首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The purpose of this study was to measure the effects of high doses of corticosteroids on the response to breathing 100% O2 in sheep. Sheep were prepared for chronic measurement of vascular pressures, cardiac output, gas exchange, and for collection of lung lymph. Tracheostomies were made for accurate delivery of gas mixtures. Eight sheep received methylprednisolone 30 mg/kg body wt every 6 h for eight doses, four for the first 48 h, and four for the final 24-48 h of 100% O2 breathing. Eight control sheep breathed 100% O2 without methylprednisolone, four sheep breathed compressed air without methylprednisolone, and two breathed compressed air and received methylprednisolone. Sheep had daily measurements of hypoxic vasoconstriction (fractional concentration of O2 in inspired gas = 0.12), gas exchange, lymph flow, and lymph and plasma protein concentration. Polymorphonuclear leukocyte (granulocyte) function in experimental and control sheep was assessed ex vivo by tests of chemotaxis, aggregation, and superoxide production. The number of granulocytes in peripheral lung was measured in biopsy tissue taken at the time of original surgery and postmortem. Methylprednisolone did not affect the time course nor magnitude of gas exchange abnormality, lymph flow and composition, loss of hypoxic vasoconstriction, lung granulocyte accumulation, nor postmortem lung water caused by 100% O2 breathing. Sheep receiving methylprednisolone had a shorter survival by several h, independent of the timing of the drug. Granulocytes from methylprednisolone-treated sheep showed normal function ex vivo by all three assays. We conclude that high doses of methylprednisolone unfavorably affect the rate and progression of lung injury in sheep breathing 100% O2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Effects of hypobaria on lung fluid balance were studied in five awake sheep with chronic lung lymph fistulas using a decompression chamber. Each sheep was exposed to three conditions of 6,600-m-simulated high altitude in random order as follows: 1) 6,600-m-simulated hypoxic hypobaria (barometric pressure 326 Torr, 21% inspired O2 fraction), 2) 6,600-m-simulated normoxic hypobaria (barometric pressure 326 Torr, 65% inspired O2 fraction), and 3) 6,600-m-simulated normoxic hypobaria (barometric pressure 326 Torr, 65% inspired O2 fraction) after pretreatment with a 2-h pure O2 inhalation (i.e., denitrogenation) to allow elimination of dissolved gases, especially N2, from the blood and tissues. We observed that under both hypoxic hypobaria and normoxic hypobaria, lung lymph flow (Qlym) significantly increased from the base-line values of 6.4 +/- 0.3 to 13.0 +/- 1.0 ml/h and 6.0 +/- 0.2 to 9.4 +/- 0.3 ml/h, respectively (P less than 0.05) and that the lymph-to-plasma protein concentration ratio remained unchanged. Moreover, pretreatment with a 2-h denitrogenation inhibited the increase in Qlym. These results suggest that rapid exposure to hypobaria causes an increase in pulmonary vascular permeability and that intravascular air bubble formation may account for this permeability change.  相似文献   

3.
To investigate the acute physiological and structural changes after lung irradiation, the effects of whole-lung irradiation were investigated in fourteen sheep. Ten sheep were prepared with vascular and chronic lung lymph catheters, then a week later were given 1,500 rad whole-lung radiation and monitored for 2 days. Four sheep were given the same dose of radiation and were killed 4 h later for structural studies. Lung lymph flow increased at 3 h after radiation (14.6 +/- 2.1 ml/h) to twice the base-line flow rate (7.5 +/- 1.3), with a high lymph-to-plasma protein concentration. Pulmonary arterial pressure increased twofold from base line (18 +/- 1.6 cmH2O) at 2 h after radiation (33 +/- 3.8). Cardiac output and systemic pressure in the aorta did not change after lung radiation. Arterial O2 tension decreased from 85 +/- 3 to 59 +/- 4 Torr at 1 day after radiation. Lymphocyte counts in both blood and lung lymph decreased to a nadir by 4 h and remained low. Thromboxane B2 concentration in lung lymph increased from base line (0.07 +/- 0.03 ng/ml) to peak at 3 h after radiation (8.2 +/- 3.7 ng/ml). The structural studies showed numerous damaged lymphocytes in the peripheral lung and bronchial associated lymphoid tissue. Quantitative analysis of the number of granulocytes in peripheral lung showed no significant change (base line 6.2 +/- 0.8 granulocytes/100 alveoli, 4 h = 10.3 +/- 2.3). The most striking change involved lung airways. The epithelial lining of the majority of airways from intrapulmonary bronchus to respiratory bronchiolus revealed damage with the appearance of intracellular and intercellular cell fragments and granules. This new large animal model of acute radiation lung injury can be used to monitor physiological, biochemical, and morphological changes after lung radiation. It is relevant to the investigation of diffuse oxidant lung injury as well as to radiobiology per se.  相似文献   

