首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
MTs are small cysteine-rich metal-binding proteins found in many species and, although there are differences between them, it is of note that they have a great deal of sequence and structural homology. Mammalian MTs are 61 or 62 amino acid polypep-tides containing 20 conserved cysteine residues that underpin the binding of metals. The existence of MT across species is indicative of its biological demand, while the conservation of cysteines indicates that these are undoubtedly central to the function of this protein. Four MT isoforms have been found so far, MT-1, MT-2, MT-3, and MT-4, but these also have subtypes with 17 MT genes identified in man, of which 10 are known to be functional. Different cells express different MT isoforms with varying levels of expression perhaps as a result of the different function of each isoform. Even different metals induce and bind to MTs to different extents. Over 40 years of research into MT have yielded much information on this protein, but have failed to assign to it a definitive biological role. The fact that multiple MT isoforms exist, and the great variety of substances and agents that act as inducers, further complicates the search for the biological role of MTs. This article reviews the current knowledge on the biochemistry, induction, regulation, and degradation of this protein in mammals, with a particular emphasis on human MTs. It also considers the possible biological roles of this protein, which include participation in cell proliferation and apoptosis, homeostasis of essential metals, cellular free radical scavenging, and metal detoxification.  相似文献   

3.
MTs are small cysteine-rich metal-binding proteins found in many species and, although there are differences between them, it is of note that they have a great deal of sequence and structural homology. Mammalian MTs are 61 or 62 amino acid polypeptides containing 20 conserved cysteine residues that underpin the binding of metals. The existence of MT across species is indicative of its biological demand, while the conservation of cysteines indicates that these are undoubtedly central to the function of this protein. Four MT isoforms have been found so far, MT-1, MT-2, MT-3, and MT-4, but these also have subtypes with 17 MT genes identified in man, of which 10 are known to be functional. Different cells express different MT isoforms with varying levels of expression perhaps as a result of the different function of each isoform. Even different metals induce and bind to MTs to different extents. Over 40 years of research into MT have yielded much information on this protein, but have failed to assign to it a definitive biological role. The fact that multiple MT isoforms exist, and the great variety of substances and agents that act as inducers, further complicates the search for the biological role of MTs. This article reviews the current knowledge on the biochemistry, induction, regulation, and degradation of this protein in mammals, with a particular emphasis on human MTs. It also considers the possible biological roles of this protein, which include participation in cell proliferation and apoptosis, homeostasis of essential metals, cellular free radical scavenging, and metal detoxification.  相似文献   

4.
M Goedert  R Jakes 《The EMBO journal》1990,9(13):4225-4230
We have expressed six previously cloned isoforms of human microtubule-associated tau protein in Escherichia coli and purified them to homogeneity in a biologically active form. They range from 352 to 441 amino acids in length and differ from each other by the presence of three or four tandem repeats in the carboxy-terminal half and by the presence or absence of 29 or 58 amino acid inserts in the amino-terminus. When mixed together they gave a set of six bands on SDS-PAGE gels with apparent molecular weights of 48-67 kd and with a characteristic pattern of spacings. Four of these bands aligned with the major tau bands found in adult human cerebral cortex following perchloric acid extraction and alkaline phosphatase treatment. They consisted of isoforms with three repeats and no insertions, four repeats and no amino-terminal insertions and three- and four-repeat containing isoforms with the 29 amino acid insertion. In fetal human brain extracts treated with alkaline phosphatase one of the two major tau bands aligned with the three-repeat containing isoform with no insertions, whereas the molecular nature of the second major tau band remains to be established. The recombinant tau isoforms were biologically active at micromolar concentrations, as assessed by their ability to promote microtubule assembly. The rates of assembly were 2.5-3.0 times faster for isoforms containing four repeats when compared with three-repeat containing isoforms, with no significant contribution by the amino-terminal insertions.  相似文献   

