首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To study the changes in ventilation induced by inspiratory flow-resistive (IFR) loads, we applied moderate and severe IFR loads in chronically instrumented and awake sheep. We measured inspired minute ventilation (VI), ventilatory pattern [inspiratory time (TI), expiratory time (TE), respiratory cycle time (TT), tidal volume (VT), mean inspiratory flow (VT/TI), and respiratory duty cycle (TI/TT)], transdiaphragmatic pressure (Pdi), functional residual capacity (FRC), blood gas tensions, and recorded diaphragmatic electromyogram. With both moderate and severe loads, Pdi, TI, and TI/TT increased, TE, TT, VT, VT/TI, and VI decreased, and hypercapnia ensued. FRC did not change significantly with moderate loads but decreased by 30-40% with severe loads. With severe loads, arterial PCO2 (PaCO2) stabilized at approximately 60 Torr within 10-15 min and rose further to levels exceeding 80 Torr when Pdi dropped. This was associated with a lengthening in TE and a decrease in breathing frequency, VI, and TI/TT. We conclude that 1) timing and volume responses to IFR loads are not sufficient to prevent alveolar hypoventilation, 2) with severe loads the considerable increase in Pdi, TI/TT, and PaCO2 may reduce respiratory muscle endurance, and 3) the changes in ventilation associated with neuromuscular fatigue occur after the drop in Pdi. We believe that these ventilatory changes are dictated by the mechanical capability of the respiratory muscles or induced by a decrease in central neural output to these muscles or both.  相似文献   

2.
The first-breath (neural) effects of graded resistive loads added separately during inspiration and expiration was studied in seven anesthetized cats before and after bilateral vagotomy. Additions of airflow resistance during inspiration reduced the volume inspired (VI) and increased inspiratory duration (TI). The duration of the ensuing unloaded expiration (TE) was unchanged. Vagotomy eliminated the TI modulation with inspiratory loads. Tracheal occlusion at the onset of inspiration yielded TI values similar to the fixed values observed following vagotomy. Resistive loads added during expiration produced similar results. Expired volume (VE) decreased and (TE) increased approaching the values obtained after vagotomy. Unlike the inspiratory resistive loads, loading during expiration results in an upward shift in the functional residual capacity (FRC). The FRC shift produces a time lag between the onset of diaphragmatic (EMG) activity and the initiation of airflow of the next (unloaded) inspiration. These studies suggest separate volume-time relationships for the inspiratory and expiratory phases of the breathing cycle. Both relationships are dependent upon vagally mediated volume feedback.  相似文献   

3.
Pressure-threshold loads (ΔPT) are inspiratory force-related loads, which contrast with resistive loads (ΔR), are airflow-dependent loads. If detection of respiratory loads is a function of the background load, then pressure-threshold type inspiratory muscle strength training (IMST) would affect the detection of ΔPT but have less effect on detection of ΔR. ΔR and ΔPT detection and ventilatory responses were measured in healthy volunteers. IMST consisted of 4 sets of 6 breaths per day for 4 weeks, at 75% of maximal inspiratory pressure (MIP). MIP increased and a measure of inspiratory dirve, the mouth pressure generated in the initial 100 msec of an occluded inspiration (P0.1), decreased after IMST. IMST significantly increased MIP after 4 weeks of training. IMST did not change ΔR detection threshold and ΔR-breathing pattern. IMST decreased ΔPT detection percent and ΔPT-breathing pattern. Comparing ΔR and ΔPT at the same mouth pressure-generating level, the detection percent was different. We conclude that IMST affects the detection of ΔPT, but not ΔR. These results also suggest that mouth pressure is not the primary determinant of the inspiratory load detection. The significance of these results is that inspiratory pressure generating capacity can be increased by our pressure threshold training and this increase in respiratory muscle strength increases the ability of pulmonary patients to compensate for increased respiratory load and modulates the threshold for detection of changes in pulmonary mechanics.  相似文献   

