首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xestospongins, a group of macrocyclic bis-1-oxaquinolizidines isolated from the Australian sponge, Xestospongia species, are potent blockers of the inositol 1,4,5-trisphosphate (IP(3))-induced Ca2+ release in bi-directional Ca2+-flux conditions. We have now studied the effects of xestospongin C on the (45)Ca2+ uptake and the uni-directional (45)Ca2+ efflux in permeabilized A7r5 smooth-muscle cells. Xestospongin C not only inhibits the IP(3)-induced Ca2+ release, but is also an equally potent blocker of the endoplasmic-reticulum Ca2+ pump, while it has no effect on the passive Ca2+ leak. The inhibition of the IP(3) receptor did not depend on the IP(3), Ca2+ or ATP concentration. Xestospongin C can, therefore, not be considered as a selective blocker of IP(3) receptors.  相似文献   

2.
Chelerythrine is a potent and specific inhibitor of protein kinase C   总被引:56,自引:0,他引:56  
The benzophenanthridine alkaloid chelerythrine is a potent, selective antagonist of the Ca++/phospholopid-dependent protein kinase (Protein kinase C: PKC) from the rat brain. Half-maximal inhibition of the kinase occurs at 0.66 microM. Chelerythrine interacted with the catalytic domain of PKC, was a competitive inhibitor with respect to the phosphate acceptor (histone IIIS) (Ki = 0.7 microM) and a non-competitive inhibitor with respect to ATP. This effect was further evidenced by the fact that chelerythrine inhibited native PKC and its catalytic fragment identically and did not affect [3H]- phorbol 12,13 dibutyrate binding to PKC. Chelerythrine selectively inhibited PKC compared to tyrosine protein kinase, cAMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase. The potent antitumoral activity of celerythrine measured in vitro might be due at least in part to inhibition of PKC and thus suggests that PKC may be a model for rational design of antitumor drugs.  相似文献   

3.
Protein kinase C functions prominently in cell regulation via its pleiotropic role in signal transduction processes. Certain oncogene products resemble elements involved in transmembrane signaling, elevate cellular sn-1,2-diacylglycerol second messenger levels, and activate protein kinase C. Sangivamycin was unique among the nucleoside compounds tested in its ability to potently inhibit protein kinase C activity. Inhibition was competitive with respect to ATP for both protein kinase C and the catalytic fragment of protein kinase C prepared by trypsin digestion. Sangivamycin was a noncompetitive inhibitor with respect to histone and lipid cofactors (phosphatidylserine and diacylglycerol). Sangivamycin inhibited native protein kinase C and the catalytic fragment identically, with apparent Ki values of 11 and 15 microM, respectively. Sangivamycin was an effective an inhibitor of protein kinase C as H-7, an isoquinolinsulfonamide. Sangivamycin did not inhibit [3H]phorbol-12,13-dibutyrate binding to protein kinase C. Sangivamycin did not exert its action through the lipid binding/regulatory domain; inhibition was not affected by the presence of lipid or detergent. Unlike H-7, sangivamycin selectively inhibited protein kinase C compared to cAMP-dependent protein kinase. The discovery that protein kinase C is inhibited by sangivamycin and other antitumor agents suggests that protein kinase C may be a target for rational design of antitumor compounds.  相似文献   

4.
A series of aminoresorcinols and related compounds were tested for rat intestinal alpha-glucosidase inhibition and these results suggested that the 2-aminoresorcinol moiety of 6-amino-5,7-dihydroxyflavone (2) is important to exert the intestinal alpha-glucosidase inhibitory activity and 2-aminoresorcinol (4), itself, is a potent alpha-glucosidase inhibitor and inhibited sucrose-hydrolyzing activity of rat intestinal alpha-glucosidase uncompetitively.  相似文献   