5.
Two metallothioneins (MTs) from bovine fetal liver were purified by a combination of gel filtration and ion-exchange chromatography. The primary structures of the isoproteins MT-1 and MT-2 were elucidated by peptide and amino acid sequence analysis. The amino-terminal part was deduced from automated Edman degradations of the pyridylethylated CNBr-cleaved derivatives. The remaining part of the sequence was established by a comparison of the carboxamidomethylated tryptic peptides to those from equine liver MT-1A and MT-2B. Peptides differing in either amino acid composition or retention time from high pressure liquid chromatography were further subjected to manual Edman degradations or carboxypeptidase Y digestion. The two isoproteins consist of 61 amino acids and show a sequence identity of 90%. When compared with the primary structures of other mammalian MTs, the 20 cysteinyl residues are totally conserved, in agreement with their function as metal ligands. The two isoproteins contain Cu and Zn at a ratio of 3:4. Spectroscopic data reveal absorption properties typical for both Cu- and Zn-thiolate transitions. The marked differences of MT-1 and MT-2 in the Cu-thiolate CD features can be attributed to the six amino acid substitutions occurring exclusively in the amino-terminal parts of the molecules. It is proposed that in bovine fetal MTs also the three copper ions are preferentially bound to the first 9 cysteinyl residues (cluster B) and the four zinc ions to the remaining 11 cysteinyl residues (cluster A) suggested previously by 113Cd NMR spectroscopy of calf liver MTs (Briggs, R. W., and Armitage, I. M. (1982) J. Biol. Chem. 257, 1259-1262).  相似文献   

6.
A cDNA library was constructed using RNA isolated from the livers of chickens which had been treated with zinc. This library was screened with a RNA probe complementary to mouse metallothionein-I (MT), and eight chicken MT cDNA clones were obtained. All of the cDNA clones contained nucleotide sequences homologous to regions of the longest (376 bp) cDNA clone. The latter contained an open reading frame of 189 bp, and the deduced amino acid sequence indicates a protein of 63 amino acids of which 20 are cysteine residues. Amino acid composition and partial amino acid sequence analyses of purified chicken MT protein agreed with the amino acid composition and sequence deduced from the cloned cDNA. Amino acid sequence comparisons establish that chicken MT shares extensive homology with mammalian MTs, but is more closely related to the MT-II than to the MT-I isoforms from various mammals. The nucleotide sequence of the coding region of chicken MT shares approximately 70% homology with the consensus sequence for the mammalian MTs. Southern blot analysis of chicken DNA indicates that the chicken MT gene is not a part of a large family of related sequences, but rather is likely to be a unique gene sequence. In the chicken liver, levels of chicken MT mRNA were rapidly induced by metals (Cd2+, Zn2+, Cu2+), glucocorticoids and lipopolysaccharide. MT mRNA was present in low levels in embryonic liver and increased to high levels during the first week after hatching before decreasing again to the basal levels found in adult liver. The results of this study establish that MT is highly conserved between birds and mammals and is regulated in the chicken by agents which also regulate expression of mammalian MT genes. However, in contrast to the mammals, the results suggest the existence of a single isoform of MT in the chicken.  相似文献   

7.
In this study a fused-silica capillary treated internally with a polyamine coating which reverses electroosmotic flow in the direction of the anode was evaluated for its ability to resolve metallothionein (MT) isoforms. Analysis of different MTs purified from liver and kidney tissue revealed the following numbers of putative isoform peaks resolved: rabbit (3–6); horse (3–5); rat (2–3), chicken (1); human MT-1 (5–6); sheep (4–5) and pig (4–5). The greater degree of MT isoform heterogeneity detected in this study using the polyamine-coated capillary suggested a higher resolving capacity for capillary zone electrophoresis conducted with this capillary compared to an uncoated one. Using the single isoform of chicken MT (cMT) as a reference standard, relative standard deviations of 2.53, 1.85 and 2.21% for peak migration time, area and height, respectively, were observed for eight consecutive runs. A standard curve for cMT established linearity (r2 = 0.99) for integrated peak area over three log units of cMT concentration with a lower limit of detection estimated to be 5 μg/ml. Acetonitrile extracts of chick liver tissue homogenates were successfully analyzed for the presence of MT isoforms from both control and zinc-injected animals. Based on our initial evaluation, capillary zone electrophoresis using the polyamine-coated capillary appears to be a very useful analytical method for the separation and quantification of individual MT isoforms.  相似文献   

8.
9.
Metallothionein (MT) isoforms from various liver tissues were separated with capillary zone electrophoresis (CZE) using a polyacrylamide-coated tube at neutral pH. The electrophoresis was performed on MT-1 and MT-2 purified from mouse, rat, rabbit and human livers. The retention times of mouse and rat MT-1 coincided, while the retention times of rabbit and human MT-1 were longer. The retention times of MT-2 purified from the four sources were the same. MT-1 and MT-2 separated more definitely with N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid (HEPES)-Tris buffer (25 mM, pH 7.4) than with N-tris(hydroxymethyl)methyl-3-aminopropane sulfonic acid (TAPS)-Tris buffer (25 mM, pH 7.7) or with N-(2-acetamido)iminodiacetic acid (ADA)-Tris buffer (25 mM, pH 7.4). In addition, liver MT isoforms prepared from Zn- or Cd-administered mice could be separated.  相似文献   