4.
Oxygen cost of inspiratory loading: resistive vs. elastic   总被引:2,自引:0,他引:2  
We measured the O2 cost of breathing (VO2resp) against external inspiratory elastic (E) and resistive loads (R) when end-expiratory lung volume, tidal volume, breathing frequency, work rate, and pressure-time product were matched in each of six pairs of runs in six subjects. During E, peak inspiratory mouth pressure was 65.7 +/- 1.8% (SD) of the maximum at functional residual capacity. However, during resistive runs, peak inspiratory mouth pressure was 41.1 +/- 2.8% of the maximum at functional residual capacity. In 36 paired runs, where both work rate and pressure-time product were within 10%, VO2resp for E was less than for R (81 and 96 ml/min, respectively; P less than 0.01). During loaded and unloaded breathing with the same tidal volume, we measured the changes in anteroposterior diameter of the lower rib cage in five subjects. In four subjects we also recorded the electromyograms of several fixator and stabilizing muscles. During E and R, the change in anteroposterior diameter of the lower rib cage was -116 +/- 5 and -45 +/- 4% (SE), respectively, of the unloaded value (P less than 0.01), indicating greater deformation during E. Although the peak electromyographic activity was 72 +/- 16% greater during E (P less than 0.01), there was no difference between the loads for area under the electromyogram time curve (P greater than 0.05). However, the time to 50% peak activity was less during R (P less than 0.02). We conclude that, even when work rate and pressure-time product are matched, VO2resp during R is greater than that during E. This difference may be due to preferential recruitment of faster and less efficient muscle fibers.  相似文献   

5.
To determine whether O2 availability limited diaphragmatic performance, we subjected unanesthetized sheep to severe (n = 11) and moderate (n = 3) inspiratory flow resistive loads and studied the phrenic venous effluent. We measured transdiaphragmatic pressure (Pdi), systemic arterial and phrenic venous blood gas tensions, and lactate and pyruvate concentrations. In four sheep with severe loads, we measured O2 saturation (SO2), O2 content, and hemoglobin. We found that with severe loads Pdi increased to 74.7 +/- 6.0 cmH2O by 40 min of loading, remained stable for 20-30 more min, then slowly decreased. In every sheep, arterial PCO2 increased when Pdi decreased. With moderate loads Pdi increased to and maintained levels of 40-55 cmH2O. With both loads, venous PO2, SO2, and O2 content decreased initially and then increased, so that the arteriovenous difference in O2 content decreased as loading continued. Hemoglobin increased slowly in three of four sheep. There were no appreciable changes in arterial or venous lactate and pyruvate during loading or recovery. We conclude that the changes in venous PO2, SO2, and O2 content may be the result of changes in hemoglobin, blood flow to the diaphragm, or limitation of O2 diffusion. Our data do not support the hypothesis that in sheep subjected to inspiratory flow resistive loads O2 availability limits diaphragmatic performance.  相似文献   

6.
Increasing inspiratory flow (V) has been shown to shorten neural inspiratory time (TI(n)) in normal subjects breathing on a mechanical ventilator, but the effect of V on respiratory motor output before inspiratory termination has not previously been studied in humans. While breathing spontaneously on a mechanical ventilator, eight normal subjects were intermittently exposed to 200-ms-duration positive pressure pulses of different amplitudes at the onset of inspiration. Based on the increase in V above control breaths (DeltaV), trials were grouped into small, medium, and large groups (mean DeltaV: 0.51, 1.11, and 1.65 l/s, respectively). We measured TI(n), transdiaphragmatic pressure (Pdi), and electrical activity (electromyogram) of the diaphragm (EMGdi). Transient increases in V caused shortening of TI(n) from 1.34 to 1.10 (not significant), 1.55 to 1.11 (P < 0.005), and 1.58 to 1.17 s (P < 0. 005) in the small, medium, and large DeltaV groups, respectively. EMGdi measured at end TI(n) of the pulse breaths was 131 (P < 0.05), 142, and 155% (P < 0.05) of the EMGdi of the control breaths at an identical time point in the small, medium, and large trials, respectively. The latency of the excitation was 126 +/- 42 (SD) ms, consistent with a reflex effect. Increasing V had two countervailing effects on Pdi: 1) a depressant mechanical effect due primarily to the force-length (11.2 cmH(2)O/l) relation of the diaphragm, and 2) an increase in diaphragm activation. For the eight subjects, mean peak Pdi did not change significantly, but there was significant intersubject variability, reflecting variability in the strength of the excitation reflex. We conclude that increasing inspiratory V causes a graded facilitation of EMGdi, which serves to counteract the negative effect of the force-length relation on Pdi.  相似文献   