4.
Because pulmonary edema has been associated clinically with airway obstruction, we sought to determine whether decreased intrathoracic pressure, created by selective inspiratory obstruction, would affect lung fluid balance. We reasoned that if decreased intrathoracic pressure caused an increase in the transvascular hydrostatic pressure gradient, then lung lymph flow would increase and the lymph-to-plasma protein concentration ratio (L/P) would decrease. We performed experiments in six awake sheep with chronic lung lymph cannulas. After a base-line period, we added an inspiratory load (20 cmH2O) and allowed normal expiration at atmospheric pressure. Inspiratory loading was associated with a 12-cmH2O decrease in mean central airway pressure. Mean left atrial pressure fell 11 cmH2O, and mean pulmonary arterial pressure was unchanged; calculated microvascular pressure decreased 8 cmH2O. The changes that occurred in lung lymph were characteristic of those seen after other causes of increased transvascular hydrostatic gradient, such as increased intravascular pressure. Lung lymph flow increased twice base line, and L/P decreased. We conclude that inspiratory loading is associated with an increase in the pulmonary transvascular hydrostatic gradient, possibly by causing a greater fall in interstitial perimicrovascular pressure than in microvascular pressure.  相似文献   

5.
6.
To assess the role of intracellular adenosine 3',5'-cyclic monophosphate (cAMP), we tested the effects of dibutyryl cAMP (DBcAMP), an analogue of cAMP, on lung injury induced by pulmonary air embolism in awake sheep with chronic lung lymph fistula. We infused air (1.23 ml/min) in the pulmonary artery for 2 h in untreated control sheep. In DBcAMP-pretreated sheep DBcAMP was infused (1 mg/kg bolus and 0.02 mg.kg-1.min-1 constantly for 5 h); after 1 h from beginning of DBcAMP administration the air infusion was started. After the air infusion, pulmonary arterial pressure (Ppa) and lung lymph flow rate (Qlym) significantly increased in both groups. DBcAMP-pretreated sheep showed significantly lower responses in Qlym (2.7 X base line) compared with untreated control sheep (4.6 X base line); however, Ppa, left atrial pressure, and lung lymph-to-plasma protein concentration ratio were not significantly different between the two groups. Although plasma and lung lymph thromboxane B2 and 6-ketoprostaglandin F1 alpha concentrations increased significantly during the air infusion, DBcAMP-pretreated sheep showed significantly lower responses. Thus DBcAMP infusion attenuated pulmonary microvascular permeability induced by air embolism. We conclude that pulmonary vascular permeability is in part controlled by the intracellular cAMP level.  相似文献   

7.
Diethylcarbamazine (DEC) is an inhibitor of lipoxygenase, with protective effects in several experimental models of anaphylaxis and lung dysfunction. The hypothesis of this study was that DEC would alter the pulmonary response to endotoxin infusion, especially the prolonged pulmonary hypertension, leukopenia, hypoxemia, and high flow of protein-rich lung lymph. We prepared sheep for chronic measurements of hemodynamics and collection of lung lymph. In paired studies we gave six sheep endotoxin (0.5 micrograms/kg iv) either with or without DEC. DEC was given (80-100 mg/kg iv) over 30 min followed by a continuous infusion at 1 mg X kg-1 X min-1. Endotoxin was given after the loading infusion of DEC, and variables were monitored for 4 h. The response to endotoxin was characterized by pulmonary hypertension, leukopenia, hypoxemia, and elevations of thromboxane B2 and 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha). Lymph flow and protein content reflected hemodynamic and permeability changes in the pulmonary circulation. DEC did not significantly modify the response to endotoxin by any measured variable, including pulmonary arterial and left atrial pressures, cardiac output, lymph flow and protein content, alveolar-to-arterial PO2 difference, blood leukocyte count, and lymph thromboxane B2 and 6-keto-PGF1 alpha. We could not find evidence of release of leukotriene C4/D4 by radioimmunoassay in lung lymph after endotoxin infusion with or without DEC treatment. We conclude that lipoxygenase products of arachidonic acid may not be a major component of the pulmonary vascular response to endotoxin.  相似文献   

