首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Storz JF  Opazo JC  Hoffmann FG 《IUBMB life》2011,63(5):313-322
Phylogenetic reconstructions provide a means of inferring the branching relationships among members of multigene families that have diversified via successive rounds of gene duplication and divergence. Such reconstructions can illuminate the pathways by which particular expression patterns and protein functions evolved. For example, phylogenetic analyses can reveal cases in which similar expression patterns or functional properties evolved independently in different lineages, either through convergence, parallelism, or evolutionary reversals. The purpose of this article is to provide a robust phylogenetic framework for interpreting experimental data and for generating hypotheses about the functional evolution of globin proteins in chordate animals. To do this, we present a consensus phylogeny of the chordate globin gene superfamily. We document the relative roles of gene duplication and whole-genome duplication in fueling the functional diversification of vertebrate globins, and we unravel patterns of shared ancestry among globin genes from representatives of the three chordate subphyla (Craniata, Urochordata, and Cephalochordata). Our results demonstrate the value of integrating phylogenetic analyses with genomic analyses of conserved synteny to infer the duplicative origins and evolutionary histories of globin genes. We also discuss a number of case studies that illustrate the importance of phylogenetic information when making inferences about the evolution of globin gene expression and protein function. Finally, we discuss why the globin gene superfamily presents special challenges for phylogenetic analysis, and we describe methodological approaches that can be used to meet those challenges.  相似文献   

3.
The Molecular Evolution of the Small Heat-Shock Proteins in Plants   总被引:13,自引:0,他引:13       下载免费PDF全文
E. R. Waters 《Genetics》1995,141(2):785-795
The small heat-shock proteins have undergone a tremendous diversification in plants; whereas only a single small heat-shock protein is found in fungi and many animals, over 20 different small heat-shock proteins are found in higher plants. The small heat-shock proteins in plants have diversified in both sequence and cellular localization and are encoded by at least five gene families. In this study, 44 small heat-shock protein DNA and amino acid sequences were examined, using both phylogenetic analysis and analysis of nucleotide substitution patterns to elucidate the evolutionary history of the small heat-shock proteins. The phylogenetic relationships of the small heat-shock proteins, estimated using parsimony and distance methods, reveal that gene duplication, sequence divergence and gene conversion have all played a role in the evolution of the small heat-shock proteins. Analysis of nonsynonymous substitutions and conservative and radical replacement substitutions (in relation to hydrophobicity) indicates that the small heat-shock protein gene families are evolving at different rates. This suggests that the small heat-shock proteins may have diversified in function as well as in sequence and cellular localization.  相似文献   

4.
Duplicate loci offer a very powerful system for understanding the complicated genome structure and adaptive evolution of a gene family. In this study, the genetic variation at paralogs AtHVA22d and AtHVA22e, members of an ABA- and stress-inducible gene family, is examined in the selfing Arabidopsis thaliana. Population genetic analysis indicates contrasting levels of nucleotide diversity at overall exon sequence and nonsynonymous sites between AtHVA22d (pi = 0.00337, pi(rep) = 0.00158) and AtHVA22e (pi = 0.00054, pi(rep) = 0.00023). The fact of Ka/Ks ratios significantly less than 1 in all sequences indicates that both genes are functional and subjected to purifying selection. In addition, rooted at barley HVA22, accelerated evolution is detected at replacement changes in the AtHVA22d locus, indicating relaxation of purifying selection after gene duplication. However, relative rate tests reveal no deviation from the neutrality at synonymous sites between the two paralogs. Based on clock-like evolution, the rate of synonymous substitution is estimated at 1.83 x 10(-9) substitutions per site per year; and the divergence of the two paralogs is traced to 90 MYA, coinciding with a period of the diversification of angiosperms. Given no codon usage bias in both genes, natural selection alone cannot account for the 6.4-fold differences in the nucleotide variation at synonymous sites between the two paralogs. Random processes resulting in different coalescence times, 3.65 MYA at AtHVA22d vs. 1.20 MYA at AtHVA22e, may have predominantly contributed to the evident differences of the genetic diversity. Partially nonoverlapping modes of expression between the two functional paralogs suggest a subfunctionalization hypothesis for explaining the fates of duplicate loci.  相似文献   

