首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously shown that treatment of Neospora caninum tachyzoites with the aspartyl protease inhibitor pepstatin A reduces host cell invasion [Naguleswaran, A., Muller, N., Hemphill, A., 2003. Neospora caninum and Toxoplasma gondii: a novel adhesion/invasion assay reveals distinct differences in tachyzoite-host cell interactions. Exp. Parasitol. 104, 149-158]. Pepstatin A-affinity-chromatography led to the isolation of a major band of approximately 52 kDa which was identified as a homologue of a previously described Toxoplasma gondii putative protein disulfide isomerase (TgPDI) through tandem mass spectrometry. A BLAST search against N. caninum expressed sequence tags (ESTs) on the ApiDots server using TgPDI cDNA as query sequence revealed a 2251 bp PDI-like consensus (NcPDI), which shows 94% identity to the T. gondii homologue. In N. caninum tachyzoites, NcPDI was found mainly in the soluble hydrophilic fraction. Immunofluorescence showed that expression of NcPDI was dramatically down-regulated in the bradyzoite stage, and immunogold-EM on tachyzoites localised the protein to the cytoplasm, mostly in close vicinity to the nuclear membrane, to the micronemes, and to the parasite cell surface. However, NcPDI was absent in rhoptries and dense granules. Preincubation of tachyzoites with the sulfhydryl blocker 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), p-chloromercuribenzoic acid (pCMBA), and with the PDI inhibitor bacitracin reduced adhesion of parasites to host cells. In addition, incubation of N. caninum tachyzoites with affinity-purified anti-NcPDI antibodies reduced host cell adhesion. PDIs catalyse the formation, reduction or isomerisation of disulfide bonds. Many major components of the adhesion and invasion machinery of apicomplexan parasites are cysteine-rich and dependent on correct folding via disulfide bond formation. Thus, our data points towards an important role for surface-associated NcPDI in Neospora-host cell interaction.  相似文献   

2.
Neospora caninum and Toxoplasma gondii are characterised by a very low host cell specificity, thus they are able to infect a wide range of different cells in vivo and in vitro. Infection of the host cell by tachyzoites is a process which is preceded by adhesion onto the host cell surface. The receptors on the host cell surface which would allow N. caninum to establish a physical interaction have not been investigated so far. Here we report the role of host cell surface proteoglycans as receptors for the adhesion of N. caninum tachyzoites to Vero cell monolayers. We found that N. caninum tachyzoites, similar to T. gondii tachyzoites, can bind to sulphated proteoglycans which naturally occur on the surface of mammalian cells, including heparin/heparan sulphate, chondroitin sulphates, as well as to the artificially sulphated glycosaminoglycan dextran sulphate. Although removal of heparan sulphate from the host cell surface results in decreased adhesion of T. gondii tachyzoites, binding of N. caninum tachyzoites is not affected by this treatment. Conversely, enzymatic removal of chondroitin sulphate A, B and C decreases N. caninum adhesion but does not affect T. gondii binding to Vero cells. Thus, T. gondii and N. caninum tachyzoites exhibit differential adhesive properties with regard to host cell surface glycosaminoglycans. Additional experiments employing Triton X-100 solubilised NcSRS2 and NcMIC3 showed that NcSRS2 binds to the host cell surface, but not through those sulphated glycosaminoglycans investigated in this study. In contrast, NcMIC3 binding to the host cell surface is dramatically influenced by these modifications. Further experiments showed that the NcMIC3 adhesive motif comprised of four consecutive epidermal growth factor-like domains expressed as a recombinant protein exhibits a high binding activity for sulphated glycosaminoglycans. These results suggest that host cell surface proteoglycan interaction of N. caninum differs from that observed for T. gondii, and that the epidermal growth factor-like adhesive motif in NcMIC3 could be involved in this process.  相似文献   

