首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coupled and uncoupled respiration, and energy-dependent phosphate swelling have been studied in rat liver mitochondria in the presence of various concentration of Triton X-100. Detergent concentrations up to 10(-5) M do not affect any of the processes under study. At 10(-5) M, Triton X-100 produces a slight decrease of coupled respiration and a considerable inhibition of mersalyl-induced shrinking in swollen mitochondria. Increasing the surfactant concentration to 10(-4), coupled as well as uncoupled O2 consumption is decreased, succinate-dependent phosphate swelling is inhibited and an energy-dependent phosphate swelling in the absence of valinomycin is observed. At 2 X 10(-4) M. Triton X-100, ATP- dependent phosphate swelling is abolished, and passive swelling may be induced by various ions. Higher detergent concentrations do not allow observation of any of these events. On the basis of these results, a model of membrane-detergent interaction is proposed.  相似文献   

2.
1. Rat brain-cortex mitochondria were incubated in media containing 1, 5 or 100mm-K(+) in the presence of ADP, uncoupler (FCCP, carbonyl cyanide p-trifluoro-methoxyphenylhydrazone) or valinomycin while metabolizing pyruvate and malate, or acetylcarnitine and malate or glutamate and malate as substrates. Both the uptake of oxygen and disappearance of substrate were measured under these conditions. 2. With pyruvate and malate as substrate in the presence of both ADP and valinomycin, both the uptake of oxygen and disappearance of pyruvate increased markedly on increasing the K(+) content of the incubation medium from 5 to 100mm-K(+). However, in the presence of uncoupler (FCCP), although the oxygen uptake doubled little change was observed in the rate of disappearance of pyruvate on increasing the K(+) concentration. 3. Only small changes in uptake of substrate and oxygen were observed in the presence of ADP, uncoupler (FCCP) or valinomycin on increasing the K(+) concentration when acetylcarnitine+malate or glutamate+malate were used as substrates by brain mitochondria. 4. Further, increasing the K(+) concentration from 1 to 20mm when rat brain mitochondria were oxidizing a mixture of pyruvate and glutamate in the presence of malate and ADP caused a 30% increase in the respiration rate, 50% increase in the rate of disappearance of pyruvate and an 80% decrease in the rate of disappearance of glutamate. 5. Investigation of the redox state of the cytochromes and the nicotinamide nucleotides in various conditions with either pyruvate or acetylcarnitine as substrates suggested that the specific stimulation of metabolism of pyruvate by K(+) could not be explained by a general stimulation of the electron-transport system. 6. Low-amplitude high-energy swelling of rat brain mitochondria was investigated in both Na(+)- and K(+)-containing media. Swelling of brain mitochondria was much greater in the Na(+)-containing medium and in this medium, the addition of Mg(2+) caused a partial reversal of swelling together with an 85% decrease in the rate of utilization of pyruvate. However, in the K(+)-containing medium, the addition of Mg(2+), although also causing a reversal of swelling, did not affect the rate of disappearance of pyruvate. 7. Measurements of the ATP, NADH/NAD(+) and acetyl-CoA/CoA contents were made under various conditions and no evidence that K(+) concentrations affected these parameters was obtained. 8. The results are discussed in relationship to the physiological significance of the stimulation of pyruvate metabolism by K(+) in rat brain mitochondria. It is proposed that K(+) causes its effects by a direct stimulation of the pyruvate dehydrogenase complex.  相似文献   