10.
We have investigated free-solution capillary electrophoresis (FSCE) and micellar electrokinetic capillary chromatography (MECC) separations of metallothionein (MT) isoforms conducted in uncoated and surface-modified fused-silica capillaries. At alkaline pH, FSCE rapidly resolves isoforms belonging to the MT-1 and MT-2 charge classes. At acidic pH, additional resolution of MT isoforms is achieved. The use of high-ionic-strength (0.5 M) phosphate buffers can result in high peak efficiencies and increased resolution for some MT isoforms. Interior capillary surface coatings such as polyamine and linear polyacrylamide polymers permit separation of MT isoforms with enhanced resolution through their effects on electroosmotic flow (EOF) and protein-wall interactions. Improvements in MT isoform resolution can also be achieved by MECC using 100 mM borate buffer pH 8.4 containing 75 mM SDS. Deproteinization of tissue cytosol samples with acetonitrile (60–80%) or perchloric acid (7%) produces extracts that can be subjected to direct analysis of MT by FSCE or MECC. We conclude that optimal separation of MT isoforms by capillary electrophoresis (CE) can be achieved with the appropriate combination of different capillaries, buffers and sample preparation techniques.  相似文献   

11.
《Gene》1998,211(1):49-55
Isogenes are highly homologous to each other and are often difficult to ascertain, as has been the case with metallothionein, a metal-binding protein rich in cysteines. Conventional separation of metallothionein isoforms relied on ion exchange chromatography of the proteins, or screening for the sequences from gene libraries. In this study, a combination of RT–PCR and partial protein sequencing is used in the identification of metallothionein isogenes expressed in porcine liver. By this approach, we have identified expressed coding sequences which constitute 10 new isogenes. Of the four known groups of metallothioneins (MT), phylogenetic analyses place these pig isogenes in the MT-1 group, except two which are identified as being closely related to MT-2, and none in groups 3 and 4. The isogenes are thus named pMT-1a to -1g, and pMT-2a and -2b. While each of the isogene sequences is unique, two isogenes, pMT-1e1 and pMT-1e2, share an identical amino acid sequence, differing only in specific codons. Two others, pMT-1b and pMT-1g, have a cysteine substituted by arginine, the first such sequence ever detected in MT. pMT-2a and pMT-2b are closely aligned with the MT-2 group of vertebrates, in spite of the absence of a characteristic acidic amino acid at position 10 or 11, common in other mammalian metallothioneins.  相似文献   

12.
Metallothionein (MT) isoforms, MT-1 and MT-2, in biological specimens are clearly separated by capillary zone electrophoresis (CZE) using a polyacrylamide-coated capillary. The effectiveness of CZE analysis in the study of MT isoforms in biological specimens is discussed. We did two experiments to determine the MT-1/MT-2 ratio in biological specimens. The ratio of MT-1/MT-2 can be determined by CZE under a neutral pH without any detergents. One of these studies is time-dependent changes of the MT-1/MT-2 ratio in the cytosol of the pancreas and liver in mice after Zn or Cd injection. In the pancreas, both isoforms were detected in the control mice and the ratio of MT-1/MT-2 was below 1.0. When Zn was injected, the maximum peak areas of both isoforms were obtained at 24 h, and the ratios increased over a value of 1.0 at 3 h and peaked at 10 h. However, in the Cd-injected mice, the peak areas of both isoforms increased up to 72 h, and the ratios were below 1.0 up to 72 h. On the contrary, neither isoform was detected in the livers of control mice. The ratios of Zn-injected mice liver were near the value 1.0 between 6 and 72 h, although the areas of both isoforms showed peaks at 48 h. The ratios of Cd-injected mice livers were detected to be over 1.0 from 10 h, but there were no significant difference between 10 and 72 h, and the areas of both isoforms showed peaks at 24 h. The other experiment investigated the ratio in each fraction of cell fractionation. Cell fractionation was done in the livers of Zn-treated mice. Twenty-four hours after the injection, the ratio of MT-1/MT-2 was 0.80+/-0.12 and 1.19+/-0.21 (mean+/-SD) in nuclear and cytosol fractions, respectively. Neither isoform was detected in mitochondrial or microsomal fraction. From the present results, CZE analysis is a suitable method for observation of the ratio of MT-1/MT-2 in biological specimens, and dynamic changes in both isoforms can be detected.  相似文献   