3.
The surface-associated molecules of the invasive stages of apicomplexan parasites such as Neospora caninum and Toxoplasma gondii are most likely crucially involved in mediating the interaction between the parasite and its host cell. In N. caninum, several antigens have recently been identified which could participate in host cell adhesion and/or invasion. These are antigens which are either constitutively expressed on the outer plasma membrane, or antigens which are only transiently localised on the surface as they are expulsed from the secretory vesicles either prior, or after host cell invasion. Some of these proteins have been characterised at the molecular level, and it has been shown that they are, with respect to protein sequences, closely related to homologous counterparts in T. gondii. Nevertheless, there is only a low degree of cross-antigenicity between the two species. In microbial interactions it has been shown that carbohydrates could also play a crucial role in host cell recognition and immunological host parasite interactions. In this study we present data which strongly suggest that the surface of N. caninum tachyzoites is glycosylated. In SDS-PAGE, glycoproteins comigrated largely with glycosylphosphatidylinositol-anchored proteins which were identified using in vivo [3H]ethanolamine labelling followed by autoradiography. The lectin Con A reacted strongly with the surface of these parasites, binding of which is indicative for the presence of N-glycans. Additional surface binding was observed, although only in a subpopulation of all tachyzoites, for wheat germ agglutinin and Jacalin. Intracellular binding sites for Con A were mainly associated with the parasite dense granules. By lectin labelling of Western blots of N. caninum protein extracts, glycoproteins were identified which reacted specifically with the lectins Con A, wheat germ agglutinin, Jacalin and soy bean agglutinin.  相似文献   

4.
Competitive interactions between Neospora caninum and Toxoplasma gondii were studied because both species appear to have identical ecological niches in vitro. Tachyzoites of N. caninum (NC-1 isolate) and T. gondii (RH isolate) were compared in three in vitro studies: (1) rate of penetration of host cells; (2) generation time; and (3) competition between the two species when grown together in the same flask and allowed to compete for space. When tachyzoites of the two species were inoculated onto human foreskin fibroblasts, 3.24-times more N. caninum tachyzoites penetrated cells by 1 h p.i. At 3 h p.i., there were 2.87-times more N. caninum intracellular tachyzoites than T. gondii tachyzoites. The generation times for N. caninum (NC-1 isolate) and T. gondii (RH isolate) were approximately 14-15 h and 8-10 h, respectively. Before exponential growth occurred, both species displayed a lag period, which was 10-12 h for N. caninum and 8-10 h for T. gondii. To observe competition, equal numbers of tachyzoites of each species were mixed and inoculated into flasks of host cells, and the monolayers were allowed to proceed to >90% lysis before the next transfer. Competition was analysed for 31 days by labelling samples of each flask with a species-specific monoclonal antibody and determining the ratio of each species. In all trials, T. gondii outcompeted N. caninum. By 4 days p.i., 70% of the tachyzoites were T. gondii; this percentage increased to 97% by 23 days p.i. When the starting inoculum contained 75% N. caninum and 25% T. gondii tachyzoites, T. gondii was still competitively superior. When infected monolayers that were labelled with T. gondii-specific antibodies were examined, it was noted that both species can occupy and undergo endodyogeny in the same host simultaneously.  相似文献   

5.
Apicomplexan parasites possess an apical complex that is composed of two secretory organelles recognized as micronemes and rhoptries. Rhoptry contents are secreted into the parasitophorous vacuole during the host cell invasion process. Several rhoptry proteins have been identified in Toxoplasma gondii and seem to be involved in host-pathogen interactions and some of them are considered to be important virulence factors. Only one rhoptry protein, NcROP2, has been identified and extensively characterized in the closely related parasite Neospora caninum, and this has showed immunoprotective properties. Thus, with the aim of increasing knowledge of the rhoptry protein repertoire in N. caninum, a subcellular fractionation of tachyzoites was performed to obtain fractions enriched for this secretory organelle. 2-D SDS-PAGE followed by MS and LC/MS-MS were applied for fraction analysis and 8 potential novel rhoptry components (NcROP1, 5, 8, 30 and NcRON2, 3, 4, 8) and several kinases, proteases and phosphatases proteins were identified with a high homology to those previously found in T. gondii. Their existence in N. caninum tachyzoites suggests their involvement in similar events or pathways that occur in T. gondii. These novel proteins may be considered as targets that could be useful in the future development of immunoprophylactic measures.  相似文献   