5.
Melatonin is a potent inhibitor for myeloperoxidase   总被引:1,自引:0,他引:1  
Myeloperoxidase (MPO) catalyzes the formation of potent oxidants that have been implicated in the pathogenesis of various diseases including atherosclerosis, asthma, arthritis, and cancer. Melatonin plays an important part in the regulation of various body functions including circadian sleep rhythms, blood pressure, oncogenesis, retinal function, seasonal reproduction, and immunity. Here, we demonstrate that melatonin serves as a potent inhibitor of MPO under physiological-like conditions. In the presence of chloride (Cl-), melatonin inactivated MPO at two points in the classic peroxidase cycle through binding to MPO to form an inactive complex, melatonin-MPO-Cl, and accelerating MPO compound II formation, an inactive form of MPO. Inactivation of MPO was mirrored by the direct conversion of MPO-Fe(III) to MPO compound II without any sign of compound I accumulation. This behavior indicates that melatonin binding modulates the formation of MPO intermediates and their decay rates. The Cl- presence enhanced the affinity of MPO toward melatonin, which switches the enzyme activity from peroxidation to catalase-like activity. In the absence of Cl-, melatonin served as a 1e- substrate for MPO compound I, but at higher concentration it limited the reaction by its dissociation from the corresponding complex. Importantly, melatonin-dependent inhibition of MPO occurred with a wide range of concentrations that span various physiological and supplemental ranges. Thus, the interplay between MPO and melatonin may have a broader implication in the function of several biological systems. This dual regulation by melatonin is unique and represents a new means through which melatonin can control MPO and its downstream inflammatory pathways.  相似文献   

6.
Chebulagic acid, isolated form Terminalia chebula Retz, proved to be a reversible and non-competitive inhibitor of maltase with a K(i) value of 6.6 muM. The inhibitory influence of chebulagic acid on the maltase-glucoamylase complex was more potent than on the sucrase-isomaltase complex. The magnitude of alpha-glucosidase inhibition by chebulagic acid was greatly affected by its origin. These results show a use for chebulagic acid in managing type-2 diabetes.  相似文献   

7.
Elafin is a potent inhibitor of proteinase 3   总被引:4,自引:0,他引:4  
Elafin, a human skin derived inhibitor of human leukocyte elastase, was tested for inhibitory activity against proteinase 3, an elastin degrading proteinase of neutrophils. The inhibitory activity of elafin was compared with antileukoprotease and eglin C. Elafin proved to be a potent inhibitor of elastin-FITC degradation showing an IC 50 of 9.5 x 10(-9) M. Potency was found to be more than 100-fold higher as compared with antileukoprotease and eglin C.  相似文献   

8.
Certain sexually transmitted human papillomavirus (HPV) types are causally associated with the development of cervical cancer. Our recent development of high-titer HPV pseudoviruses has made it possible to perform high-throughput in vitro screens to identify HPV infection inhibitors. Comparison of a variety of compounds revealed that carrageenan, a type of sulfated polysaccharide extracted from red algae, is an extremely potent infection inhibitor for a broad range of sexually transmitted HPVs. Although carrageenan can inhibit herpes simplex viruses and some strains of HIV in vitro, genital HPVs are about a thousand-fold more susceptible, with 50% inhibitory doses in the low ng/ml range. Carrageenan acts primarily by preventing the binding of HPV virions to cells. This finding is consistent with the fact that carrageenan resembles heparan sulfate, an HPV cell-attachment factor. However, carrageenan is three orders of magnitude more potent than heparin, a form of cell-free heparan sulfate that has been regarded as a highly effective model HPV inhibitor. Carrageenan can also block HPV infection through a second, postattachment heparan sulfate-independent effect. Carrageenan is in widespread commercial use as a thickener in a variety of cosmetic and food products, ranging from sexual lubricants to infant feeding formulas. Some of these products block HPV infectivity in vitro, even when diluted a million-fold. Clinical trials are needed to determine whether carrageenan-based products are effective as topical microbicides against genital HPVs.  相似文献   

