首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Cu,Zn superoxide dismutase (Cu,ZnSOD) isolated from Haemophilus ducreyi possesses a His-rich N-terminal metal binding domain, which has been previously proposed to play a copper(II) chaperoning role. To analyze the metal binding ability and selectivity of the histidine-rich domain we have carried out thermodynamic and solution structural analysis of the copper(II) and zinc(II) complexes of a peptide corresponding to the first 11 amino acids of the enzyme (H2N-HGDHMHNHDTK-OH, L). This peptide has highly versatile metal binding ability and provides one and three high affinity binding sites for zinc(II) and copper(II), respectively. In equimolar solutions the MHL complexes are dominant in the neutral pH-range with protonated lysine ε-amino group. As a consequence of its multidentate nature, L binds zinc and copper with extraordinary high affinity (KD,Zn = 1.6 × 10−9 M and KD,Cu = 5.0 × 10−12 M at pH 7.4) and appears as the strongest zinc(II) and copper(II) chelator between the His-rich peptides so far investigated. These KD values support the already proposed role of the N-terminal His-rich region of H. ducreyi Cu,ZnSOD in copper recruitment under metal starvation, and indicate a similar function in the zinc(II) uptake, too. The kinetics of copper(II) transfer from L to the active site of Cu-free N-deleted H. ducreyi Cu,ZnSOD showed significant pH and copper-to-peptide ratio dependence, indicating specific structural requirements during the metal ion transfer to the active site. Interestingly, the complex CuHL has significant superoxide dismutase like activity, which may suggest multifunctional role of the copper(II)-bound N-terminal His-rich domain of H. ducreyi Cu,ZnSOD.  相似文献   

2.
The processes that are photoinduced by [Ru(bpz)(3)](2+) (bpz = 2,2'-bipyrazyl) in the presence of Cu/Zn superoxide dismutase (Cu/Zn SOD) are investigated by laser flash photolysis and electron paramagnetic resonance (EPR) spectroscopy; they are compared to those of the system [Ru(bpy)(3)(2+)-Cu/Zn SOD]. Although the mechanism is complicated, primary and secondary reactions can be evidenced. First, the excited [Ru(bpz)(3)](2+) complex is quenched reductively by Cu/Zn SOD with the production of a reduced complex and an oxidized enzyme. The oxidation site of Cu/Zn SOD is proposed to correspond to amino acids located on the surface of the protein. Afterward and only when this reductive electron transfer to the excited complex has produced enough oxidized protein, another electron-transfer process can be evidenced. In this case, however, the charge-transfer process takes place in the other direction, i.e., from the excited complex to the Cu(II) center of the SOD with the formation of Ru(III) and Cu(I) species. This proposed mechanism is supported by the fact that [Ru(bpy)(3)](2+), which is less photo-oxidizing than [Ru(bpz)(3)](2+), exhibits no photoreaction with Cu/Zn SOD. Because Ru(III) species are generated as intermediates with [Ru(bpz)(3)](2+), they are proposed to be responsible for the enhancement of [poly(dG-dC)](2) and [poly(dA-dT)](2) oxidation observed when Cu/Zn SOD is added to the [Ru(bpz)(3)](2+)-DNA system.  相似文献   

3.
X-ray absorption near-edge structure (XANES) spectroscopy and molecular dynamics (MD) simulations have been jointly applied to the study of the Cu,Zn superoxide dismutase from Haemophilus ducreyi (HdSOD) in interaction with the carbon monoxide molecule. The configurational flexibility of the Fe(II)-heme group, intercalated between the two subunits, has been sampled by MD simulations and included in the XANES data analysis without optimization in the structural parameter space. Our results provide an interpretation of the observed discrepancy in the Fe-heme distances as detected by extended X-ray absorption fine structure (EXAFS) spectroscopy and the classical XANES analysis, in which the structural parameters are optimized in a unique structure. Moreover, binding of the CO molecule to the heme induces a long range effect on the Cu,Zn active site, as evidenced by both MD simulations and in vitro experiments. MD simulation of the CO bound system, in fact, highlighted a structural rearrangement of the protein-protein hydrogen bond network in the region of the Cu,Zn active site, correlated with an increase in water accessibility at short distance from the copper atom. In line, in vitro experiments evidenced an increase of copper accessibility to a chelating agent when the CO molecule binds to the heme group, as compared to a heme deprived HdSOD. Altogether, our results support the hypothesis that the HdSOD is a heme-sensor protein, in which binding to small gaseous molecules modulates the enzyme superoxide activity as an adaptive response to the bacterial environment.  相似文献   