6.
Autofluorescence of Toxoplasma gondii and Neospora caninum cysts in vitro   总被引:2,自引:0,他引:2  
Autofluorescence of Toxoplasma gondii and Neospora caninum was studied by fluorescence microscopy during their differentiation from tachyzoites to bradyzoites in vitro using Vero as host cells. Stage conversion into bradyzoites and cysts was confirmed by immunofluorescent microscopy and Western blot analysis using SAG1- and BAG1-specific antibody, respectively. From day 4 postinfection (PI), pale blue autofluorescence of the bradyzoites and tissue cysts was observed with UV light at 330-385 nm, which coincided with the onset of cyst development. This autofluorescence under UV light of bradyzoites and tissue cysts increased in intensity from days 8 to 10 PI. In contrast to the autofluorescence shown by bradyzoites and cysts, tachyzoites and parasitophorous vacuoles containing tachyzoites never autofluoresced at any time examined. Autofluorescence of the cystic stages was of sufficient intensity and duration to allow the detection of cysts and bradyzoites of T. gondii and N. caninum. In this study, we describe for the first time the autofluorescence properties of in vitro-induced bradyzoites and cysts of T. gondii and N. caninum.  相似文献   

7.
BACKGROUND: Toxoplasma gondii is among the most common protozoan parasites of humans. Both attachment to and invasion of host cells by T. gondii are necessary for infection, yet little is known about the molecular mechanisms underlying these processes. T. gondii's etiological importance and its role as a model organism for studying invasion in related parasites necessitate a means to quantitatively assay host cell attachment and invasion. METHODS: We present here Laser Scanning Cytometer (LSC)-based assays of T. gondii invasion and attachment. The invasion assay involves automated counting of invaded and non-invaded parasites, differentially labeled with distinct fluorochromes. The attachment assay compares the relative binding of differentially labeled parasites. The assays were evaluated using treatments known to decrease invasion or attachment. RESULTS: The LSC-based assays are robust and reproducible, remove operator bias, and significantly increase the sample size that can be feasibly counted compared to other currently available microscope-based methods. In the first application of the new assays, we have shown that parasites attach to fixed and unfixed host cells using different mechanisms. CONCLUSIONS: The LSC-based assays represent useful new methods for quantitatively measuring attachment and invasion by T. gondii, and can be readily adapted to study similar processes in other host-pathogen systems.  相似文献   

8.
Toxoplasma gondii is an obligate intracellular parasite and an important human pathogen. Relatively little is known about the proteins that orchestrate host cell invasion by T. gondii or related apicomplexan parasites (including Plasmodium spp., which cause malaria), due to the difficulty of studying essential genes in these organisms. We have used a recently developed regulatable promoter to create a conditional knockout of T. gondii apical membrane antigen-1 (TgAMA1). TgAMA1 is a transmembrane protein that localizes to the parasite's micronemes, secretory organelles that discharge during invasion. AMA1 proteins are conserved among apicomplexan parasites and are of intense interest as malaria vaccine candidates. We show here that T. gondii tachyzoites depleted of TgAMA1 are severely compromised in their ability to invade host cells, providing direct genetic evidence that AMA1 functions during invasion. The TgAMA1 deficiency has no effect on microneme secretion or initial attachment of the parasite to the host cell, but it does inhibit secretion of the rhoptries, organelles whose discharge is coupled to active host cell penetration. The data suggest a model in which attachment of the parasite to the host cell occurs in two distinct stages, the second of which requires TgAMA1 and is involved in regulating rhoptry secretion.  相似文献   

9.
The protozoan parasite Toxoplasma gondii infects its host cells through an active mechanism. In this work, we obtained evidence that host cells also play a fundamental role during the infection process. We found that previous incubation of the host cells, but not the parasites, with Dynasore, a small molecule that inhibits dynamin GTPase activity, markedly reduced the penetration of T. gondii tachyzoites into LLC-MK2 cells. In contrast, parasite adhesion to the host cell surface increased, as observed both by light and electron microscopy. Intriguingly, the few parasites internalized by Dynasore-treated cells remained in vacuoles located at the periphery of the cell, in contrast to the perinuclear localization seen in the control.  相似文献   