5.
We investigated the evolutionary dynamics of the Adh gene family within the grasses (Poaceae), with the goal of using molecular evolutionary tools to understand the process of gene family diversification. We analyzed 21 Adh sequences representing a broad array of grasses. Phylogenetic analyses suggested that Adh duplicated into Adh1 and Adh2 before the radiation of the grasses roughly 65 MYA. Gene structure, including intron length, has varied little over this period. Conservation of intron length prompted investigation into the dynamics of intron evolution, particularly the ability of intron sequences to form secondary structures. Intron sequences did not have an extremely high or low minimum free energy of folding relative to permuted sequences, suggesting that individual Adh introns do not evolve under secondary structural constraints. For coding sequences, the diversification of Adh1 and Adh2 was marked by a shift in third-position G + C content. This shift may reflect differential selection for codon use. Diversification between Adh1 and Adh2 was also typified by a shift in nonsynonymous nucleotide substitution rates, but there was no evidence that relatively fast nonsynonymous nucleotide substitution rates in the Adh2 clade were a product of diversifying selection. Gene conversion may have played a role in retarding diversification of Adh1 and Adh2 in rice, but there is no evidence of gene conversion between paralogs in other taxa. Although the reasons for retention of two functional Adh genes remain obscure, we propose that a shift in gene expression was important for the retention of the two Adh gene copies within the grasses.  相似文献   

6.
7.
Cantone C  Gaudio L  Aceto S 《Gene》2011,481(1):48-55
Positive selection and relaxation of purifying constraints after duplication events have driven the functional diversification of gene families involved in development. One example of this occurred within the plant MADS-box genes. The evolution of the orchid flower was driven by duplication events followed by sub- and neo-functionalization of class B DEF-like MADS-box genes, which are present at three to four copies in the orchid genome. In contrast, the orchid PI/GLO-like class B MADS-box genes have been reported thus far as single-copy loci, with the only exception of Habenaria radiata.We isolated a novel PI/GLO-like gene (OrcPI2) in Orchis italica, which is different than the previously characterized OrcPI locus. The presence of two functional paralogs of PI/GLO-like genes in orchids is detectable only within the tribe Orchidinae. Evolutionary analyses revealed an apparent relaxation of purifying selection acting on the two PI/GLO-like paralogs of the Orchidinae when compared to the single-copy PI/GLO-like genes found in other orchid species. Furthermore, by measuring dN/dS (ω) ratios, we show that a high percentage of sites between the two PI/GLO-like paralogs have different evolutionary pressures. Interestingly, the apparent relaxation of selective constraints on the two PI/GLO-like paralogs is due to strong purifying selection at synonymous sites rather than to a high value of nonsynonymous substitution rate. This peculiar evolutionary pattern might be related to molecular processes such as mRNA folding and/or translational efficiency control. These processes could potentially be involved in or predate the functional diversification of the two PI/GLO-like paralogs within Orchidinae.  相似文献   

8.
T. Ohta 《Genetics》1993,134(4):1271-1276
The growth hormone-prolactin gene family in mammals is an interesting example of evolution by gene duplication. Divergence among members of duplicated gene families and among species was examined by using reported gene sequences of growth hormone, prolactin and their receptors. Sequence divergence among species was found to show a general tendency in which a generation-time effect is pronounced for synonymous substitutions but not so for nonsynonymous substitutions. Divergence among duplicated genes is characterized by the relatively high rate of nonsynonymous substitutions, i.e., the rate is close to that of synonymous ones. In view of the stage- and tissue-specific expression of duplicated genes, some of the amino acid substitutions among duplicated genes is likely to be caused by positive Darwinian selection.  相似文献   

9.
The complete genomic sequence for Arabidopsis provides the opportunity to combine phylogenetic and genomic approaches to study the evolution of gene families in plants. The Aux/IAA and ARF gene families, consisting of 29 and 23 loci in Arabidopsis, respectively, encode proteins that interact to mediate auxin responses and regulate various aspects of plant morphological development. We developed scenarios for the genomic proliferation of the Aux/IAA and ARF families by combining phylogenetic analysis with information on the relationship between each locus and the previously identified duplicated genomic segments in Arabidopsis. This analysis shows that both gene families date back at least to the origin of land plants and that the major Aux/IAA and ARF lineages originated before the monocot-eudicot divergence. We found that the extant Aux/IAA loci arose primarily through segmental duplication events, in sharp contrast to the ARF family and to the general pattern of gene family proliferation in Arabidopsis. Possible explanations for the unusual mode of Aux/IAA duplication include evolutionary constraints imposed by complex interactions among proteins and pathways, or the presence of long-distance cis-regulatory sequences. The antiquity of the two gene families and the unusual mode of Aux/IAA diversification have a number of potential implications for understanding both the functional and evolutionary roles of these genes.  相似文献   

