首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H. H. Ho 《Mycopathologia》1979,68(1):17-21
Scanning electron microscopy of oogonia of Phytophthora spp. showed that the oogonial wall was smooth in P. cactorum, P. citricola, P. heveae, and P. palmivora; finely granular in P. megasperma and P. megasperma var. sojae; and coarsely granular in P. parasitica. Transmission electron microscopy demonstrated that the oogonial wall in Phytophthora was composed of three layers with the middle layer being the least or the most electron dense. A coat of amorphous material was found on the entire outer surface of the oogonial wall. Elemental analysis of oogonia by means of a SEM electron probe microanalyzer revealed similar emission spectra among Phytophthora spp. with a characteristic peak for calcium.  相似文献   

2.
The glucan elicitor isolated from the mycelial walls of Phytophthora megasperma var. sojae, the fungus which causes stem and root rot in soybeans, stimulates the activity of phenylalanine ammonia-lyase and the accumulation of glyceollin in suspension-cultured soybean cells. Nigeran, a commercially available fungal wall glucan, was the only other compound tested which has any activity in this system. Glyceollin is a phenylpropanoid-derived phytoalexin which is toxic to P. megasperma var. sojae. Evidence is presented to support the hypothesis that the action of elicitors in stimulating phytoalexin synthesis is not species or variety specific but, rather, is part of a general defensive response of plants.  相似文献   

3.
Oomycetes from the genus Phytophthora are fungus-like plant pathogens that are devastating for agriculture and natural ecosystems. Due to their particular physiological characteristics, no efficient treatments against diseases caused by these microorganisms are presently available. To develop such treatments, it appears essential to dissect the molecular mechanisms that determine the interaction between Phytophthora species and host plants. Available data are scarce, and genomic approaches were mainly developed for the two species, Phytophthora infestans and Phytophthora sojae. However, these two species are exceptions from, rather than representative species for, the genus. P. infestans is a foliar pathogen, and P. sojae infects a narrow range of host plants, while the majority of Phytophthora species are quite unselective, root-infecting pathogens. To represent this majority, Phytophthora parasitica emerges as a model for the genus, and genomic resources for analyzing its interaction with plants are developing. The aim of this review is to assemble current knowledge on cytological and molecular processes that are underlying plant–pathogen interactions involving Phytophthora species and in particular P. parasitica, and to place them into the context of a hypothetical scheme of co-evolution between the pathogen and the host.  相似文献   

4.
The paper deals with some of the contributions made from India by various research workers towards our knowledge of the fungus genusPhytophthora de Bary, in the fields of morphology, disease production, occurrence and distribution of species, host range, physiology, taxonomy and control measures. Out of the total of fifteen species and five varieties ofPhytophthora reported from India, five species (viz.,P. arecae, P. palmivora, P. colocasiae, P. parasitica andP. infestans, and four varieties ofP. parasitica, viz.,P. parasitica var.macrospora, var.sesami, var.piperina and var.nicotianae) assume considerable parasitic roles inciting serious diseases like seedling-blights, wilts, cottoney-leaks, foot-rots, blights, budrot and rots of fruits, nuts, tubers and corms etc. They are widely distributed in various parts of this country, and are mostly prevalent in rainy seasons.Phytophthora palmivora, andP. parasitica were found to have a wide host range.  相似文献   

5.
An elicitor of phytoalexin production in soybean (Glycine max L.) tissues was isolated from purified Phytophthora megasperma var. sojae mycelial walls by a heat treatment similar to that used to solubilize the surface antigens from the cell walls of Saccharomyces cerevisiae. The wall-released elicitor is a discrete, minor portion of the P. megasperma var. sojae mycelial walls. The elicitor released from the mycelial walls was divided by diethylaminoethylcellulose and concanavalin A-Sepharose chromatography into four fractions, each having different chemical characteristics. The four fractions were obtained from each of the three races of P. megasperma var. sojae. The corresponding fractions from each of the three races are very similar in composition and elicitor activity. The results suggest that the elicitor activity of each fraction resides in the glucan component of the fraction. Evidence is presented to demonstrate that the elicitors are not race-specific and that the accumulation of glyceollin is not sufficient to account for race-specific resistance.  相似文献   

