonize the thymus to generate rag2(+) T lymphocyte precursors. Timelapse imaging and lineage tracing analyses demonstrate that AGM-derived precursors use a previously undescribed migration pathway along the pronephric tubules to initiate adult hematopoiesis in the developing kidney, the teleostean equivalent of mammalian bone marrow. Finally, we have analyzed the gene expression profiles of EMPs and AGM precursors to better understand the molecular cues that pattern the first definitive hematopoietic cells in the embryo. Together, these studies suggest that expression of CD41 and cmyb marks nascent HSCs in the zebrafish AGM, and provide the means to further dissect HSC generation and function in the early vertebrate embryo.  相似文献   

17.
While it is clear that a single hematopoietic stem cell?(HSC) is capable of giving rise to all other hematopoietic cell types, the differentiation paths beyond HSC remain controversial. Contradictory reports on?the lineage potential of progenitor populations have questioned their physiological contribution of progenitor populations to multilineage differentiation. Here, we established a lineage tracing mouse model that enabled direct assessment of differentiation pathways in?vivo. We provide definitive evidence that differentiation into all hematopoietic lineages, including megakaryocyte/erythroid cell types, involves Flk2-expressing non-self-renewing progenitors. A Flk2+ stage was used during steady-state hematopoiesis, after irradiation-induced stress and upon HSC transplantation. In contrast, HSC origin and maintenance do not include a Flk2+ stage. These data demonstrate that HSC specification and maintenance are Flk2 independent, and that hematopoietic lineage separation occurs downstream of Flk2 upregulation.  相似文献   

18.
The hematopoietic system has an outstanding regenerative capacity which depends on a relatively small population of hematopoietic stem cells (HSC). In contrast to normal human cells, blood-forming stem cells, like most of their counterparts from other adult tissues, exhibit telomerase activity to a certain level. Nevertheless, this telomerase activity does not prevent telomere shortening in HSC, suggesting a restriction of their proliferative capacity. Here, we review recent studies on telomere dynamics in HSC of humans and mice. Furthermore, we discuss the impact of telomere manipulation in HSC for possible clinical applications and speculate on functions of telomerase beyond telomere lengthening.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号