4.
The Cu,Co superoxide dismutase derivative, in which the native Zn(II) was replaced by Co(II), was investigated by 1H NMR spectroscopy at pH 7.0 in the presence of CN- and N-3. Addition of either anion produced large but remarkably different variations in the position of the histidine proton signals bound to the metal cluster. The resonances of the histidines bound to the copper broadened at low CN- concentrations (6 X10(-5)-16.5 X 10(-3) M KCN, in the presence of 1.5 mM protein) and narrowed again, with changed chemical shifts at [KCN] greater than 10(-2) M. At 7 degrees C two resonances split into two pairs of lines as a function of [CN-]. The temperature dependence of these resonances, in the presence of nonsaturating [CN-], suggests a slow exchange between two forms of the protein-bound copper in the presence of the anion. The apparent activation parameters associated with the interconversion of the two species indicate a local conformational change in the presence of CN-. No evidence of temperature dependence was seen in the spectrum in the presence of N-3, which, on the other hand, was fully removed from the copper by addition of CN-. No evidence was obtained for removal by CN- of a histidine bound to the copper as previously reported for low affinity anions at pH 5.5 (Bertini, I., Lanini, G., Luchinat, C., Messori, L., Monanni, R., and Scozzafava, A. (1985) J. Am. Chem. Soc. 107, 4391-4396). These results indicate that CN- has a unique pattern of binding to the enzyme copper. Since catalytic and structural data indicate that CN- is the only appropriate substrate analogue for the Cu,Zn superoxide dismutase, data from anions with much less affinity may lead to misleading conclusions on the mechanism of anion and substrate binding to the enzyme.  相似文献   

5.
The four binding constants of zinc(II) ions to apo-bovine superoxide dismutase were measured by the method of equilibrium dialysis. The binding constants (10(11.1)-10(10.9) M-1) of zinc ions to the native zinc sites were much larger than those to the native copper sites (10(7.8)-10(6.5) M-1) at pH 6.25. The competitive reaction between copper(II) and zinc(II) ions for the native copper sites of copper free bovine superoxide dismutase was also investigated. The native copper sites of bovine superoxide dismutase selectively react with copper ions, because the binding constants of copper ions for the native copper sites were much larger (10(6) times) than those of zinc ions.  相似文献   

6.
The activity profile of the CU2Zn2HSOD Ile-137 mutant has a pKa of 9.6, i. e. one unit lower than the wild type (WT). This property has allowed us to investigate the inactive high pH form of the enzyme before denaturation occurs. The electronic and EPR spectra do not change with the above pKa. The 1H NMR spectrum of the CU2CO2-analog reveals slight decreases in the hyperfine shifts of the protons of His-48 at high pH, which are consistent with a water molecule becoming closer to the copper ion, as detected through water 1H T 1 –1 NMR measurements. The affinity of azide at high pH is lower than at low pH, though still sizeable. The WT follows the same pattern up to pH pKa. It appears that the drop in activity is not related to any major change involving the metal coordination sphere, but is related to changes in the electrostatic potential due to the deprotonation process. Offprint requests to: I. Bertini  相似文献   

7.
8.
The activity of chelated Cu(II) with four different aspirin-like drugs in various superoxide dismutase assays was examined. Prior to these studies the oxidation state of the involved copper was measured by x-ray photoelectron spectrometry and was found to be +II throughout. All copper complexes were able to suppress the xanthine-xanthine oxidase mediated reduction of both cytochrome c and nitroblue tetrazolium as well as the formazan formation by KO2 in a specific manner. The hydroxylation of benzo-[alpha]-pyrene as well as the demethylation of 7-ethoxycoumarin using induced hepatic rat microsomes could be successfully inhibited by the employed Cu(II) chelates. Cu(II)-acetylsalicylate was the most active copper complex. Our findings support the proposal that Cu(II) chelates are the active forms of aspirin-like antiinflammatory agents.  相似文献   