9.
microRNA-101 is a potent inhibitor of autophagy   总被引:2,自引:0,他引:2  
  相似文献   

10.
Using Triton X-100/lipid mixed micellar methods, we observed that the adriamycin-iron(III) complex was a potent inhibitor of protein kinase C while uncomplexed adriamycin itself was a poor inhibitor in the absence of heavy metal contaminants. The 3:1 adriamycin-iron complex was more potent than 2:1, 1:1, and 1:0 complexes. Inhibition of protein kinase C was reversible, and 50% inhibition occurred at 13 microM (adriamycin)3Fe3+. Both the catalytic and the regulatory domain of protein kinase C were affected by adriamycin-iron(III). Adriamycin-iron(III) was a competitive inhibitor of the catalytic domain of protein kinase C with respect to MgATP but not with respect to magnesium (IC50 350 microM). The predominant interaction of adriamycin-iron(III) with native protein kinase C was as a competitive inhibitor with respect to diacylglycerol. Inhibition was not competitive with respect to phosphatidylserine, calcium, magnesium, MgATP, or histone. Interaction with the regulatory domain was demonstrated by the ability of adriamycin-iron(III) to inhibit phorbol dibutyrate binding. Other adriamycin transitional metal complexes showed little inhibition of protein kinase C activity. Acetylation of the amine on the daunosamine moeity of adriamycin did not preclude the formation of a ferric complex but resulted in total loss of inhibitory activity. These results suggest that the presence of free amines in a highly structured adriamycin-iron complex is necessary for inhibition. The implications of inhibition of protein kinase C by adriamycin-iron(III) are discussed.  相似文献   

11.
Staurosporine is the most potent inhibitor of protein kinase C (PKC) described in the literature with a half-maximal inhibitory concentration (IC50) of 10 nM. Nevertheless, this natural product is poorly selective when assayed against other protein kinases. In order to obtain specific PKC inhibitors, a series of bisindolylmaleimides has been synthesized. Structure-activity relationship studies allowed the determination of the substructure responsible for conferring high potency and lack of selectivity in the staurosporine molecule. Several aminoalkyl bisindolylmaleimides were found to be potent and selective PKC inhibitors (IC50 values from 5 to 70 nM). Among these compounds GF 109203X has been chosen for further studies aiming at the characterization of this chemical family. GF 109203X was a competitive inhibitor with respect to ATP (Ki = 14 +/- 3 NM) and displayed high selectivity for PKC as compared to five different protein kinases. We further determined the potency and specificity of GF 109203X in two cellular models: human platelets and Swiss 3T3 fibroblasts. GF 109203X efficiently prevented PKC-mediated phosphorylations of an Mr = 47,000 protein in platelets and of an Mr = 80,000 protein in Swiss 3T3 cells. In contrast, in the same models, the PKC inhibitor failed to prevent PKC-independent phosphorylations. GF 109203X inhibited collagen- and alpha-thrombin-induced platelet aggregation as well as collagen-triggered ATP secretion. However, ADP-dependent reversible aggregation was not modified. In Swiss 3T3 fibroblasts, GF 109203X reversed the inhibition of epidermal growth factor binding induced by phorbol 12,13-dibutyrate and prevented [3H] thymidine incorporation into DNA, only when this was elicited by growth promoting agents which activate PKC. Our results illustrate the potential of GF 109203X as a tool for studying the involvement of PKC in signal transduction pathways.  相似文献   

12.
4-Hydroxy-oxyphenbutazone (4OH-OPB), is currently in phase II trials for its immunosuppressive effect in patients with rheumatoid arthritis. 4OH-OPB and other compounds related to phenylbutazone were tested for their effect on in vitro cytokine production by monocytes and lymphocytes present in peripheral mononuclear cells (PBMC) or whole blood (WB) cultures, and compared against phenylbutazone and oxyphenbutazone, two known anti-inflammatory drugs. In PBMC cultures, 4OH-OPB was by far the most potent inhibitor, and both monokines and Th1 and Th2 lymphokines were efficiently inhibited at low concentrations. In WB cultures, 4OH-OPB was less effective than in PBMC cultures, but was still the best inhibitor of lymphokine production and, furthermore, was the only inhibitor of monokine production. The increase in 4OH-OPB concentration needed to induce the same inhibition of cytokine production in WB as in PBMC culture could be mimicked by the addition of erythrocytes to the PBMC cultures. Experiments with radioactively-labeled 4OH-OPB suggest that 4OH-OPB is taken up very rapidly into erythrocytes and is secreted by the erythrocytes with much slower kinetics via a multidrug-resistance-associated protein. The secreted compound is most likely structurally different from 4OH-OPB, as in PBMC and WB cultures, the inhibition of cytokine production seems to be caused by a different mechanism. In PBMC cultures, the inhibition of cytokine production is accompanied by a loss of cell viability, while this is not the case when 4OH-OPB inhibits cytokine production in WB. Our data suggest that 4OH-OPB may be useful as an immunosuppressive drug for patients with inflammatory diseases.  相似文献   