10.
The central nervous system (CNS) of the intermediate host plays a central role in the lifelong persistence of Toxoplasma gondii as well as in the pathogenesis of congenital toxoplasmosis and reactivated infection in immunocompromised patients. In order to analyze the parasite-host interaction within the CNS, the host cell invasion, the intracellular replication, and the stage conversion from tachyzoites to bradyzoites was investigated in mixed cultures of dissociated CNS cells from cortices of Wistar rat embryos. Two days post infection (p.i.) with T. gondii tachyzoites, intracellular parasites were detected within neurons, astrocytes, and microglial cells as assessed by double immunofluorescence and confocal microscopy. Quantitative analyses revealed that approximately 10% of neurons and astrocytes were infected with T. gondii, while 30% of the microglial cells harbored intracellular parasites. However, the replication of T. gondii within microglial cells was considerably diminished, since 93% of the parasitophorous vacuoles (PV) contained only one to two parasites which often appeared degenerated. This toxoplasmacidal activity was not abrogated after treatment with NO synthase inhibitors or neutralization of IFN-gamma production. In contrast, 30% of the PV in neurons and astrocytes harbored clearly proliferating parasites with at least four to eight parasites per vacuole. Four days p.i. with tachyzoites of T. gondii, bradyzoites were detected within neurons, astrocytes, and microglial cells of untreated cell cultures. However, the majority of bradyzoite-containing vacuoles were located in neurons. Spontaneous differentiation to the bradyzoite stage was not inhibited after addition of NO synthase inhibitors or neutralization of IFN-gamma. In conclusion, our results indicate that intracerebral replication of T. gondii as well as spontaneous conversion from the tachyzoite to the bradyzoite stage is sustained predominantly by neurons and astrocytes, whereas microglial cells may effectively inhibit parasitic growth within the CNS.  相似文献   

11.
A role for coccidian cGMP-dependent protein kinase in motility and invasion   总被引:9,自引:0,他引:9  
The coccidian parasite cGMP-dependent protein kinase is the primary target of a novel coccidiostat, the trisubstituted pyrrole 4-[2-(4-fluorophenyl)-5-(1-methylpiperidine-4-yl)-1H-pyrrol-3-yl] pyridine (compound 1), which effectively controls the proliferation of Eimeria tenella and Toxoplasma gondii parasites in animal models. The efficacy of compound 1 in parasite-specific metabolic assays of infected host cell monolayers is critically dependent on the timing of compound addition. Simultaneous addition of compound with extracellular E. tenella sporozoites or T. gondii tachyzoites inhibited [3H]-uracil uptake in a dose-dependent manner, while minimal efficacy was observed if compound addition was delayed, suggesting a block in host cell invasion. Immunofluorescence assays confirmed that compound 1 blocks the attachment of Eimeria sporozoites or Toxoplasma tachyzoites to host cells and inhibits parasite invasion and gliding motility. Compound 1 also inhibits the secretion of micronemal adhesins (E. tenella MIC1, MIC2 and T. gondii MIC2), an activity closely linked to invasion and motility in apicomplexan parasites. The inhibition of T. gondii MIC2 adhesin secretion by compound 1 was not reversed by treatment with calcium ionophores or by ethanol (a microneme secretagogue), suggesting a block downstream of calcium-dependent events commonly associated with the discharge of the microneme organelle in tachyzoites. Transgenic Toxoplasma strains expressing cGMP-dependent protein kinase mutant alleles that are refractory to compound 1 (including cGMP-dependent protein kinase knock-out lines complemented by such mutants) were used as tools to validate the potential role of cGMP-dependent protein kinase in invasion and motility. In these strains, parasite adhesin secretion, gliding motility, host cell attachment and invasion displayed a reduced sensitivity to compound 1. These data clearly demonstrate that cGMP-dependent protein kinase performs an important role in the host-parasite interaction.  相似文献   

12.
The ultrastructure of tachyzoites, bradyzoites and tissue cysts of the NC-1, NC-5 and NC-Liverpool strains of Neospora caninum are reviewed and compared with those of the VEG and ME-49 strains of Toxoplasma gondii. While each stage of N. caninum and T. gondii shared many ultrastructural characteristics, each parasite stage also had certain features or organelles that could be used to distinguish the two parasites. Some of the most prominent ultrastructural differences occurred in the number, appearance and location of rhoptries, looped-back rhoptries, micronemes, dense granules, small dense granules and micropores. The tissue cysts of both parasites were also basically similar, being surrounded by a cyst wall and not compartmentalised by septa. The cyst wall of N. caninum was irregular and substantially thicker, 0.5-4 microm, than those of T. gondii which were smooth and 0.5 microm thick.  相似文献   