10.
The glycolytic proteins in plants are coded by small multigene families, which provide an interesting contrast to the high copy number of gene families studied to date. The alcohol dehydrogenase (Adh) genes encode glycolytic enzymes that have been characterized in some plant families. Although the amino acid sequences of zinc-containing long-chain ADHs are highly conserved, the metabolic function of this enzyme is variable. They also have different patterns of expression and are submitted to differences in nonsynonymous substitution rates between gene copies. It is possible that the Adh copies have been retained as a consequence of adaptative amino acid replacements which have conferred subtle changes in function. Phylogenetic analysis indicates that there have been a number of separate duplication events within angiosperms, and that genes labeled Adh1, Adh2 and Adh3 in different groups may not be homologous. Nonsynonymous/synonymous ratios yielded no signs of positive selection. However, the coefficients of functional divergence (theta) estimated between the Adh1 and Adh2 gene groups indicate statistically significant site-specific shift of evolutionary rates between them, as well as between those of different botanical families, suggesting that altered functional constraints may have taken place at some amino acid residues after their diversification. The theoretical three-dimensional structure of the alcohol dehydrogenase from Arabis blepharophylla was constructed and verified to be stereochemically valid.  相似文献   

11.
Gene duplication followed by neo- or sub-functionalization deeply impacts the evolution of protein families and is regarded as the main source of adaptive functional novelty in eukaryotes. While there is ample evidence of adaptive gene duplication in prokaryotes, it is not clear whether duplication outweighs the contribution of horizontal gene transfer in the expansion of protein families. We analyzed closely related prokaryote strains or species with small genomes (Helicobacter, Neisseria, Streptococcus, Sulfolobus), average-sized genomes (Bacillus, Enterobacteriaceae), and large genomes (Pseudomonas, Bradyrhizobiaceae) to untangle the effects of duplication and horizontal transfer. After removing the effects of transposable elements and phages, we show that the vast majority of expansions of protein families are due to transfer, even among large genomes. Transferred genes--xenologs--persist longer in prokaryotic lineages possibly due to a higher/longer adaptive role. On the other hand, duplicated genes--paralogs--are expressed more, and, when persistent, they evolve slower. This suggests that gene transfer and gene duplication have very different roles in shaping the evolution of biological systems: transfer allows the acquisition of new functions and duplication leads to higher gene dosage. Accordingly, we show that paralogs share most protein-protein interactions and genetic regulators, whereas xenologs share very few of them. Prokaryotes invented most of life's biochemical diversity. Therefore, the study of the evolution of biology systems should explicitly account for the predominant role of horizontal gene transfer in the diversification of protein families.  相似文献   

12.
The MADS-box gene family encodes critical regulators determining floral organ development. Understanding evolutionary patterns and processes of MADS-box genes is an important step toward unraveling the molecular basis of floral morphological evolution. In this study, we investigated the evolution of PI-like genes of the MADS-box family in the dogwood genus Cornus (Cornaceae). Cornus is a eudicot lineage in the asterids clade, and is intriguing in evolving petaloid bract morphology in two major lineages within the genus. The gene genealogy reconstructed using genomic DNA and cDNA sequences suggests multiple PI-like gene duplication events in Cornus. An ancient duplication event resulted in two ancient paralogs, CorPI-A and CorPI-B, which have highly diverged intron regions. Duplication of CorPI-A further resulted in two paralogs in one subgroup of Cornus, the BW group that does not produce modified bracts. Most species analyzed were found to contain more than one copy of the PI-like gene with most copies derived recently within species. Estimation and comparison of dN/dS ratios revealed relaxed selection in the PI-like gene in Cornus in comparison with the gene in the closely related outgroups Alangium and Davidia, and in other flowering plants. Selection also differed among major gene copies, CorPI-A and CorPI-B, and among different morphological subgroups of Cornus. Variation in selection pressures may indicate functional changes in PI-like genes after gene duplication and among different lineages. Strong positive selection at three amino acid sites of CorPI was also detected from a region critical for dimerization activity. Total substitution rates of the CorPI gene also differ among lineages of Cornus, showing a trend similar to that found in dN/dS ratios. We also found that the CorPI-A copy contains informative phylogenetic information when compared across species of Cornus.  相似文献   

