首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
杜仲次生木质部分化过程中的细胞编程死亡   总被引:3,自引:0,他引:3  
通过电子显微镜观察、DNA断裂检测及类似半胱氨酸蛋白酶(caspase-like proteases,CLPs)降解检测等技术,对杜仲(Eucommia ulmoides Oliv.)次生木质部分化过程的细胞编程死亡进行了研究。分化中的次生木质部细胞总DNA凝胶电泳检测到DNA ladder,并通过TUNEL检测进一步确定了DNA被降解。Western blot结果表明:caspase-8和caspase-3状蛋白酶(caspase-8-和caspase-3-like proteases,CLPs)及多聚ADP-核糖聚合酶(poly(ADP-ribose) polymerase,PARP)在次生木质部分化过程中被降解。这些研究结果表明,杜仲次生木质部的细胞分化是一个典型的编程性死亡(Programmed cell death,PCD)过程,CLPs可能参与了此过程。  相似文献   

2.
木质部细胞分化的程序   总被引:1,自引:0,他引:1  
崔克明 《西北植物学报》2006,26(8):1735-1748
本文主要对近十几年来有关木质部细胞分化研究中使用的实验系统及用这些系统所取得的重要进展作了评述.并以作者实验室的研究成果为基础,结合国内外研究进展,提出木质部细胞分化程序由参与细胞编程死亡(PCD)和次生壁构建的全部基因综合编制而成.以PCD过程各阶段的划分标准来看,木质部细胞分化中从IAA诱导形成层细胞平周分裂到细胞扩大前为PCD的起始阶段,其间包括死亡信号的发生、接受和传导,以及启始caspase(半胱氨酰基天门冬氨酸蛋白酶)类似物(例如caspase-8类似物)的活化;木质部母细胞的径向扩大为PCD的效应阶段,而效应caspase类似物(例如caspase-3类似物)活化DNase、DNA的片段化及次生细胞壁的构建和各种细胞器的解体则为PCD的清除降解阶段.至今还无法将DNase活化及其引起的DNA断裂过程与次生细胞壁构建过程分开.  相似文献   

3.
冉昆  马怀宇  杨洪强 《西北植物学报》2008,28(12):2564-2570
胱天蛋白酶(caspases)在动物细胞程序性死亡(programmed cell death,PCD)的起始、执行以及信号转导阶段起着关键作用,目前在植物中也发现有类胱天蛋白酶(caspase-like proteases,CLPs)的存在,并确认液泡加工酶(VPEs)、metacaspases和丝氨酸内肽酶(sapases)具有CLPs的作用,并证实CLPs参与植物的生长发育、抗病性及胁迫诱导的细胞程序性死亡等.本文对植物CLPs活性、生化结构及生理作用等方面的研究进展进行综述,并与动物caspases进行比较,为今后CLPs活性调节、作用方式及其在植物细胞程序性死亡中的作用等方面的研究提供参考.  相似文献   

4.
本文主要从研究木质部细胞分化常用的实验系统、木质部分化的诱导、木质部细胞的编程性死亡以及次生壁的构建4个方面阐述了木质部细胞分化的研究进展。并对目前研究的热点也是难点问题进行了展望,希望引起同行的兴趣。  相似文献   

5.
木质部细胞分化和脱分化的机理   总被引:6,自引:0,他引:6  
木质部细胞的分化过程包括了密切不可分的细胞程序死亡和次生壁构建两个过程。现在的研究主要是将两个过程分开来研究,各自在细胞生物学和分子生物学上取得了不少进展,有关次生细胞壁方面的研究时间长,成果也较大。有关木质部细胞脱分化的研究相对较少,但也已取得了可喜的进展。  相似文献   

6.
细胞内线粒体呼吸链过程中的电子漏和神经细胞代谢的酶类如单胺氧化酶(MAO)等可产生活性氧物质(ROS)如H2O2等.ROS对细胞有毒性作用,导致细胞死亡,在许多疾病特别是神经退行性疾病中具有重要作用.我们用H2O2诱导N-2a神经母细胞瘤细胞,利用光镜、荧光显微镜、透射电镜观察了诱导的N-2a细胞的死亡,结果表明其死亡形式不同于典型的细胞凋亡,而类似于Ⅱ型神经细胞编程性死亡,死亡细胞染色质呈团块状凝集,细胞核膜仍保持完整.DNA不降解形成ladder,且不需要caspase-3,1的活性,但是H2O2诱导的Neuro-2a细胞死亡可以被Bcl-XL抑制.我们的结果可以说明,ROS介导的细胞毒性作用是导致Ⅱ型神经细胞编程性死亡的一个原因.  相似文献   