7.
To investigate the changes in diaphragm electromyogram (EMG) during the course of severe loaded breathing, we subjected five conscious adult sheep to inspiratory flow resistive breathing (resistance greater than 150 cmH2O X l-1 X s) for up to 2-3 h and studied the total EMG power per breath (iEMG) and the EMG power per unit time after dividing the duration of EMG activity within each breath into three equal parts (iEMG1, iEMG2, and iEMG3). Both total breath iEMG and transdiaphragmatic pressure (Pdi) increased, remained at a high level for a certain period of time, and then started to fall. A change in the pattern of iEMG within a breath was observed during loaded breathing. The increase in total-breath iEMG was associated mostly with an increase in iEMG3, or the last part of the EMG power within each inspiration. Similarly, the decrease in total breath iEMG was primarily due to a decrease in iEMG3. We conclude that, in sheep subjected to severe IFR loads for prolonged periods the marked increase in total-breath iEMG at the beginning of loaded breathing and the marked decrease in this iEMG at the time of decrease in Pdi are largely due to changes in iEMG that occur during the latter third of each breath. We speculate that during loaded breathing the recruitment pattern of diaphragmatic muscle fibers changes during the course of an inspiratory effort.  相似文献   

8.
The physiological mechanisms mediating the detection of mechanical loads are unknown. This is, in part, due to the lack of an animal model of load detection that could be used to investigate specific sensory systems. We used American Foxhounds with tracheal stomata to behaviorally condition the detection of inspiratory occlusion and graded resistive loads. The resistive loads were presented with a loading manifold connected to the inspiratory port of a non-rebreathing valve. The dogs signaled detection of the load by lifting their front paw off a lever. Inspiratory occlusion was used as the initial training stimulus, and the dogs could reliably respond within the first or second inspiratory effort to 100% of the occlusion presentations after 13 trials. Graded resistances that spanned the 50% detection threshold were then presented. The detection threshold resistances (delta R50) were 0.96 and 1.70 cmH2O.l-1.s. Ratios of delta R50 to background resistance were 0.15 and 0.30. The near-threshold resistive loads did not significantly change expired PCO2 or breathing patterns. These results demonstrate that dogs can be conditioned to reliably and specifically signal the detection of graded inspiratory mechanical loads. Inspiration through the tracheal stoma excludes afferents in the upper extrathoracic trachea, larynx, pharynx, nasal passages, and mouth from mediating load detection in these dogs. It is unknown which remaining afferents (vagal or respiratory muscle) are responsible for load detection.  相似文献   