9.
Allen S  Badarau A  Dennison C 《Biochemistry》2012,51(7):1439-1448
The delivery of copper by the human metallochaperone CCS is a key step in the activation of Cu,Zn-superoxide dismutase (SOD1). CCS is a three-domain protein with Cu(I)-binding CXXC and CXC motifs in domains 1 and 3, respectively. A detailed analysis of the binding of copper to CCS, including variants in which the Cys residues from domains 1 and 3 have been mutated to Ser, and also using separate domain 1 and 3 constructs, demonstrates that CCS is able to bind 1 equiv of Cu(I) in both of these domains. The Cu(I) affinity of domain 1 is approximately 5 × 10(17) M(-1) at pH 7.5, while that of domain 3 is at least 1 order of magnitude weaker. The CXXC site will therefore be preferentially loaded with Cu(I), suggesting that domain 1 plays a role in the acquisition of the metal. The delivery of copper to the target occurs via domain 3 whose structural flexibility and ability to be transiently metalated during copper delivery appear to be more important than the Cu(I) affinity of its CXC motif. The Cu(I) affinity of domain 1 of CCS is comparable to that of HAH1, another cytosolic copper metallochaperone. CCS and HAH1 readily exchange Cu(I), providing a mechanism whereby cross-talk can occur between copper trafficking pathways.  相似文献   

10.
Aqueous Cu2+ and Cu(II) complexes of salicylate, lysine, and tyrosine decrease the rate of benzylamine oxidation by bovine plasma amine oxidase. Bissalicylato Cu(II) and Cu2+ inhibit non-competitively with respect to benzylamine. Lysine, tyrosine, Cu(EDTA)2?, Zn2+, and Co2+ do not inhibit, and erythrocyte Cu, Zn superoxide dismutase shows only slight inhibition of the amine oxidase. The data are most consistent with an inhibitory mechanism involving dismutation of O2? by the Cu(II) complexes within a site relatively inaccessible to the enzyme superoxide dismutase. Excess lysine significantly decreases inhibition by the bis-lysine complex of Cu(II).  相似文献   

11.
Bovine CuZnSOD was used during an 8-year period as an anti-inflammatory drug in 26 patients with severe Crohn's disease, usually after failure of corticotherapy, or when this drug was avoided because of side-effects or abscesses. This was a Phase II trial during which doses, routes of administration and concomitant therapies were progressively modified. The acceptability was excellent with the free enzyme. We obtained 19/26 very good short term responses, and 82% good results on long term evolution. The efficacy of SOD as an anti-inflammatory drug in Crohn's disease needs to be confirmed by controlled trials.  相似文献   

12.
The microsomal enzyme 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase and the low density lipoprotein (LDL) receptor pathway carry out a key role on cholesterol homeostasis in eucaryotic cells. The HMG-CoA reductase is sensitive to oxidative inactivation and to phosphorylation by many kinases that are able to inactivate the protein and increase its susceptibility to proteolysis. We previously demonstrated that a calf thymus Cu,Zn SOD affects cholesterol metabolism. This protein binds with rat hepatocyte cell membrane by a specific surface membrane receptor. The involvement of Cu,Zn SOD in cholesterol metabolism is confirmed further by the presence of this antioxidant enzyme in circulating serum lipoproteins. We studied the effect of native human Cu,Zn SOD, metal-free SOD (apo SOD), and SOD-inactivated with hydrogen peroxide on cholesterol metabolism in human hepatocarcinoma HepG2 cells. Results showed that all forms of SODs used, at the concentration of 150 ng/ml, are able to affect cholesterol metabolism decreasing both HMG-CoA reductase activity and its protein levels; this inhibitory effect is accompanied by reduced cholesterol synthesis measured as [14C]acetate incorporation into [14C]cholesterol and by an increased [125I]LDL binding to HepG2 cells. Furthermore, the inhibitory effect of Cu,Zn SOD on cholesterol synthesis was completely abolished when the cells were incubated with Cu,Zn SOD in the presence of bisindoilmaleimide (BDM), an inhibitor of protein kinase C (PKC); moreover, we demonstrated that Cu,Zn SOD as well as apo SOD was able to increase PKC activity. Overall, data demonstrate that Cu,Zn SOD affects cholesterol metabolism independently from its dismutase activity and its metal content and that the inhibitory action on cholesterol synthesis is mediated by an activation of protein kinase C.  相似文献   