6.
Phytophthora citrophthora was inhibited to a greater extent than P. nicotianac var. parasitica by chloramphenicol, hymexazol, PCNB and pimaricin at concentrations used in selective media for the isolation of Phytophthora spp. Reduced concentrations of the antimicrobial components of the selective media to tolerant levels for P. citrophthora markedly increased the recovery of the two brown rot pathogens from soil. Mycelium of both Phytophthora spp. survived in air-dried soil for at least 5 months while mycelium of most Phytophthora spp. do not survive in dry soil. In moist soil, P. nicotianae var. parasitica produced hyphal swellings, sporangia and chlamydospores. P. citrophthora produced hyphal swellings and sporangia, but no chlamydospores. No oospores were produced, even in pairing cultures on agar plates with isolates obtained from several locations of citrus groves andfruits by both species. Sporania were obtained in both species in citrus groves on mycelium mats, in the rhizosphere, in infected leaves and fruits buried at soil depths of 5–35 cm. Numbers of propagules declined during the incubation period, but conside, rable numbers survived throughout the experimental period (6 months). Although P. nicotianae var. parasitica produced chlamydospores while P. citrophthora did not, numbers of surviving propagules recovered from soil after 6 months were comparable with both species. The brown rot pathogens survived in soil both as colonizers of detached leaves and fruits and as parasites in living root tissues.  相似文献   

7.
The pepper accession Criollo de Morelos 334 is the most efficient source of resistance currently known to Phytophthora capsici and P. parasitica. To investigate whether genetic controls of resistance to two Phytophthora species are independent, we compared the genetic architecture of resistance of CM334 to both Phytophthora species. The RIL population F5YC used to construct the high-resolution genetic linkage map of pepper was assessed for resistance to one isolate of each Phytophthora species. Inheritance of the P. capsici and P. parasitica resistance was polygenic. Twelve additive QTLs involved in the P. capsici resistance and 14 additive QTLs involved in the P. parasitica resistance were detected. The QTLs identified in this progeny were specific to these Phytophthora species. Comparative mapping analysis with literature data identified three colocations between resistance QTLs to P. parasitica and P. capsici in pepper. Whereas this result suggests presence of common resistance factors to the two Phytophthora species in pepper, which possibly derive from common ancestral genes, calculation of the colocation probability indicates that these colocations could occur by chance.  相似文献   

8.
A β-glucan isolated from the mycelial walls of Phytophthora megasperma var. sojae and a glucan purified from yeast extract stimulate the accumulation of phytoalexins in red kidney bean, Phaseolus vulgaris, and stimulate the accumulation of the phytoalexin, rishitin, in potato tubers, Solanum tuberosum. These glucans have previously been shown to be potent elicitors of glyceollin accumulation in soybean, Glycine max.

Treatment of kidney bean cotyledons with the glucan elicitors resulted in the accumulation of at least five fungistatic compounds. These compounds migrate during thin layer chromatography identically to the fungistatic compounds which accumulate in kidney beans which have been inoculated with Colletotrichum lindemuthianum, a fungal pathogen of kidney beans.

Potatoes accumulate as much as 29 micrograms of rishitin per gram fresh weight following exposure to the glucan from Phytophthora megasperma var. sojae and as much as 19.5 micrograms of rishitin per gram fresh weight following exposure to yeast glucan. Potatoes accumulated 28 micrograms of rishitin per gram fresh weight following inoculation with live Phytophthora megasperma var. sojae.

  相似文献   

9.
RNA silencing is one of the main defence mechanisms employed by plants to fight pathogens. p19 protein encoded by the tomato bushy stunt virus (TBSVp19) is known as a suppressor of RNA silencing via siRNA sequestration to prevent the assembly of RISC. To better understand the impact of TBSVp19 on silencing and its roles in Phytophthora pathogens, we used the transient expression assay in Nicotiana benthamiana and found that the leaves expressing TBSVp19 were more susceptible to Phytophthora parasitica. Furthermore, we demonstrated that TBSVp19‐mediated plant susceptibility in N. benthamiana is dependent on RNA‐dependent RNA polymerase 6 (RDR6). We also tested the role of RNA silencing in resistance of soybean hairy roots to Phytophthora. The lesion size induced by P. sojae on TBSVp19‐expressing soybean hairy roots was slightly, but significantly larger than GFP‐expressing soybean hairy roots. Finally, the Arabidopsis gene silencing mutants ago1‐27, zip‐1, sgs3‐11 and rdr6‐11 were also examined for their resistance to P. parasitica. The results clearly showed that resistance levels of the mutants were visibly reduced compared with the wild type. Taken together, these results suggest that the gene silencing system in plants is essential for resistance to Phytophthora pathogens.  相似文献   