9.
Six healthy male adults were studied at five levels of suprathreshold added resistance (delta R) applied thrice to either inspiration (I) or expiration (E) in a random sequence. Subjects squeezed on isometric handgrip dynamometer to express the perceived magnitude of the load. Peak mouth pressure (Pm), flow, grip (G), and delta R were analyzed to derive the exponent for Steven's power law. We observed that the slope for log G vs. log delta R was significantly greater for I loads than for E loads (P less than 0.05), but the intercepts for E loads were significantly elevated. However, the slopes and intercepts for log G vs. log Pm during the same I and E loads were not significantly different. When subjects were instructed to target I or E flow to a preset level, we observed no difference between the slopes and intercepts for log G vs. log delta R during I and E loading. These results suggest that 1) the sensory information utilized in judging the magnitude of added resistance is more likely related to the force generated by the respiratory muscles (Pm) rather than delta R per se; and 2) similar muscle receptors and neural processing systems are utilized in the estimation of added loads involving either inspiratory or expiratory muscle groups.  相似文献   

10.
In this study, noninvasive measurements of cardiac output and O2 consumption were performed to estimate the blood flow to and efficiency of the respiratory muscles that are used in elevated inspiratory work loads. Five subjects were studied for 4.5 min at a respiratory rate of 18 breaths/min and a duty cycle of 0.5. Studies were performed at rest without added respiratory loads and at elevated inspiratory work loads with the use of an inspiratory valve that permitted flow only when a threshold pressure was maintained. Cardiac output and O2 consumption were calculated using a rebreathing technique. Respiratory muscle blood flow and O2 consumption were estimated as the difference between resting and loaded breathing. Work of breathing was calculated by integrating the product of mouth pressure and volume. Increases in cardiac output and O2 consumption in response of 4.5 min loaded breathing averaged 1.84 l/min and 108 ml/min, respectively. No increases were seen in response to 20-s loaded breathing. In a separate series of experiments on four subjects, though, cardiac output increased for the first 2 min then leveled off. These results indicate that the increase in cardiac output was a metabolic effect of the increased work load and was not caused primarily by the influence of the highly negative intrathoracic pressure on venous return. Efficiency of the respiratory muscles during inspiratory threshold loading averaged 5.9%, which was similar to measurements of efficiency of respiratory muscles using whole-body O2 consumption that have been reported previously in humans and in dogs.  相似文献   

11.
Five subjects were tested to determine the threshold for detection of an added resistance to inspiration in three tests, one at rest and two with exercise (mild = 50 W; moderate = 100 W) on a cycle ergometer. Changes in the breathing pattern were examined at added resistances near the perceptual threshold. Added inspiratory resistances with a 50% probability of detection were very variable at rest; they decreased significantly from rest (250 Pa.l-1.s-1) to moderate exercise (98 Pa.l-1.s-1) in four subjects. It is suggested that physical exercise may cause discomfort even when workers wearing a respirator do not have any abnormal sensation during sedentary work. Breathing patterns were compared between resistance loaded and unloaded breathing during each test. Decreases in inspiratory peak flow and acceleration of flow early in inspiration were found in resistance loaded breathing in almost all tests and a tendency for tidal volume to decrease was found during moderate exercise only. The ratios of resistance loaded to unloaded breathing for inspiratory time (ti) and total time (tt) tended to be greater in the detected than in the undetected responses at rest and during mild exercise but not during moderate exercise. This would imply that further prolongation of ti and tt in the detected responses was attributable to conscious or subconscious aspects of the resistance leading responses: however, these adjustments in breathing, which reduce frequency, would be less likely to occur as the work rate increases.  相似文献   

12.
Ventilatory responses to progressive exercise, with and without an inspiratory elastic load (14.0 cmH2O/l), were measured in eight healthy subjects. Mean values for unloaded ventilatory responses were 24.41 +/- 1.35 (SE) l/l CO2 and 22.17 +/- 1.07 l/l O2 and for loaded responses were 24.15 +/- 1.93 l/l CO2 and 20.41 +/- 1.66 l/l O2 (P greater than 0.10, loaded vs. unloaded). At levels of exercise up to 80% of maximum O2 consumption (VO2max), minute ventilation (VE) during inspiratory elastic loading was associated with smaller tidal volume (mean change = 0.74 +/- 0.06 ml; P less than 0.05) and higher breathing frequency (mean increase = 10.2 +/- 0.98 breaths/min; P less than 0.05). At levels of exercise greater than 80% of VO2max and at exhaustion, VE was decreased significantly by the elastic load (P less than 0.05). Increases in respiratory rate at these levels of exercise were inadequate to maintain VE at control levels. The reduction in VE at exhaustion was accompanied by significant decreases in O2 consumption and CO2 production. The changes in ventilatory pattern during extrinsic elastic loading support the notion that, in patients with fibrotic lung disease, mechanical factors may play a role in determining ventilatory pattern.  相似文献   