7.
杜仲(EucommiaulmoidesOliv.)次生木质部分化过程中,在形成层刚衍生的木薄壁细胞中,酸性磷酸酶(APase)主要分布于核膜边缘和高尔基体;在分化程度较高的木薄壁细胞中,APase散布于整个核中,进而,在各种细胞器残体上聚集;在成熟的木薄壁细胞中,APase沿细胞壁内侧分布。在未成熟导管分子中,核、质膜及纹孔上明显存在APase聚集,进而,核解体;在即将分化成熟的导管分子中,APase主要集中于初生壁;在已分化成熟的导管分子中,APase集中于次生壁。脱分化过程中,只在细胞质中可见分散的APase活性,而细胞核和细胞壁上未见此酶的分布;更深层的即将分化成熟和已分化成熟的导管分子,未见有细胞分裂,其上APase的分布与剥皮前相同。通过比较分化和脱分化过程中APase的分布,推测不同的APase同工酶可能分别参与了次生木质部细胞程序性死亡过程中原生质体的解体和次生壁的建成。APase的聚集程度可能是决定细胞能否脱分化的一个重要特征。  相似文献   

8.
通过末端脱氧核苷酸转移酶介导dUTP缺口翻译法和DNA凝胶电泳观察多巴胺(DA)对PC12细胞凋亡的诱导作用, 并经蛋白质印迹法检测胞浆细胞色素c、Bcl-2和Bax蛋白以及活化型半胱氨酸蛋白酶3(caspase-3)水平. 结果表明, 在DA诱导PC12细胞凋亡的过程中, 可见PC12细胞中活化型caspase-3蛋白表达, 胞浆中细胞色素c水平明显增高, 同时Bcl-2蛋白水平下降, 而Bax蛋白水平明显增加. 环孢菌素A预处理对细胞色素c释放和caspase-3激活有明显的抑制作用, 而对Bcl-2和Bax蛋白影响不明显. 结果提示, Bcl-2和Bax蛋白、细胞色素c以及caspase-3可能参与DA诱导PC12细胞凋亡, 线粒体细胞色素c向胞浆释放可能是其中的中心环节.  相似文献   

9.
木材的形成经历了维管形成层细胞的增殖,木质部细胞的分化和扩张,次生细胞壁的沉积和细胞程序性死亡(programmed cell death, PCD)的过程.近年来,基于遗传学和组学分析,人们已经从模式植物拟南芥和杨树中鉴定出许多调控次生壁沉积的的关键转录因子和转录抑制因子.这些转录因子调控层次分明,共同构成次生壁沉积的转录调控网络,不仅在次生壁组分木质素、纤维素、木聚糖等物质的生物合成过程中起重要作用,而且可激活下游调控细胞程序性死亡相关的水解酶,启动木质部细胞的程序化死亡过程.对这些基因的生物学功能和调控网络进行解析,为阐明木材形成的分子生物学机制奠定了理论基础.本文综述了木材形成过程中次生壁沉积的转录调控网络和细胞程序性死亡相关的酶学机制及其最新研究进展.  相似文献   

10.
嵌合重组caspase-3诱导表达促进肿瘤细胞凋亡   总被引:3,自引:0,他引:3  
通过稳定转染人宫颈癌HeLa细胞,建立了野生型caspase-3(wt-casp3),大小亚基序列颠倒的重组caspase-3 (r-casp3),和N端融合绿脓杆菌外毒素(PE)转膜肽段的嵌合重组caspase-3 (cr-casp3)的诱导表达细胞系.蜕皮素诱导后细胞中检测到目的基因的表达,MTT检测和细胞计数结果表明,r-casp3和cr-casp3诱导表达后有效地导致HeLa细胞死亡,通过测定细胞中caspase-3活性,以及细胞周期检测、DNA梯状电泳条带检测(DNA ladder)、电镜观察等证实r-casp3和cr-casp3诱导表达后细胞发生了凋亡,且二者的促凋亡活性相当,而wt-casp3诱导表达细胞并未出现上述效应.结果表明,与野生型caspase-3活化需要上游分子的切割不同,重组caspase-3具有自发的促凋亡活性,而N端PE肽段的融合不影响这种活性,因此PE转膜结构域和重组caspase-3有望参与构建能转膜进入细胞内部,并杀伤细胞的新型肿瘤治疗分子.  相似文献   