13.
X-band e.s.r. and electronic spectra of imidazolate bridged homobinuclear Cu-Cu complex, [(PMDT)Cu-Im-Cu(PMDT)](ClO(4))(3) and heterobinuclear Cu-Zn and Cu-Ni complexes, viz. [(PMDT)Cu-Im-Zn(PMDT)](ClO(4))(3), [(PMDT)Cu-Im-Ni(PMDT)] (ClO(4))(3), where PMDT=pentamethyldiethylenetriamine, Im=Imidazolate ion and related mononuclear complexes, [(PMDT)Cu(OH(2))](2+) and [(PMDT)Cu(ImH)](2+) have been described. Superoxide dismutase activities of these complexes have also been measured.  相似文献   

14.
The cytoplasmic Cu/Zn-superoxide dismutase (SOD1) represents along with catalase and glutathione peroxidase at the first defense line against reactive oxygen species in all aerobic organisms, but little is known about its distribution in developing embryos. In this study, the expression patterns of SOD1 mRNA in mouse embryos were investigated using real-time RT-PCR and in situ hybridization analyses. Expression of SOD1 mRNA was detected in all embryos with embryonic days (EDs) 7.5–18.5. The signal showed the weakest level at ED 12.5, but the highest level at ED 15.5. SOD1 mRNA was expressed in chorion, allantois, amnion, and neural folds at ED 7.5 and in neural folds, notochord, neuromeres, gut, and primitive streak at ED 8.5. In central nervous system, SOD1 mRNA was expressed greatly in embryos of EDs 9.5–11.5, but weakly in embryos of ED 12.5. At EDs 9.5–12.5, the expression of SOD1 mRNA was high in sensory organs such as tongue, olfactory organ (nasal prominence) and eye (optic vesicle), while it was decreased in ear (otic vesicle) after ED 10.5. In developing limbs, SOD1 mRNA was greatly expressed in forelimbs at EDs 9.5–11.5 and in hindlimbs at EDs 10.5–11.5. The signal increased in liver, heart and genital tubercle after ED 11.5. In the sections of embryos after ED 13.5, SOD1 mRNA was expressed in various tissues and especially high in mucosa and metabolically active sites such as lung, kidney, stomach, and intestines and epithelial cells of skin, whisker follicles, and ear and nasal cavities. These results suggest that SOD1 may be related to organogenesis of embryos as an antioxidant enzyme.  相似文献   

15.
Neurofilament pathology is a hallmark of sporadic and familial amyotrophic lateral sclerosis (SALS and FALS). The disease mechanisms underlying this pathology are presently unclear, but recent evidence in SALS patients suggest that reductions in neurofilament light subunit (NFL) mRNA may contribute to the death of motor neurones. Mutations in the gene encoding Cu-Zn superoxide dismutase (SOD1) represent the best-studied cause of FALS, and a number of laboratory models of SOD1-mediated disease exist. Here we have used microdissected lumbar spinal cord motor neurones from human SOD1 FALS patients as well as G93A SOD1 transgenic mice and demonstrated that reduced NFL mRNA levels are seen in both. To probe the molecular mechanisms underpinning these observations, we generated NSC34 motor neurone-like cell lines expressing wild-type and mutant SOD1. NSC34 cells expressing G37R or G93A SOD1 showed selective reductions in NFL and NFM mRNA and protein. These data suggest that NFL mRNA reductions are common to SALS and FALS patients, and that cells and mice expressing mutant SOD1 may enable us to characterize the molecular mechanism(s) responsible for the loss of neurofilament mRNA.  相似文献   

16.
Superoxide dismutases (SODs) stand in the prime line of enzymatic antioxidant defense in nearly all eukaryotic cells exposed to oxygen, catalyzing the breakdown of the superoxide anionic radical to O(2) and H(2)O(2). Overproduction of superoxide correlates with numerous pathophysiological conditions, and although the native enzyme can be used as a therapeutic agent in superoxide-associated conditions, synthetic low molecular weight mimetics are preferred in terms of cost, administration mode, and bioavailability. In this study we make use of the model eukaryote Saccharomyces cerevisiae to investigate the SOD-mimetic action of a mononuclear mixed-ligand copper(II) complex, [CuCl(acac)(tmed)] (where acac is acetylacetonate anion and tmed is N,N,N',N'-tetramethylethylenediamine). Taking advantage of an easily reproducible phenotype of yeast cells which lack Cu-Zn SOD (Sod1p), we found that the compound could act either as a superoxide scavenger in the absence of native Sod1p or as a Sod1p modulator which behaved differently under various genetic backgrounds.  相似文献   