13.
The high concentration of zinc in the hippocampal mossy fiber axon boutons is localized in the vesicles and is mobilized by exocytosis of the zinc-laden vesicles. Furthermore, the mammalian hippocampi contain metallothionein (MT) isoforms which regulate the steady state concentration of zinc, an important antioxidant. Indeed, zinc deprivation leads to an increased lipid peroxidation, reduces the activity of Cu++-Zn++ superoxide dismutase, and protect against oxidative stress such as exposure to ultraviolet A irradiation. By employing electron spin resonance (ESR) spectroscopy, we have demonstrated that rat hippocampal MT isoforms 1 and 2 were able to scavenge 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH), hydroxyl radicals (*OH) generated in a Fenton reaction, and superoxide anions (O2*-) generated by the hypoxanthine and xanthine oxidase system. In addition, MT-1 isoform protected the isolated hepatocytes from lipid peroxidation as determined by thiobarbituric acid bound malondialdehyde. MT antibodies scavenged DPPH radicals, hydroxyl radicals and reactive oxygen species but not superoxide anions. The results of these studies suggest that although both isoforms of MT are able to scavenge free radicals, the MT-1 appears to be a superior scavenger of superoxide anions and 1,1-diphenyl-2-picrylhydrazyl radicals. Moreover, antibodies formed against MT isoform retain some, but not all, free radical scavenging actions exhibited by MT-1 and MT-2.  相似文献   

14.
We have isolated a human cDNA which corresponds to a developmentally regulated sarcomeric myosin heavy chain. RNA hybridization and DNA sequence analysis indicate that this cDNA, called SMHCP, encodes a perinatal myosin heavy chain isoform. The nucleotide and deduced amino acid sequences of the 3.4-kb cDNA insert show strong homology with other sarcomeric myosin heavy chains. The strongest homology is to a previously described 970-bp cDNA encoding a rat perinatal isoform (Periasamy, M., D. F. Wieczorek, and B. Nadal-Ginard. 1984. J. Biol. Chem. 259:13573-13578). The homology between the analogous human and rat perinatal myosin heavy chain cDNAs is maintained through the highly isoform-specific final 20 carboxyl-terminal amino acids, as well as the 3' untranslated region. Ribonuclease protection studies show that the mRNA encoding this isoform is expressed at high levels in 21-wk fetal skeletal tissue and not in fetal cardiac muscle. In contrast to the rat perinatal isoform, which was not found to be expressed in adult hind-leg tissue, the gene encoding SMHCP continues to be expressed in adult human skeletal tissue, but at lower levels relative to fetal skeletal tissue.  相似文献   

15.
To investigate Zn and Cu accumulation and isometallothionein (iso-MT) induction in ascites-sarcoma S180A cells, 5 micrograms of Zn2+ or Cu2+/g body weight was administered to tumour-bearing mice intraperitoneally. In the tumour cells the Zn or Cu concentration increased more than in the host liver, which is the target organ for those metals; the maximum Zn or Cu level was about 2-3 times that in the host liver. The amounts of Zn-MT or Cu-MT accumulated in the tumour cells and host liver were proportional to such dose accumulation levels in the each cytosol; the maximum level of Zn-MT or Cu-MT was 4 or 2 times higher than in the host liver. MT accumulated in the tumour cells showed two subfractions (MT-1 and MT-2); the ratio of Zn (or Cu) bound to MT-1 to that bound to MT-2 in the host liver and tumour cells was 1.0 (or 1.0) and 0.7 (or 0.25) respectively, suggesting that the induction level of MT-2 in the tumour cells is more than that of MT-1. The h.p.l.c. profiles (using an anion-exchange column) of the isolated MT-1 and MT-2 subfractions from Zn-treated normal-mouse liver showed a single peak (MT-1-1) and two peaks (MT-2-1 and MT-2-2) respectively; mouse MTs were separated into three isoforms. In the ascites cells, the MT fraction obtained by a gel filtration was also separated into three isoforms; however, the amount of MT-2-1 isoform was 3 times that in the Zn-treated normal-mouse liver.  相似文献   

16.
17.
The aim of this study was to identify metallothionein (MT) isoforms in mouse liver by using capillary zone electrophoresis (CZE). Purified MT-1 and MT-2 isoforms were completely separated by CZE using a polyacrylamide-coated tube at physiologic pH. There were two peaks in the cytosol fraction prepared from zinc-injected mouse liver, in which the migration times corresponded with those of purified MT-1 and MT-2 isoforms. When anti-MT monoclonal antibody was added with the purified MT-1 or MT-2 solution, the peaks decreased. Furthermore, the two peaks in the cytosol prepared from Zn-injected mouse liver decreased in a time-dependent manner from the electropherogram after the addition of the antibody. Therefore, those peaks were identified as MT-1 and MT-2 isoforms, respectively. In conclusion, the addition of anti-MT monoclonal antibody to the cytosol fraction of tissues is an effective method for identification of MT isoforms after separation using CZE.  相似文献   