13.
The interleukin-1 receptor-associated kinase (IRAK) family comprises critical signaling mediators of the TLR/IL-1R signaling pathways. IRAKs are Ser/Thr kinases. There are 4 members in the vertebrate genome (IRAK1, IRAK2, IRAKM, and IRAK4) and an IRAK homolog, Pelle, in insects. IRAK family members are highly conserved in vertebrates, but the evolutionary relationship between IRAKs in vertebrates and insects is not clear. To investigate the evolutionary history and functional divergence of IRAK members, we performed extensive bioinformatics analysis. The phylogenetic relationship between IRAK sequences suggests that gene duplication events occurred in the evolutionary lineage, leading to early vertebrates. A comparative phylogenetic analysis with insect homologs of IRAKs suggests that the Tube protein is a homolog of IRAK4, unlike the anticipated protein, Pelle. Furthermore, the analysis supports that an IRAK4-like kinase is an ancestral protein in the metazoan lineage of the IRAK family. Through functional analysis, several potentially diverged sites were identified in the common death domain and kinase domain. These sites have been constrained during evolution by strong purifying selection, suggesting their functional importance within IRAKs. In summary, our study highlighted the molecular evolution of the IRAK family, predicted the amino acids that contributed to functional divergence, and identified structural variations among the IRAK paralogs that may provide a starting point for further experimental investigations.  相似文献   

14.
The rapid accumulation of genomic sequences in public databases will finally allow large scale studies of gene family evolution, including evaluation of the role of positive Darwinian selection following a duplication event. This will be possible because recent statistical methods of comparing synonymous and nonsynonymous substitution rates permit reliable detection of positive selection at individual amino acid sites and along evolutionary lineages. Here, we summarize maximum-likelihood based methods, and present a framework for their application to analysis of gene families. Using these methods, we investigated the role of positive Darwinian selection in the ECP-EDN gene family of primates and the Troponin C gene family of vertebrates. We also comment on the limitations of these methods and discuss directions for further improvements.  相似文献   

15.
Gene duplication provides a window of opportunity for biological variants to persist under the protection of a co-expressed copy with similar or redundant function. Duplication catalyzes innovation (neofunctionalization), subfunction degeneration (subfunctionalization), and genetic buffering (redundancy), and the genetic survival of each paralog is triggered by mechanisms that add, compromise, or do not alter protein function. We tested the applicability of three types of mechanisms for promoting the retained expression of duplicated genes in 290 expressed paralogs of the tetraploid clawed frog, Xenopus laevis. Tests were based on explicit expectations concerning the ka/ks ratio, and the number and location of nonsynonymous substitutions after duplication. Functional constraints on the majority of paralogs are not significantly different from a singleton ortholog. However, we recover strong support that some of them have an asymmetric rate of nonsynonymous substitution: 6% match predictions of the neofunctionalization hypothesis in that (1) each paralog accumulated nonsynonymous substitutions at a significantly different rate and (2) the one that evolves faster has a higher ka/ks ratio than the other paralog and than a singleton ortholog. Fewer paralogs (3%) exhibit a complementary pattern of substitution at the protein level that is predicted by enhancement or degradation of different functional domains, and the remaining 13% have a higher average ka/ks ratio in both paralogs that is consistent with altered functional constraints, diversifying selection, or activity-reducing mutations after duplication. We estimate that these paralogs have been retained since they originated by genome duplication between 21 and 41 million years ago. Multiple mechanisms operate to promote the retained expression of duplicates in the same genome, in genes in the same functional class, over the same period of time following duplication, and sometimes in the same pair of paralogs. None of these paralogs are superfluous; degradation or enhancement of different protein subfunctions and neofunctionalization are plausible hypotheses for the retained expression of some of them. Evolution of most X. laevis paralogs, however, is consistent with retained expression via mechanisms that do not radically alter functional constraints, such as selection to preserve post-duplication stoichiometry or temporal, quantitative, or spatial subfunctionalization.  相似文献   

16.
17.
A comparative approach was taken for identifying amino acid substitutions that may be under positive Darwinian selection and are correlated with spectral shifts among orthologous and paralogous lepidopteran long wavelength-sensitive (LW) opsins. Four novel LW opsin fragments were isolated, cloned, and sequenced from eye-specific cDNAs from two butterflies, Vanessa cardui (Nymphalidae) and Precis coenia (Nymphalidae), and two moths, Spodoptera exigua (Noctuidae) and Galleria mellonella (Pyralidae). These opsins were sampled because they encode visual pigments having a naturally occurring range of lambda(max) values (510-530 nm), which in combination with previously characterized lepidopteran opsins, provide a complete range of known spectral sensitivities (510-575 nm) among lepidopteran LW opsins. Two recent opsin gene duplication events were found within the papilionid but not within the nymphalid butterfly families through neighbor-joining, maximum parsimony, and maximum likelihood phylogenetic analyses of 13 lepidopteran opsin sequences. An elevated rate of evolution was detected in the red-shifted Papilio Rh3 branch following gene duplication, because of an increase in the amino acid substitution rate in the transmembrane domain of the protein, a region that forms the chromophore-binding pocket of the visual pigment. A maximum likelihood approach was used to estimate omega, the ratio of nonsynonymous to synonymous substitutions per site. Branch-specific tests of selection (free-ratio) identified one branch with omega = 2.1044, but the small number of substitutions involved was not significantly different from the expected number of changes under the neutral expectation of omega = 1. Ancestral sequences were reconstructed with a high degree of certainty from these data. Reconstructed ancestral sequences revealed several instances of convergence to the same amino acid between butterfly and vertebrate cone pigments, and between independent branches of the butterfly opsin tree that are correlated with spectral shifts.  相似文献   