17.
Four imidazolate-bridged binuclear copper(II)-copper(II) and copper(II)-zinc(II) complexes viz., [(Bipy)(2)Cu-Im-Cu(Bipy)(2)](ClO(4))(3).CH(3)OH, [(Phen)(2)Cu-Im-Cu(Phen)(2)](BF(4))(3).2CH(3)OH, [(Bipy)(2)Cu-Im-Zn(Bipy)(2)](BF(4))(3), and [(Phen)(2)Cu-Im-Zn(Phen)(2)](BF(4))(3), (Bipy=2,2'-Bipyridyl, Phen=1-10-Phenanthroline and Im=imidazolate ion) were synthesized as a possible models for superoxide dismutase (SOD). Complex [(Bipy)(2)Cu-Im-Cu(Bipy)(2)](ClO(4))(3).CH(3)OH has been structurally characterized. This complex crystallizes in the triclinic space group P1, with the unit parameters a=8.88(5) A, b=13.79(17) A, c=20.18(18) A, alpha=76.424(8)(o), beta=85.888(6)(o), gamma=82.213(7). The metal-nitrogen bond length from 1.972-2.273 A and the distance Cu-Cu is 5.92 A. The five-coordinate geometry about the copper(II) ion is square pyramidal. Magnetic moment and electron paramagnetic resonance (e.p.r.) spectral measurements of the homobinuclear complexes have shown an antiferromagnetic exchange interaction. From the e.p.r. and UV-Vis spectral measurement studies, these complexes have been found to be stable (pH 8.5-10.5 for 1, 10.5 for 2,3 and 8.5 for 4). These complexes catalyse the dismutation of superoxide radical (O(2)(-)) at biological pH. All the observations indicate that these complexes act as good possible models for superoxide dismutase.  相似文献   

18.
Administration of bacterial endotoxin to rats exposed to greater than 95% O2 results in increased lung superoxide dismutase activity, decreased O2-induced lung damage, and a 3- to 4-fold improvement in survival rate (Frank, L., Yam, J., and Roberts, R. J. (1978) J. Clin. Invest, 61, 269-275). Antibodies to rat liver (Cu,Zn) superoxide dismutase were prepared and utilized to investigate the mechanism by which endotoxin treatment leads to increased lung superoxide dismutase activity. Assay of enzyme activity and of immunodetectable enzyme showed that the increased activity is due to an increase in the number of enzyme molecules rather than activation of existing enzyme. Compared to air controls, lung slices from rats exposed to greater than 95% O2 and treated with endotoxin have elevated rats of synthesis of (Cu,Zn)superoxide dismutase (51%) and of total protein (100%). Lung slices from untreated rats exposed to greater than 95% O2 have no such elevations. Endotoxin treatment thus appears to stimulate lung protein synthesis, leading to greater (Cu,Zn)superoxide dismutase activity due to an increased number of enzyme molecules.  相似文献   

19.
Mutations in Cu/Zn superoxide dismutase (SOD1), a major cytosolic antioxidant enzyme in eukaryotic cells, have been reported in approximately 20% of familial amyotrophic lateral sclerosis (FALS) patients. Hereditary canine spinal muscular atrophy (HCSMA), a fatal inherited motor neuron disease in Brittany spaniels, shares many clinical and pathological features with human motor neuron disease, including FALS. The SOD1 coding region has been sequenced and cloned from several animal species, but not from the dog. We have mapped the chromosomal location, sequenced, and characterized the canine SOD1 gene. Extending this analysis, we have evaluated SOD1 as a candidate for HCSMA. The 462 bp SOD1 coding region in the dog encodes 153 amino acid residues and exhibits more than 83% and 79% sequence identity to other mammalian homologues at both the nucleotide and amino acid levels, respectively. The canine SOD1 gene maps to CFA31 close to syntenic group 13 on the radiation hybrid (RH) map in the vicinity of sodium myo/inositol transporter (SMIT) gene. The human orthologous SOD1 and SMIT genes have been localized on HSA 21q22.1 and HSA 21q21, respectively, confirming the conservation of synteny between dog syntenic group 13 and HSA 21. Direct sequencing of SOD1 cDNA from six dogs with HCSMA revealed no mutations. Northern analysis indicated no differences in steady-state levels of SOD1 mRNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号