13.
Tidal volume (VT) is usually preserved when conscious humans are made to breathe against an inspiratory resistance. To identify the neural changes responsible for VT compensation we calculated the respiratory driving pressure waveform during steady-state unloaded and loaded breathing (delta R = 8.5 cmH2O X 1(-1) X s) in eight conscious normal subjects. Driving pressure (DP) was calculated according to the method of Younes et al. (J. Appl. Physiol. 51: 963-989, 1981), which provides the equivalent of occlusion pressure at functional residual capacity throughout the breath. VT during resistance breathing was 108% of unloaded VT, as opposed to a predicted value of 82% of control in the absence of neural compensation. Compensation was accomplished through three changes in the DP waveform: 1) peak amplitude increased (+/- 23%), 2) the duration of the rising phase increased (+42%); and 3) the rising phase became more concave to the time axis. There were no changes in the relative decay rate of inspiratory pressure during expiration, in the shape of the declining phase of DP, or in end-expiratory lung volume.  相似文献   

14.
The detection threshold (DeltaR(50)) of resistive (R) loads is a function of the total background resistance (R(0)). Increased R(0) increases the DeltaR(50), but the ratio DeltaR(50)/R(0) remains constant. The respiratory-related evoked potential (RREP) is elicited only by R loads greater than the cognitive detection threshold, DeltaR(50). We hypothesized that the RREP Nf, P1, and N1 peaks will be elicited only when the added load DeltaR/R(0) is greater than the normal detection threshold, DeltaR(50)/R(0) = 0.30. We also hypothesized that when the R(0) is increased by adding extrinsic R, the RREP will not be elicited if the DeltaR/R(0) is less than the 0.30 ratio. RREPs were recorded with healthy volunteers (n = 20) respiring through a non-rebreathing valve. Three inspiratory R loads that spanned the DeltaR(50)/R(0) = 0.30 detection threshold were presented in two conditions: 1) no added R(0) (R1 < 0.30, R2 > 0.30, R3 > 0.30); and 2) increased R(0) = 13.3 cmH(2)O.l(-1).s (R1 < 0.30, R2 < 0.30, R3 > 0.30). For the control R(0), P1, Nf, and N1 peaks of the RREP were elicited by both R2 and R3, and not present with R1. The increased R(0) decreased R2/R(0) > 1.5 to R2/R(0) < 0.15. With increased R(0), the R1 and R2 loads did not elicit the RREP, but the Nf, P1, and N1 peaks were present for R3. These results demonstrate that the RREP is present if the DeltaR is above the cognitive detection threshold, and the RREP is absent if the load is below the detection threshold. When the R(0) is increased to make the DeltaR/R(0) less than the detection threshold, the DeltaR no longer elicits the RREP.  相似文献   