18.
Mammalian cardiac muscle contains two myosin alkali light chains which are the major isoforms present in either atrial (MLC1A) or ventricular (MLC1V) muscle, and which are different from the fast skeletal muscle isoforms (MLC1F and MLC3F). The atrial isoform is also expressed in fetal skeletal and fetal ventricular muscle, where this isoform is also described as the fetal isoform MLC1emb. We have previously isolated a cDNA clone encoding part of the mouse MLC1A/MLC1emb isoform and have used this clone to demonstrate the identity of MLC1A and MLC1emb in the mouse. To date no information on the amino acid sequence of this mammalian atrial/fetal isoform has been available. Here we present the complete structure and sequence of the mouse MLC1A/MLC1emb gene, together with the predicted amino acid sequence of this isoform. Comparison of the MLC1A/MLC1emb gene and polypeptide with those of MLC1F and MLC1V suggests that MLC1A/MLC1emb and MLC1V were generated from a common ancestral gene. The NH2-terminal region of MLC1A/MLC1emb, thought to be involved in the actomyosin interaction, shows conservation with MLC1V but not with MLC1F suggesting a shared functional domain in these cardiac isoforms. Comparison with the chicken embryonic MLC (L23) suggests that although MLC1A/MLC1emb and L23 show very different patterns of expression, both during development and in the adult, they probably represent the homologous gene in these two species.  相似文献   

19.
Two metallothionein cDNA isoforms (MT-1 and MT-2) were isolated from carp (Cyprinus carpio) by RT-PCR. Sequence analysis of the cDNAs revealed two amino acid differences between the coding regions and markedly different 3'-untranslated ends. Gene-specific primers were selected and used in RT-PCR reactions to measure the basal MT-1 and MT-2 mRNA levels and to follow the inducer-specific expression of MT genes in different tissues during in vivo studies. In the brain and muscle, the uninduced levels of the two MT mRNAs were similar. In the kidney and liver, the MT-1 gene product predominated, while in the heart the relative expression levels of the two genes were opposite. Both the MT-1 and MT-2 mRNA levels increased with Cd concentration in a time- and dose-dependent manner. The expression of MT-2, however, was more responsive to a high Cd concentration. In parallel with the induction of the MTs by Cd, we followed the accumulation of this metal in the kidney and liver. Although the Cd level was always higher in the kidney during treatment, the rate of accumulation was higher in the liver. Cold stress resulted in a significantly higher induction of MT-1 than of MT-2, while heat shock had no effect on the expression of either gene.  相似文献   

20.
We characterized Bos taurus leptin receptor (Ob-R) isoform mRNAs as well as their expression in different tissues, including some adipose depots (perirenal, subcutaneous and intermuscular adipose tissues). Based on the GenBank database sequences of the bovine partial Ob-R, primers were designed to amplify cDNAs of bovine Ob-R isoforms. The full-length cDNAs of bovine the Ob-R isoforms were cloned by combination with 3'-and 5'-RACE. Three bovine Ob-R isoform cDNAs were cloned and the sequence analyses revealed that these cDNAs were bovine Ob-R isoforms, i.e., the long form (Ob-Rb), the middle form (Ob-Ra) and the short form (Ob-Rc). The open reading frames of Ob-Ra, Ob-Rb and Ob-Rc gene were 2688, 3498 and 2673 bp, respectively. The deduced amino acid sequences suggested that the isoforms were single transmembrane proteins, and differed in the C-terminal amino acid sequences. The amino acid sequence of these bovine Ob-R isoforms showed 73-75% identity compared with the corresponding mouse isoforms. The tissue-specific expression of the bovine Ob-R isoforms were measured by semi-quantitative RT-PCR. Expression of Ob-Rb was highest in liver, heart, spleen and kidney, with lower expression in lung and testis, and slight expression in muscle. Ob-Ra was highly expressed in liver and spleen, whereas moderate expression was observed in heart, testis, and muscle, and its expression was the lowest in lung and kidney. Ob-Rc mRNA was expressed in the liver, heart, testis, kidney and muscle, but not in the lung and spleen. In adipose tissues, higher expression of Ob-Ra and Ob-Rb mRNA was observed in intermuscular adipose tissue than in subcutaneous or perirenal adipose tissues. Ob-Ra mRNA level was positively correlated with Ob-Rb mRNA level in the adipose tissues (r=0.81, P<0.05). The results demonstrated that each Ob-R isoform mRNA was differentially expressed in various tissues of cattle, which may be involved in the difference of peripheral actions for leptin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号