13.
14.
The lipoxygenase (LOX) pathway was proposed to compete with hydrolysis and be partly responsible for the metabolism of polyunsaturated N-acylethanolamines (PU-NAEs). Treatment of Arabidopsis seedlings with lauroylethanolamide (NAE 12:0) resulted in elevated levels of PU-NAE species, and this was most pronounced in plants with reduced NAE hydrolase activity. Enzyme activity assays revealed that NAE 12:0 inhibited LOX-mediated oxidation of PU lipid substrates in a dose-dependent and competitive manner. NAE 12:0 was 10-20 times more potent an inhibitor of LOX activities than lauric acid (FFA 12:0). Furthermore, treatment of intact Arabidopsis seedlings with NAE 12:0 (but not FFA 12:0) substantially blocked the wound-induced formation of jasmonic acid (JA), suggesting that NAE 12:0 may be used in planta to manipulate oxylipin metabolism.  相似文献   

15.
Aurintricarboxylic acid (ATA) was found to be a very potent inhibitor of purified rabbit liver phosphofructokinase (PFK), giving 50% inhibition at 0.2 microM. The inhibition was in a manner consistent with interaction at the citrate-inhibitory site of the enzyme. The data suggest that inhibition of PFK by ATA was not due to denaturation of the enzyme or the irreversible binding of inhibitor, since the inhibition could be reversed by addition of allosteric activators of PFK, i.e. fructose 2,6-bisphosphate or AMP. Two other tricarboxylic acids, agaric acid and (-)-hydroxycitrate, were found to inhibit PFK. ATA at much higher concentrations (500 microM) was shown to inhibit fatty acid synthesis from endogenous glycogen in rat hepatocytes; however, protein synthesis was not altered.  相似文献   

16.
Cremophor EL, a castor oil derivative, has been considered a non-toxic solubilizer for lipophilic drugs and vitamins. Protein kinase C, a phospholipid/Ca++-dependent protein kinase, is known to phosphorylate, in response to extracellular stimuli, a variety of proteins for cellular functions. The present study shows that Cremophor EL selectively inhibits the activity of protein kinase C in vitro. The potency of this selective inhibition is greater than that of other protein kinase C-specific inhibitor thus far reported. Cremophor EL acts primarily on the enzyme activator diacylglycerol (or the phorbol ester) and prevents the latter from both interacting with the phospholipid and binding to protein kinase C. This is the first report of a significant biological activity induced by this widely used substituted castor oil solubilizer.  相似文献   

17.
Extracellular matrix-degrading gelatinases are mainly involved in tumor invasion and metastasis. Previous experimental data from our group and others suggested that homocysteine could have a potential modulatory role on the proteolytic balance at the extracellular matrix. Therefore, we studied the effects of homocysteine on extracellular matrix-degrading proteases using model human tumor cell lines and a combination of in vitro fluorogenic assay and zymographic techniques. Homocysteine is shown to be the thiol compound with the most potent inhibitory activity on matrix metalloproteinase 9. Zymographies reveal that matrix metalloproteinase 2 is, at least, as sensitive to inhibition by homocysteine as matrix metalloproteinase 9 is. This study opens new ways to the potential pharmacological use of thiol compounds.  相似文献   