13.
Toxoplasma gondii is an obligate intracellular protozoan parasite, which invades a wide range of hosts including humans. The exact mechanisms involved in its invasion are not fully understood. This study focused on the roles of Ca2+ in host cell invasion and in T. gondii replication. We examined the invasion and replication of T. gondii pretreated with several calcium modulators, the conoid extrusion of tachyzoites. Calmodulin localization in T. gondii were observed using the immunogold method, and Ca2+ levels in tachyzoites by confocal microscopy. In light microscopic observation, tachyzoites co-treated with A23187 and EGTA showed that host cell invasion and intracellular replication were decreased. The invasion of tachyzoites was slightly inhibited by the Ca2+ channel blockers, bepridil and verapamil, and by the calmodulin antagonist, calmidazolium. We observed that calcium saline containing A23187 induced the extrusion of tachyzoite conoid. By immunoelectron microscopy, gold particles bound to anti-calmodulin or anti-actin mAb, were found to be localized on the anterior portion of tachyzoites. Remarkably reduced intracellular Ca2+ was observed in tachyzoites treated with BAPTA/AM by confocal microscopy. These results suggest that host cell invasion and the intracellular replication of T. gondii tachyzoites are inhibited by the calcium ionophore, A23187, and by the extracellular calcium chelator, EGTA.  相似文献   

14.
The Haemaphysalis longicornis longicin P4 peptide is an active part peptide produced by longicin which displays bactericidal activity against both Gram-negative and Gram-positive bacteria and other microorganisms. In the present study, the effect of the longicin P4 peptide on the infectivity of Toxoplasma gondii parasites was examined in vitro. Tachyzoites of T. gondii incubated with longicin P4 had induced aggregation and lost the trypan blue dye exclusion activity and the invasion ability into the mouse embryonal cell line (NIH/3T3). Longicin P4 bound to T. gondii tachyzoites, as demonstrated by fluoresce microscopic analysis. An electron microscopic analysis and a fluorescence propidium iodide exclusion assay of tachyzoites exposed to longicin P4 revealed pore formation in the cellular membrane, membrane disorganization, and hollowing as well as cytoplasmic vacuolization. The number of tachyzoites proliferated in mouse macrophage cell line (J774A.1) was significantly decreased by incubation with longicin P4. These findings suggested that longicin P4 conceivably impaired parasite membranes, leading to the destruction of Toxoplasma parasites in J774A.1 cells. Thus, longicin P4 is an interesting candidate for antitoxoplasmosis drug design that causes severe toxicity to T. gondii and plays an important role in reducing cellular infection. This is the first report showing that longicin P4 causes aggregation and membrane injury of parasites, leading to Toxoplasma tachyzoite destruction.  相似文献   

15.
The initial stage of invasion by apicomplexan parasites involves the exocytosis of the micronemes-containing molecules that contribute to host cell attachment and penetration. MIC4 was previously described as a protein secreted by Toxoplasma gondii tachyzoites upon stimulation of micronemes exocytosis. We have microsequenced the mature protein, purified after discharge from micronemes and cloned the corresponding gene. The deduced amino acid sequence of MIC4 predicts a 61-kDa protein that contains 6 conserved apple domains. Apple domains are composed of six spacely conserved cysteine residues which form disulfide bridges and are also present in micronemal proteins from two closely related apicomplexan parasites, Sarcocystis muris and Eimeria species, and several mammalian serum proteins, including kallikrein. Here we show that MIC4 localizes in the micronemes of all the invasive forms of T. gondii, tachyzoites, bradyzoites, sporozoites, and merozoites. The protein is proteolytically processed both at the N and the C terminus only upon release from the organelle. MIC4 binds efficiently to host cells, and the adhesive motif maps in the most C-terminal apple domain.  相似文献   

16.
Neospora caninum is an intracellular parasite that poses a unique ability to infect a variety of cell types by causing host cell migration. Although previous studies demonstrated that parasite-derived proteins could trigger host cell migration, the related molecules have yet to be determined. Our study aimed to investigate the relationship between Neospora-derived molecules and host cell migration using recombinant protein of N. caninum cyclophilin (NcCyp). Indirect fluorescent antibody test revealed that NcCyp was expressed in the tachyzoite cytosol. Furthermore, NcCyp release from extracellular parasites was detected by sandwich enzyme-linked immunosorbent assay in a time-dependent manner. Recombinant NcCyp caused the cysteine-cysteine chemokine receptor 5-dependent migration of murine and bovine cells. Furthermore, immunohistochemistry indicated that NcCyp was consistently detected in tachyzoites distributed within or around the brain lesions. In conclusion, N. caninum-derived cyclophilin appears to contribute to host cell migration, thereby maintaining parasite/host interactions.  相似文献   