10.
The genus Phytophthora consists of many notorious pathogens of crops and forestry trees. At present, battling Phytophthora diseases is challenging due to a lack of understanding of their pathogenesis. We investigated the role of small RNAs in regulating soybean defense in response to infection by Phytophthora sojae, the second most destructive pathogen of soybean. Small RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), are universal regulators that repress target gene expression in eukaryotes. We identified known and novel small RNAs that differentially accumulated during P. sojae infection in soybean roots. Among them, miR393 and miR166 were induced by heat‐inactivated P. sojae hyphae, indicating that they may be involved in soybean basal defense. Indeed, knocking down the level of mature miR393 led to enhanced susceptibility of soybean to P. sojae; furthermore, the expression of isoflavonoid biosynthetic genes was drastically reduced in miR393 knockdown roots. These data suggest that miR393 promotes soybean defense against P. sojae. In addition to miRNAs, P. sojae infection also resulted in increased accumulation of phased siRNAs (phasiRNAs) that are predominantly generated from canonical resistance genes encoding nucleotide binding‐leucine rich repeat proteins and genes encoding pentatricopeptide repeat‐containing proteins. This work identifies specific miRNAs and phasiRNAs that regulate defense‐associated genes in soybean during Phytophthora infection.  相似文献   

11.
Large and rapid increases in the activities of two enzymes of general phenylpropanoid metabolism, phenylalanine ammonia-lyase and 4-coumarate:CoA ligase, occurred in suspension-cultured parsley cells (Petroselinum hortense) treated with an elicitor preparation from Phytophthora megasperma var. sojae. Highest enzyme activities were obtained with an elicitor concentration similar to that required for maximal phenylalanine ammonialyase induction in cell suspension cultures of soybean, a natural host of the fungal pathogen.  相似文献   

12.
We developed a simple, rapid, small-scale assay for infection of tobacco seedlings byPhytophthora parasitica var.nicotianae. One 7-day-old tobacco seedling was placed in each well of a 96-well microtiter plate and inoculated with 500 zoospores ofP. parasitica var.nicotianae. After 72 h all of the inoculated seedlings of the susceptible cultivar, KY14, were infected, and the pathogen had produced sporangia that were visible on the surfaces of the seedlings. Sporangia did not develop on seedlings that were inoculated simultaneously with zoospores and either 1 µg/mL of the chemical fungicide metalaxyl or 5 µL of filtrate of a sporulated culture of the biocontrol agent,Bacillus cereus UW85. Seedlings of tobacco cultivar KY17 were infected byP. parasitica var.nicotianae, although mature plants of this variety are resistant to the pathogen. This microassay may facilitate the rapid screening of potential biological and chemical control agents and may be useful for studying mechanisms of infection and control ofPhytophthora spp. under hydroponic conditions.  相似文献   

13.
14.
Baozhen Feng  Peiqian Li 《Genetica》2012,140(10-12):477-484
Phytophthora spp. is a primary pathogen in oomycete, causing economically and environmentally devastating epidemics of plants. Laccases have been found in all domains of life but have not been reported in oomycte. In this paper, laccase genes of Phytophthora spp. were identified in three genomes (Phytophthora capsici, Phytophthora sojae and Phytophthora ramorum). 18 laccase genes were identified in total, including four in P. capsici genome, six in P. sojae genome and eight in P. ramorum genome. Most of the predicted gene models shared typical fungal laccase character, possessing three conserved positions with one cysteine and ten histidine residues at these positions. Phylogenetic analysis illustrated that laccases from Phytophthora clustered into four clades, while fungal laccases clustered together. The results provided the theoretical ground for new hypotheses about the roles laccases in oomycetes and may guide the future research of these enzymes.  相似文献   