15.
Diaphragm fatigue may contribute to respiratory failure. (31)P-nuclear magnetic resonance spectroscopy is a useful tool to assess energetic changes within the diaphragm during fatigue, as indicated by P(i) accumulation and phosphocreatine (PCr) depletion. We hypothesized that loaded breathing during hypoxia would lead to diaphragm fatigue and inadequate aerobic metabolism. Seven piglets were anesthetized by using halothane inhalation. Diaphragmatic contractility was assessed by transdiaphragmatic pressure (Pdi) at end expiration with the airway occluded. A nuclear magnetic resonance surface coil placed under the right hemidiaphragm measured P(i) and PCr during four conditions: control, inspiratory resistive breathing (IRB), IRB with hypoxia, and recovery (IRB without hypoxia). IRB alone resulted in hypercarbia (32 +/- 7 to 61 +/- 21 Torr) and respiratory acidosis but no change in diaphragm force output or aerobic metabolism. Combined IRB and hypoxia resulted in decreased force output (Pdi decreased by 40%; from 30 +/- 17 to 19 +/- 11 mmHg) and evidence of metabolic stress (ratio of P(i) to PCr increased by 290%; from 0.19 +/- 0.09 to 0.74 +/- 0.27). We conclude that diaphragm fatigue associated with inadequate aerobic oxidative metabolism occurs in the setting of loaded breathing and hypoxia. Conversely, aerobic metabolism and force output of the diaphragm remain unchanged from control during loaded normoxic or hyperoxic breathing despite the onset of respiratory failure.  相似文献   

16.
We investigated the effect on expiratory duration (TE) of application of graded resistive and elastic loads and total airway occlusions to single expirations in 9 full-term healthy infants studied on the 2nd or 3rd day of life. The infants breathed through a face mask and pneumotachograph, and flow, volume, airway pressure, and diaphragm electromyogram (EMG) were recorded. Loads were applied to the expiratory outlet of a two-way respiratory valve using a manifold system. Application of all loads resulted in expired volumes (VE) decreased from control (P less than 0.05), and changes were progressive with increasing loads. As VE became smaller, end-expiratory volume (EEV) became greater. TE, measured either from the pattern of airflow or airway pressure, or from diaphragm EMG activity, progressively increased with increasing loads and was greatest with total occlusions (P less than 0.05, compared with control). Resistive loading resulted in a greater accumulated VE history than elastic loading to the same EEV. For equivalent changes in EEV, TE was more prolonged with resistive than with elastic loading. Expiratory loading did not change the inspiratory duration determined from the diaphragm EMG activity of the breath immediately following each loaded expiration. These findings in infants are consistent with an integrative neural mechanism that modulates TE in response to the accumulated VE history, including both EEV and rate of lung deflation.  相似文献   

17.
Effect of abdominal compression on maximum transdiaphragmatic pressure   总被引:1,自引:0,他引:1  
Transdiaphragmatic pressure (Pdi) is lower during maximum inspiratory effort with the diaphragm alone than when maximum inspiratory and expulsive efforts are combined. The increase in Pdi with expulsive effort has been attributed to increased neural activation of the diaphragm. Alternatively, the increase could be due to stretching of the contracted diaphragm. If this were so, Pdi measured during a combined maximum effort would overestimate the capacity of the diaphragm to generate inspiratory force. This study determined the likely contribution of stretching of the contracted diaphragm to estimates of maximum Pdi (Pdimax) obtained during combined inspiratory and expulsive effort. Three healthy trained subjects were studied standing. Diaphragmatic Mueller maneuvers were performed at functional residual capacity and sustained during subsequent abdominal compression by either abdominal muscle expulsive effort or externally applied pressure. Measurements were made of changes in abdominal (Pab) and pleural (Ppl) pressure, Pdi, rib cage and abdominal dimensions and respiratory electromyograms. Three reproducible performances of each maneuver from each subject were analyzed. When expulsive effort was added to maximum diaphragmatic inspiratory effort, Pdimax increased from 86 +/- 12 to 148 +/- 14 (SD) cmH2O within the 1st s and was 128 +/- 14 cmH2O 2 s later. When external compression was added to maximum diaphragmatic inspiratory effort, Pdimax increased from 87 +/- 16 to 171 +/- 19 cmH2O within the 1st s and was 152 +/- 16 cmH2O 2 s later.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We present a model of chest wall mechanics that extends the model described previously by Macklem et al. (J. Appl. Physiol. 55: 547-557, 1983) and incorporates a two-compartment rib cage. We divide the rib cage into that apposed to the lung (RCpul) and that apposed to the diaphragm (RCab). We apply this model to determine rib cage distortability, the mechanical coupling between RCpul and RCab, the contribution of the rib cage muscles to the pressure change during spontaneous inspiration (Prcm), and the insertional component of transdiaphragmatic pressure in humans. We define distortability as the relationship between distortion and transdiaphragmatic pressure (Pdi) and mechanical coupling as the relationship between rib cage distortion and the pressure acting to restore the rib cage to its relaxed configuration (Plink), as assessed during bilateral transcutaneous phrenic nerve stimulation. Prcm was calculated at end inspiration as the component of the pressure displacing RCpul not accounted for by Plink or pleural pressure. Prcm and Plink were approximately equal during quiet breathing, contributing 3.7 and 3.3 cmH2O on average during breaths associated with a change in Pdi of 3.9 cmH2O. The insertional component of Pdi was measured as the pressure acting on RCab not accounted for by the change in abdominal pressure during an inspiration without rib cage distortion and was 40 +/- 12% (SD) of total Pdi. We conclude that there is substantial resistance of the human rib cage to distortion, that, along with rib cage muscles, contributes importantly to the fall in pleural pressure over the costal surface of the lung.  相似文献   