18.
Nucleoside di- and triphosphates and adenosine regulate several components of the mucocilairy clearance process (MCC) that protects the lung against infections, via activation of epithelial purinergic receptors. However, assessing the contribution of individual nucleotides to MCC functions remains difficult due to the complexity of the mechanisms of nucleotide release and metabolism. Enzymatic activities involved in the metabolism of extracellular nucleotides include ecto-ATPases and secreted nucleoside diphosphokinase (NDPK) and adenyl kinase, but potent and selective inhibitors of these activities are sparse. In the present study, we discovered that ebselen markedly reduced NDPK activity while having negligible effect on ecto-ATPase and adenyl kinase activities. Addition of radiotracer [γ 32P]ATP to human bronchial epithelial (HBE) cells resulted in rapid and robust accumulation of [32P]-inorganic phosphate (32Pi). Inclusion of UDP in the incubation medium resulted in conversion of [γ 32P]ATP to [32P]UTP, while inclusion of AMP resulted in conversion of [γ 32P]ATP to [32P]ADP. Ebselen markedly reduced [32P]UTP formation but displayed negligible effect on 32Pi or [32P]ADP accumulations. Incubation of HBE cells with unlabeled UTP and ADP resulted in robust ebselen-sensitive formation of ATP (IC50 = 6.9 ± 2 μM). This NDPK activity was largely recovered in HBE cell secretions and supernatants from lung epithelial A549 cells. Kinetic analysis of NDPK activity indicated that ebselen reduced the V max of the reaction (K i = 7.6 ± 3 μM), having negligible effect on K M values. Our study demonstrates that ebselen is a potent non-competitive inhibitor of extracellular NDPK.  相似文献   

19.
The effect of disulfiram on the 5-lipoxygenase activity from rat polymorphonuclear leukocyte cell-free lysates was determined and compared with that of other thiocarbamoyl and aryl disulfides. Disulfiram was a potent inhibitor of the soluble 5-lipoxygenase causing 50% inhibition at submicromolar concentrations (0.4-0.7 microM). The inhibition by disulfiram was similar to that of bis(diisopropylthiocarbamoyl) disulfide with both compounds being about 100-fold more potent as inhibitors than the structurally related bis(4-methyl-1-homopiperazinylthiocarbonyl) disulfide analog. The potency of 5-lipoxygenase inhibition by disulfiram was comparable to that of diphenyldisulfide (IC50 = 0.2-0.4 microM), in the same range or better than most typically used inhibitors. However, the degree of inhibition by disulfiram was more sensitive to thiols than that of diphenyldisulfide, as shown by the selective protection against disulfiram inhibition by low concentrations of thiols. Diethyldithiocarbamate, the reduction product of disulfiram, was a less potent inhibitor of the 5-lipoxygenase activity, causing only a partial inhibition (40-60%) over a wide range of concentrations (2-30 microM). The results demonstrate that disulfiram is a potent inhibitor of 5-lipoxygenase in vitro and provide the basis for further investigations on the effect of the drug on leukotriene biosynthesis inhibition and its contribution to the ethanol-disulfiram reaction. They also indicate that disulfiram represents a sensitive reagent to characterize the thiol requirement of the 5-lipoxygenase reaction.  相似文献   

20.
The 2009 flu pandemic and the appearance of oseltamivir-resistant H1N1 influenza strains highlight the need for treatment alternatives. One such option is the creation of a protective physical barrier in the nasal cavity. In vitro tests demonstrated that iota-carrageenan is a potent inhibitor of influenza A virus infection, most importantly also of pandemic H1N1/2009 in vitro. Consequently, we tested a commercially available nasal spray containing iota-carrageenan in an influenza A mouse infection model. Treatment of mice infected with a lethal dose of influenza A PR8/34 H1N1 virus with iota-carrageenan starting up to 48 hours post infection resulted in a strong protection of mice similar to mice treated with oseltamivir. Since alternative treatment options for influenza are rare, we conclude that the nasal spray containing iota-carrageenan is an alternative to neuraminidase inhibitors and should be tested for prevention and treatment of influenza A in clinical trials in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号