8.
9.
10.
11.
Thrombin-induced alterations in lung fluid balance in awake sheep   总被引:5,自引:0,他引:5  
We examined the effect of fibrinolysis depression on thrombin-induced pulmonary microembolism in awake sheep prepared with chronic lung lymph fistulas. Fibrinolysis was depressed by an intravenous infusion (100 mg) of tranexamic acid [trans-4-(Aminomethyl)cyclohexanecarboxylic acid]. Pulmonary microembolism was induced by an intravenous infusion of alpha-thrombin (80 NIH U/kg) in normal (n = 7) and in tranexamic acid-treated (n = 6) sheep. Thrombin immediately increased pulmonary lymph flow (Qlym) in both groups. The increased Qlym was not associated with a change in the lymph-to-plasma protein concentration (L/P) ratio in the control group and with a small decrease in the tranexamic acid-treated group. The increases in Qlym and pulmonary transvascular protein clearance (Qlym X L/P ratio) in the tranexamic acid-treated group were greater and sustained at four- to fivefold above base line for 10 h after the thrombin and remained elevated at twofold above base line even at 24 h. In contrast, Qlym and protein clearance were transiently increased in the control group. The mean pulmonary arterial pressure (Ppa) and pulmonary vascular resistance (PVR) increased after thrombin in tranexamic acid-treated group; the increases in Ppa and PVR in the control group were transient. Protein reflection coefficient as determined by the filtration independent method decreased after thrombin in tranexamic acid-treated sheep (n = 5), indicating an increased vascular permeability to proteins. We conclude that prolongation of microthrombi retention in the pulmonary circulation results in an increased vascular permeability to proteins. Both increased vascular permeability and vascular hydrostatic pressure are important determinants of the increases in Qlym and transvascular protein clearance after thrombin-induced pulmonary microembolism.  相似文献   