19.
We applied graded resistive and elastic loads and total airway occlusions to single inspirations in six full-term healthy infants on days 2-3 of life to investigate the effect on neural and mechanical inspiratory duration (TI). The infants breathed through a face mask and pneumotachograph, and flow, volume, airway pressure, and diaphragm electromyogram (EMG) were recorded. Loads were applied to the inspiratory outlet of a two-way respiratory valve using a manifold system. Application of all loads resulted in inspired volumes decreased from control (P less than 0.001), and changes were progressive with increasing loads. TI measured from the pattern of the diaphragm EMG (TIEMG) was prolonged from control by application of all elastic and resistive loads and by total airway occlusions, resulting in a single curvilinear relationship between inspired volume and TIEMG that was independent of inspired volume trajectory. In contrast, when TI was measured from the pattern of airflow, the effect of loading on the mechanical time constant of the respiratory system resulted in different inspired volume-TI relationships for elastic and resistive loads. Mechanical and neural inspired volume and duration of the following unloaded inspiration were unchanged from control values. These findings indicate that neural inspiratory timing in infants depends on magnitude of phasic volume change during inspiration. They are consistent with the hypothesis that termination of inspiration is accomplished by an "off-switch" mechanism and that inspired volume determines the level of vagally mediated inspiratory inhibition to trigger this mechanism.  相似文献   

20.
The dose effect of pentobarbital sodium on integrated ("moving time average") phrenic activity (EPHR), transdiaphragmatic pressure (Pdi), gastric pressure (Pga), changes in lung volume (V), and mechanical properties of the respiratory system was studied in six cats breathing room air. Increased pentobarbital dose from an initial value of 35 mg/kg ip, had no substantial effect on the relationship between EPHR and Pdi during both unoccluded and occluded inspirations, indicating that the diaphragmatic excitation-contraction coupling was not affected. Similarly, increased anesthetic dose had no effect on the relationship between EPHR and delta Pga during both occluded and unoccluded breaths, suggesting that the contribution of the diaphragm to the breathing movements did not change with increasing depth of anesthesia. Although the time course of phrenic activity showed substantial interanimal differences, the shape of the phrenic neurogram did not change substantially with increased pentobarbital dose in any of the cats studied. Increased anesthetic dose depressed, in the same proportion, the rate of rise of EPHR, Pdi, and V, but the mechanical properties of the respiratory system remained unchanged. The depression of ventilation with increased anesthetic dose was not proportional to the drop in central inspiratory activity, as quantified in terms of rate of rise of EPHR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号