11.
Secondary xylem development has long been recognized as a typical case of programmed cell death (PCD) in plants. During PCD, the degradation of genomic DNA is catalyzed by endonucleases. However, to date, no endonuclease has been shown to participate in secondary xylem development. Two novel Ca 2+ -dependent DNase genes, EuCaN1 and EuCaN2, were identified from the differentiating secondary xylem of the tree Eucommia ulmoides Oliv., their functions were studied by DNase activity assay, in situ hybridization, protein immunolocalization and virus-induced gene silencing experiments. Full-length cDNAs of EuCaN1 and EuCaN2 contained an open reading frame of 987 bp, encoding two proteins of 328 amino acids with SNase-like functional domains. The genomic DNA sequence for EuCaN1 had no introns, while EuCaN2 had 8 introns. EuCaN1 and EuCaN2 digested ssDNA and dsDNA with Ca 2+ -dependence at neutral pH. Their expression was confined to differentiating secondary xylem cells and the proteins were localized in the nucleus. Their activity dynamics was closely correlated with secondary xylem development. Secondary xylem cell differentiation is influenced by RNAi of endonuclease genes. The results provide evidence that the Ca 2+ -dependent DNases are involved in secondary xylem development.  相似文献   

12.
Xylem development is a process of xylem cell terminal differentiation that includes initial cell division, cell expansion, secondary cell wall formation and programmed cell death (PCD). PCD in plants and apoptosis in animals share many common characteristics. Caspase-3, which displays Asp-Glu-Val-Asp (DEVD) specificity, is a crucial executioner during animal cells apoptosis. Although a gene orthologous to caspase-3 is absent in plants, caspase-3-like activity is involved in many cases of PCD and developmental processes. However, there is no direct evidence that caspase-3-like activity exists in xylem cell death. In this study, we showed that caspase-3-like activity is present and is associated with secondary xylem development in Populus tomentosa. The protease responsible for the caspase-3-like activity was purified from poplar secondary xylem using hydrophobic interaction chromatography (HIC), Q anion exchange chromatography and gel filtration chromatography. After identification by liquid chromatography-tandem mass spectrometry (LC-MS/MS), it was revealed that the 20S proteasome (20SP) was responsible for the caspase-3-like activity in secondary xylem development. In poplar 20SP, there are seven α subunits encoded by 12 genes and seven β subunits encoded by 12 genes. Pharmacological assays showed that Ac-DEVD-CHO, a caspase-3 inhibitor, suppressed xylem differentiation in the veins of Arabidopsis cotyledons. Furthermore, clasto-lactacystin β-lactone, a proteasome inhibitor, inhibited PCD of tracheary element in a VND6-induced Arabidopsis xylogenic culture. In conclusion, the 20S proteasome is responsible for caspase-3-like activity and is involved in xylem development.  相似文献   

13.
Aponogeton madagascariensis produces perforations over its leaf surface via programmed cell death (PCD). PCD begins between longitudinal and transverse veins at the center of spaces regarded as areoles, and continues outward, stopping several cells from these veins. The gradient of PCD that exists within a single areole of leaves in an early stage of development was used as a model to investigate cellular dynamics during PCD. Mitochondria have interactions with a family of proteases known as caspases, and the actin cytoskeleton during metazoan PCD; less is known regarding these interactions during plant PCD. This study employed the actin stain Alexa Fluor 488 phalloidin, the actin depolymerizer Latrunculin B (Lat B), a synthetic caspase peptide substrate and corresponding specific inhibitors, as well as the mitochondrial pore inhibitor cyclosporine A (CsA) to analyze the role of these cellular constituents during PCD. Results depicted that YVADase (caspase-1) activity is higher during the very early stages of perforation formation, followed by the bundling and subsequent breakdown of actin. Actin depolymerization using Lat B caused no change in YVADase activity. In vivo inhibition of YVADase activity prevented PCD and actin breakdown, therefore substantiating actin as a likely substrate for caspase-like proteases (CLPs). The mitochondrial pore inhibitor CsA significantly decreased YVADase activity, and prevented both PCD and actin breakdown; therefore suggesting the mitochondria as a possible trigger for CLPs during PCD in the lace plant. To our knowledge, this is the first in vivo study using either caspase-1 inhibitor (Ac-YVAD-CMK) or CsA, following which the actin cytoskeleton was examined. Overall, our findings suggest the mitochondria as a possible upstream activator of YVADase activity and implicate these proteases as potential initiators of actin breakdown during perforation formation via PCD in the lace plant.  相似文献   