18.
Members of cytochrome P450 subfamily 1A (CYP1As) are involved in detoxification and bioactivation of common environmental pollutants. Understanding the functional evolution of these genes is essential to predicting and interpreting species differences in sensitivity to toxicity caused by such chemicals. The CYP1A gene subfamily comprises a single ancestral representative in most fish species and two paralogs in higher vertebrates, including birds and mammals. Phylogenetic analysis of complete coding sequences suggests that mammalian and bird paralog pairs (CYP1A1/2 and CYP1A4/5, respectively) are the result of independent gene duplication events. However, comparison of vertebrate genome sequences revealed that CYP1A genes lie within an extended region of conserved fine-scale synteny, suggesting that avian and mammalian CYP1A paralogs share a common genomic history. Algorithms designed to detect recombination between nucleotide sequences indicate that gene conversion has homogenized most of the length of the chicken CYP1A genes, as well as the 5′ end of mammalian CYP1As. Together, these data indicate that avian and mammalian CYP1A paralog pairs resulted from a single gene duplication event and that extensive gene conversion is responsible for the exceptionally high degree of sequence similarity between CYP1A4 and CYP1A5. Elevated nonsynonymous/synonymous substitution ratios within a putatively unconverted stretch of ∼250 bp suggests that positive selection may have reduced the effective rate of gene conversion in this region, which contains two substrate recognition sites. This work significantly alters our understanding of functional evolution in the CYP1A subfamily, suggesting that gene conversion and positive selection have been the dominant processes of sequence evolution. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Yves Van de Peer]  相似文献   

19.
Molecular phylogeny among catalase-peroxidases, cytochrome c peroxidases, and ascorbate peroxidases was analysed. Sixty representative sequences covering all known subgroups of class I of the superfamily of bacterial, fungal, and plant heme peroxidases were selected. Each sequence analysed contained the typical peroxidase motifs evolved to bind effectively the prosthetic heme group, enabling peroxidatic activity. The N-terminal and C-terminal domains of catalase-peroxidases matching the ancestral tandem gene duplication event were treated separately in the phylogenetic analysis to reveal their specific evolutionary history. The inferred unrooted phylogenetic tree obtained by three different methods revealed the existence of four clearly separated clades (C-terminal and N-terminal domains of catalase-peroxidases, ascorbate peroxidases, and cytochrome c peroxidases) which were segregated early in the evolution of this superfamily. From the results, it is obvious that the duplication event in the gene for catalase-peroxidase occurred in the later phase of evolution, in which the individual specificities of the peroxidase families distinguished were already formed. Evidence is presented that class I of the heme peroxidase superfamily is spread among prokaryotes and eukaryotes, obeying the birth-and-death process of multigene family evolution.  相似文献   

20.
We present sequences of five novel RNase A superfamily ribonuclease genes of the bullfrog, Rana catesbeiana. All five genes encode ribonucleases that are similar to Onconase, a cytotoxic ribonuclease isolated from oocytes of R. pipiens. With amino acid sequence data from 14 ribonucleases from three Rana species (R. catesbeiana, R. japonica, and R. pipiens), we have constructed bootstrap-supported phylogenetic trees that reorganize these ribonucleases into five distinct lineages--the pancreatic ribonucleases (RNases 1), the eosinophil-associated ribonucleases (RNases 2, 3, and 6), the ribonucleases 4, the angiogenins (RNases 5) and the Rana ribonucleases--with the Rana ribonucleases no more closely related to the angiogenins than they are to any of the other ribonuclease lineages shown. Further phylogenetic analysis suggests the division of the Rana ribonucleases into two subclusters (A and B), with positive (Darwinian) selection (dN/dS > 1.0) and an elevated rate of radical nonsynonymous substitution (dR) contributing to the rapid diversification of ribonucleases within each cluster. This pattern of evolution-rapid diversification via positive selection among sequences of a multigene cluster-bears striking resemblance to what we have described for the eosinophil-associated ribonuclease genes of the rodent Mus musculus, a finding that may have implications with respect the physiologic function of this unique family of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号