15.
A soluble elicitor of glyceollin accumulation was released from insoluble mycelial walls of Phytophthora megasperma var. sojae after incubation with soybean cotyledon tissue for as little as 2 minutes. Various enzymic and chemical treatments of the released elicitor indicated that the activity resided in a carbohydrate moiety, and gel filtration disclosed the presence of at least two active molecular species. Cell-free extracts from soybean cotyledons or hypocotyls also released soluble elicitors from fungal cell walls that were similar to those released by living cotyledon tissue. These results may suggest that contact of fungal pathogens with host tissues is required to release fungal wall elicitors which then initiate phytoalexin accumulation in the plant.  相似文献   

16.
17.
In this research, distribution of Phytophthora species were determined in Kerman Province (Bam, Shahdad and Arzuiyeh) during 2004–2007. The Phytophthora species were isolated from infected root, crown and soil. Root and crown pieces were washed and cultured on a CMA-PARPH medium. The isolation from infected soil was performed by bating method using citrus leaves. It was identified by morphological and several physiological characteristics. Distribution of species was determined by recording the number of isolates recovered from samples from each city. In this study, from 220 soil samples collected from 52 citrus orchards, 80 isolates of Phytophthora were recovered. Among of all isolates of Phytophthora, P. parasitica and P. citrophthora were the most important species of causal agent of gummosis on Citrus sp. Distribution of P. citrophthora was highest in Arzuiyeh and lowest in Bam and Shahdad cities, while distribution of P. parasitica was highest in Bam and Shahdad cities. The majority of soil samples contained only P. parasitica, but a few of percentage samples containing P. citrophthora alone and both of fungi in cites samples.  相似文献   

18.
Mutational experiments were performed to improve the protease productivity of the mutant strain X-816 previously induced by X-ray irradiation from Asp. sojae K. S. as a high protease producer. The significant correlation was found between the protease production in wheat bran koji and the clear zone around a fungal colony formed on the special medium containing casein. Several mutants of high protease productivity were obtained by the use of the clear zone as a simple criterion for a primary screening test. In this paper, the composition of some other hydrolytic enzymes in wheat bran koji and the genetic stability of these mutants are also discussed.  相似文献   

19.
From Lathyrus odoratus treated with mercuric acetate (cotyledons, pods) or with Phytophthora megasperma var. sojae-elicitor (cotyledons) a number of fungitoxic stress metabolises have been isolated, among which are two novel α-hydroxydihydrochalcones (odoratol and methylodoratol). Their structures have been elucidated.  相似文献   

20.
Tomato plants pre-colonised by the arbuscular mycorrhizal fungusGlomus mosseae showed decreased root damage by the pathogenPhytophthora nicotianae var.parasitica. In analyses of the cellular bases of their bioprotective effect, a prerequisite for cytological investigations of tissue interactions betweenG. mosseae andP. nicotianae v.parasitica was to discriminate between the hyphae of the two fungi within root tissues. We report the use of antibodies as useful tools, in the absence of an appropriate stain for distinguishing hyphae ofP. nicotianae v.parasitica from those ofG. mosseae inside roots, and present observations on the colonisation patterns by the pathogenic fungus alone or during interactions in mycorrhizal roots. Infection intensity of the pathogen, estimated using an immunoenzyme labelling technique on whole root fragments, was lower in mycorrhizal roots. Immunogold labelling ofP. nicotianae v.parasitica on cross-sections of infected tomato roots showed that inter or intracellular hyphae developed mainly in the cortex, and their presence induced necrosis of host cells, the wall and contents of which showed a strong autofluorescence in reaction to the pathogen. In dual fungal infections of tomato root systems, hyphae of the symbiont and the pathogen were in most cases in different root regions, but they could also be observed in the same root tissues. The number ofP. nicotianae v.parasitica hyphae growing in the root cortex was greatly reduced in mycorrhizal root systems, and in mycorrhizal tissues infected by the pathogen, arbuscule-containing cells surrounded by intercellularP. nicotianae v.parasitica hyphae did not necrose and only a weak autofluorescence was associated with the host cells. Results are discussed in relation to possible processes involved in the phenomenon of bioprotection in arbuscular mycorrhizal plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号