14.
15.
采用磷酸铅沉淀技术,对杜仲(Eucommia ulmoides Oliv.)次生木质部细胞分和脱化过程进行了ATPase的超微细胞化学定位。随着分化过程中细胞程序性死亡(programmed cell death,PCD)程度的加深,ATPase在细胞核上的分布由少变多,而在各种细胞器上的分布由有到无,并且随着细胞质的解体,ATPase在细胞壁内侧和纹孔处的分布也由少到多,说明它们的变化是由核基因  相似文献   

16.
The ultracytochemical localization of ATPase in the secondary xylem cells during their differentiation and dedifferentiation in the girdled Eucommia ulmoides Oliv. was carried out using a lead phosphate precipitation technique. Throughout the differentiation, which is a typical programmed cell death (PCD) process, ATPase deposits increased in the nucleus but decreased and progressively disappeared in the cell organelles. At the same time, the distribution of ATPase increased in the inner face of the cell wall and pits with cytoplasmic degeneration. The results demonstrated that the PCD was an energy dependent active process and was controlled by nuclear genes. On the other hand, the distribution of ATPase in the intercellular spaces increased with the formation of the new cambium resulted from the dedifferentiation of the secondary xylem cells after girdling. However, ATPase was not found in the nucleus of the dividing cells, suggesting that nutrients were transported through protoplast during differentiation, and through both protoplast and apoplast during dedifferentiation. Thus, the energy required in cell division was provided mainly by intercellular spaces. These findings indicate that the dynamic distribution of ATPase reflected which cell component was actively taking part in the cell metabolism at various stages of the plant development, and its distribution was associated with the physiological state of the cell. Based on the characteristic distributions of ATPase, the critical stage of cell differentiation and the relationship between the critical stage and dedifferentiation were discussed.  相似文献   

17.
Recent evidence has proved that caspase protease activities are detected in both mammals and plants during programmed cell death (PCD). The characteristics and functions of caspase-like proteases play important roles in understanding the mechanisms of PCD in plants. In this work, we report firstly the involvement of caspase-like protease activities and effects in aluminum (Al) stress in two contrasting peanut genotypes. Caspase-like activities in the root tip cells of ‘Zhonghua 2’ (Al-sensitive) and ‘99-1507’ (Al-tolerant) were detected using synthetic caspase substrates during Al-triggered PCD. Caspase-1-, -2-, -3-, -4-, -5-, -6-, -8- and -9-like proteases were found in peanut root tip cells. VDQQDase (caspase-2-like) and WEHD (caspase-5-like) were the first detected in the plants, and almost all of the caspase-like proteases were activated during Al-induced PCD, especially caspase-3-like and caspase-1-like, which was higher in ‘Zhonghua 2’ than in ‘99-1507’. The highest activity levels of caspase-3- and caspase-1-like proteases occurred 8 and 4 h after 100 µM Al treatment, respectively. Compared with 100 µM AlCl3 treatment alone, specific caspase-3 protease inhibitor Ac-DEVD-CHO inhibited the increase of caspase-3-like protease activity, Al content, Hsr203j expression, cell death and DNA fragmentation, and the decrease in root growth induced by 100 µM AlCl3 treatment, but it was more obvious in ‘Zhonghua 2’ than in ‘99-1507’. In conclusion, there were different caspase-like proteases in root tips of peanut, and caspase-3-like protease was a crucial executioner in Al-induced PCD. Its effects in the ‘Zhonghua 2’ genotype were higher than in ‘99-1507’. An improved model of the mechanism of Al-induced PCD and Al tolerance differences in different genotypes is proposed.  相似文献   

18.
《Autophagy》2013,9(8):1187-1189
The vascular system of plants consists of two conducting tissues, xylem and phloem, which differentiate from procambium cells. Xylem serves as a transporting system for water and signaling molecules and is formed by sequential developmental processes, including cell division/expansion, secondary cell wall deposition, vacuole collapse and programmed cell death (PCD). PCD during xylem differentiation is accomplished by degradation of cytoplasmic constituents, and it is required for the formation of hollow vessels, known as tracheary elements (TEs). Our recent study revealed that the small GTPase RabG3b acts as a regulator of TE differentiation through its autophagic activation. By using an Arabidopsis in vitro cell culture system, we showed that autophagy is activated during TE differentiation. Overexpression of a constitutively active RabG3b (RabG3bCA) significantly enhances both autophagy and TE differentiation, which are consistently suppressed in transgenic plants overexpressing a dominant negative form (RabG3bDN) or RabG3b RNAi (RabG3bRNAi), a brassinosteroid-insensitive mutant bri1-301 and an autophagy mutant atg5-1. On the basis of our results, we propose that RabG3b functions as a component of autophagy and regulates TE differentiation by activating the process of PCD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号