12.
13.
We determined the effects of infusion of prostacyclin (PGI2) and 6-alpha-carba-PGI2 (6-cPGI2), a stable PGI2 analogue, on pulmonary transvascular fluid and protein fluxes after intravascular coagulation induced by thrombin. Studies were made in control awake sheep prepared with lung lymph fistulas (n = 6) and in similarly prepared awake sheep pretreated with either 6-cPGI2 (n = 5) or PGI2 (n = 5). Both prostacyclin compounds (500 ng X kg-1 X min-1) were infused intravenously. All groups were challenged with 80 U/kg thrombin. Pulmonary arterial pressure (Ppa), pulmonary vascular resistance (PVR), pulmonary lymph flow (Qlym), lymph protein clearance (Qlym X lymph/plasma protein concentration ratio), and neutrophil and platelet counts were determined. In vitro tests assessed sheep neutrophil chemotaxis and chemiluminescence and platelet aggregation. In both 6-cPGI2 and PGI2 groups, the increases in Qlym after thrombin were less than those in the control group. The increase in lymph protein clearance in the 6-cPGI2 group was the same as that in control, whereas the increase in clearance in the PGI2 group was reduced. PVR and Ppa increased to a greater extent in the 6-cPGI2 group than in the control group, whereas the increases in PVR and Ppa were inhibited in the PGI2 group. Neutrophil and platelet counts decreased after thrombin in PGI2 and 6-cPGI2 groups, as they did in the control group. Neither 6-cPGI2 altered neutrophil chemotaxis induced by thrombin and chemiluminescence induced by opsonized zymosan. Both prostacyclin compounds inhibited platelet aggregation induced by ADP or thrombin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Rat lung glucose metabolism after 24 h of exposure to 100% oxygen   总被引:1,自引:0,他引:1  
Previous studies with lung homogenates and isolated cells have suggested oxygen cell injury results from the inhibition of key enzymes involved in both cytosolic and mitochondrial energy generation. In this study, the extent and pattern of metabolism of D-[U-14C, 5-3H]glucose was examined in perfused lungs isolated from rats before and after 24 h of in vivo exposure to 100% O2. Lung ATP levels after O2 exposure were maintained by a 53% increase in glucose utilization from an unexposed control value of 18.0 +/- 3.2 to 27.5 +/- 3.0 mumol 3H2O.h-1.g dry wt-1, accounted for by an enhanced rate of lactate plus pyruvate production from 15.7 +/- 2.0 to 32.7 +/- 4.1 mumol.h-1.g dry wt-1 with no alteration in lactate-to-pyruvate ratio. CO2 production was unaltered from a control rate of 27.5 +/- 4.0 14CO2 mumol.h-1.g dry wt-1. Maximal rates of glucose metabolism were determined by perfusion with 0.8 mM dinitrophenol, giving for air-exposed lungs a rate of 53.5 +/- 5.0 mumol 3H2O.h-1.g dry wt-1 and increased lactate plus pyruvate and 14CO2 production rates of 46.5 +/- 6.5 and 128.3 +/- 19.6 mumol.h-1.g dry wt-1, respectively. Although this maximal rate of glucose utilization was unaltered in oxygen-exposed lungs, lactate plus pyruvate production was further increased to 80.0 +/- 9.1 mumol.h-1.g dry wt-1 with a concomitant decrease in the dinitrophenol-induced rate of 14CO2 production to 81.5 +/- 9.2 mumol.h-1.g dry wt-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
17.
18.
An increase in oxygen tension is an important factor in decreasing pulmonary vascular resistance (PVR) at birth. Birth asphyxia results in acidosis and increased PVR. We determined the effect of resuscitation with 21 vs. 100% O(2) on pulmonary hemodynamics, pulmonary arterial (PA) reactivity, and oxidant stress in a lamb model of in utero asphyxia. Term fetal lambs were acutely asphyxiated by intrauterine umbilical cord occlusion for 10 min resulting in acidosis (pH 6.96 ± 0.05 and Pco(2) 103 ± 5 Torr), bradycardia, systemic hypotension, and increased PVR. Lambs were treated with 30 min of resuscitation with 21% or 100% O(2) (n = 6 each). Pa(O(2)) was significantly elevated with 100% O(2) resuscitation compared with 21% O(2) (430 ± 38 vs. 64 ± 8 Torr), but changes in pH and Pa(CO(2)) were similar. The 100% O(2) induced greater increase in pulmonary blood flow and decrease in PVR at 1 min of life, but subsequent values were similar to 21% O(2) group between 2 and 30 min of life. Oxygen uptake from the lung and systemic oxygen extraction was similar between the two groups. Pulmonary arteries showed increased staining for superoxide anions and increased contractility to norepinephrine following resuscitation with 100% O(2). The increased PA contractility induced by 100% O(2) was reversed by scavenging superoxide anions with superoxide dismutase and catalase. We conclude that resuscitation of asphyxiated lambs with 100% O(2) increases Pa(O(2)) but does not improve lung oxygen uptake, decrease PVR at 30 min, or increase systemic oxygen extraction ratios. Furthermore, 100% O(2) also induces oxidative stress and increases PA contractility. These findings support the new neonatal resuscitation guidelines recommending 21% O(2) for initial resuscitation of asphyxiated neonates.  相似文献   

19.
20.
Rats were exposed to 100% oxygen for up to 60 h to determine early changes in lung permeability leading to the development of pulmonary edema. The time course of development of increased solute flux was assessed by the clearance of 99mTc-labeled diethylenetriamine pentaacetate (99mTc-DTPA) from the lung and the accumulation of 125I-labeled albumin (125I-albumin) in the lung. These end points were related to the development of pulmonary edema by the measurement of the wet-to-dry weight ratio of the lung and the weight of fluid in the pleural cavity. No significant changes occurred until 48 h of hyperoxia, when sharp increases in both indexes of lung permeability and wet-to-dry weight ratio occurred. By 60 h of exposure, pleural effusions had developed. The volume of this effusion was significantly correlated to both 99mTc-DTPA clearance and 125I-albumin flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号