17.
18.
Neospora caninum is an apicomplexan parasite which causes neosporosis, namely stillbirth and abortion in cattle, and neuromuscular disease in dogs. Although N. caninum is phylogenetically and biologically closely related to Toxoplasma gondii, it is antigenically clearly distinct. In analogy to T. gondii, three stages have been identified. These are: (i) asexually proliferating tachyzoites; (ii) tissue cysts harbouring slowly dividing bradyzoites; and (iii) oocysts containing sporozoites. The sexually produced stage of this parasite has only recently been identified, and has been shown to be shed with the faeces from dogs orally infected with N. caninum tissue cysts. Thus dogs are definitive hosts of N. caninum. Tachyzoites can be cultivated in vitro using similar techniques as previously described for T. gondii. Methods for generating tissue cysts containing N. caninum bradyzoites in mice, and purification of these cysts, have been developed. A number of studies have been undertaken to identify and characterise at the molecular level specific antigenic components of N. caninum in order to improve serological diagnosis and to enhance the current view on the many open questions concerning the cell biology of this parasite and its interactions with the host on the immunological and cellular level. The aim of this paper is to provide an overview on the approaches used for detection of antigens in N. caninum. The studies discussed here have had a great impact in the elucidation of the immunological and pathogenetic events during infection, as well as the development of potential new immunotherapeutic tools for future vaccination against N. caninum infection.  相似文献   

19.
Neospora caninum represents an important pathogen causing stillbirth and abortion in cattle and neuromuscular disease in dogs. Nitazoxanide (NTZ) and its deacetylated metabolite tizoxanide (TIZ) are nitro-thiazolyl-salicylamide drugs with a broad-spectrum anti-parasitic activity in vitro and in vivo. In order to generate compounds potentially applicable in food and breeding animals, the nitro group was removed, and the thiazole-moiety was modified by other functional groups. We had shown earlier that replacement of the nitro-group by a bromo-moiety did not notably affect in vitro efficacy of the drugs against N. caninum. In this study we report on the characterization of two bromo-derivatives, namely Rm4822 and its de-acetylated putative metabolite Rm4847 in relation to the nitro-compounds NTZ and TIZ. IC(50) values for proliferation inhibition were 4.23 and 4.14 microM for NTZ and TIZ, and 14.75 and 13.68 microM for Rm4822 and Rm4847, respectively. Complete inhibition (IC(99)) was achieved at 19.52 and 22.38 microM for NTZ and TIZ, and 18.21 and 17.66 microM for Rm4822 and Rm4847, respectively. However, in order to exert a true parasiticidal effect in vitro, continuous culture of infected fibroblasts in the presence of the bromo-thiazolide Rm4847 was required for a period of 3 days, while the nitro-compound TIZ required 5 days continuous drug exposure. Both thiazolides induced rapid egress of N. caninum tachyzoites from their host cells, and egress was inhibited by the cell membrane permeable Ca(2+)-chelator BAPTA-AM. Host cell entry by N. caninum tachyzoites was inhibited by Rm4847 but not by TIZ. Upon release from their host cells, TIZ-treated parasites remained associated with the fibroblast monolayer, re-invaded neighboring host cells and resumed proliferation in the absence of the drug. In contrast, Rm4847 inhibited host cell invasion and respective treated tachyzoites did not proliferate further. This demonstrated that bromo- and nitro-thiazolides exhibit differential effects against the intracellular protozoan N. caninum and bromo-thiazolides could represent a valuable alternative to the nitro-thiazolyl-salicylamide drugs.  相似文献   

20.
Tachyzoites of Toxoplasma gondii multiply within the parasitophorous vacuole (PV) until the lysis of the host cell. This study was undertaken to evaluate the effect of hydroxyurea (a specific drug that arrests cell division at G1/S phase) on the multiplication of T. gondii tachyzoites in infected Vero cells. Infected host cells were treated with hydroxyurea for periods varying from 5 to 48 h, and the survival and morphology of the parasite were determined. Hydroxyurea arrested intracellular T. gondii multiplication in all periods tested. After 48 h of incubation with hydroxyurea, intracellular parasites were not easily observed in Vero cells. Ultrastructural observations showed that infected host cells treated with hydroxyurea for 24 h or more presented disrupted intracellular parasites within the PV. However, the host cells exhibited a normal morphology. Our observations suggest that hydroxyurea was able to interfere with the cycle of the intracellular parasite, leading to the complete destruction of the T. gondii without affecting the host cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号