3.
The cationic potentiometric fluorescent probe 3,3'-diethylthiadicarbocyanine iodide [DiS-C2(5)] was used in synaptosomes to assess the relative contributions of plasma and mitochondrial membrane potentials (psi p and psi m, respectively) to overall fluorescence. Addition of synaptosomes to media containing 0.5 microM dye caused a decrease in fluorescence intensity due to dye accumulation, which equilibrated usually within 5 min. Depolarization of mitochondria by combined treatment with cyanide and oligomycin increased fluorescence by 42%, indicating significant prior accumulation of dye into intrasynaptosomal mitochondria. psi p was calculated to be -54 mV and was not altered significantly by prior depolarization of psi m with cyanide and oligomycin (hereafter referred to as "poisoned" synaptosomes). Similarly, the linear relationship between dye fluorescence and psi p was not altered by depolarization of psi m. Valinomycin, a K+ ionophore, caused a psi p-dependent increase in fluorescence in control (nonpoisoned) synaptosomes, but did not alter fluorescence of poisoned synaptosomes except when the extracellular concentration of K+ ([K+]e) was 2 mM, in which case valinomycin hyperpolarized psi p by about 5 mV. The pore-forming antibiotic gramicidin depolarized both psi p and psi m maximally. Under these conditions, Triton X-100 further increased fluorescence by 40%, indicating significant dye binding to synaptosomal components. In poisoned synaptosomes depolarized by 75 mM K+, gramicidin caused a decrease in fluorescence intensity (hyperpolarization of psi p). The organic solvent dimethyl sulfoxide, used as a vehicle for the hydrophobic ionophores, had voltage-dependent effects on psi p and psi m.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The effect of non-esterified myristate (C14:0) or dodecyl sulfate was studied on passive swelling of rat liver mitochondria suspended in hypotonic alkaline KCl medium in the absence of the potassium ionophore valinomycin. Both compounds rapidly initiated large-amplitude swelling. However, they failed to initiate swelling when the mitochondria were suspended in hypotonic alkaline sucrose medium. In contrast to myristate or dodecyl sulfate, the non-ionic detergent Triton X-100 initiated swelling of mitochondria in both of the media. The following findings indicate that the inner mitochondrial membrane (IMM) is permeabilized by myristate to K+ and Cl- in a specific manner. (i) Swelling initiated by myristate did not respond to cyclosporin A, (ii) the protonophoric uncoupler FCCP was unable to mimic the myristate effect on swelling, and (iii) myristate-induced Cl- -permeation (measured with KCl medium plus valinomycin) was inhibited by N,N'-dicyclohexylcarbodiimide, quinine or ATP. Myristate- or dodecyl sulfate-initiated swelling was paralleled by the lowering of endogenous Mg2+ content. Both effects, stimulation of swelling and depletion of endogenous Mg2+ are correlated with each other. Similar effects have been reported previously for the carboxylic divalent cation ionophore calcimycin (A23187). The A23187-induced swelling has identical inhibiting characteristics on Cl- -permeation with respect to N,N'-dicyclohexylcarbodiimide, quinine and ATP as the myristate-stimulated swelling. Therefore, we conclude that non-esterified fatty acids increase the permeability of mitochondria to K+ and Cl- at alkaline pH by activating Mg2+-dependent ion-conducting pathways in IMM.  相似文献   

5.
The effects of Tl(+) ions on isolated rat liver mitochondria were studied in the presence of nonactin, a cyclic ionophore. Nonenergized rat liver mitochondria were increasingly swollen at an elevated concentration of Tl(+) in the 160 mOsm medium containing 0-150 mM sucrose and 0-75 mM TlNO(3) or 0-50 mM Tl acetate. On the contrary, mitochondria in experiments with nonactin were contracted in the medium with 5-25 mM Tl(+) and were swollen only in the medium with 50-75 mM TlNO(3) or 50 mM Tl acetate. State 4 respiration along with swelling of succinate-energized mitochondria followed contraction after their deenergization was further enhanced at increasing concentration of Tl acetate in a medium containing nonactin. Regardless of the presence of nonactin, State 3 and 2,4-dinitrophenol (DNP)-stimulated respiration and the monoamine oxidase (MAO) activity were not affected in the medium with 0-25 mM Tl acetate and sucrose. DNP-stimulated respiration decreased and the MAO activity somewhat increased in the medium containing 50 mM Tl acetate and nonactin. Uptake of (86)Rb(+) by energized mitochondria in the presence of valinomycin was considerably decreased when Tl(+) and nonactin were simultaneously present in the medium. An increase of the toxic effect of Tl(+) on rat liver mitochondria in the presence of nonactin is accounted for by disruption of mitochondria due to their more extensive swelling and uncoupling of mitochondria, resulting in the stimulation of State 4 and depletion of their energy store.  相似文献   

6.
The action of ATP/ADP-antiporter inhibitors upon the uncoupling effect of palmitate, detergents and 'classical' uncouplers has been studied. The uncoupling effect was estimated by stimulation of succinate oxidation and of H+ permeability of rat liver mitochondria in the presence of oligomycin. It is shown that carboxyatractylate (CAtr) and pyridoxal 5-phosphate (PLP) suppress the uncoupling induced by palmitate and the anionic detergents SDS and cholate, but do not affect that induced by the cationic detergents CTAB, by the non-ionic detergent Triton X-100, as well as by the 'classical' uncouplers FCCP and DNP. The results are discussed in terms of a concept assuming that the ATP/ADP-antiporter facilitates the electrophoretic export of hydrophobic anions from mitochondria.  相似文献   

7.
The effects of ATP/ADP-antiporter inhibitors on the uncoupling of oxidative phosphorylation by palmitic acid, detergents and protonophore FCCP in liver mitochondria were studied. The uncoupling activity of these compounds was estimated by their stimulating effect on succinate oxidation and H+ conductivity of the inner mitochondrial membrane in the presence of oligomycin. Carboxyatractylate and pyridoxal 5-phosphate suppressed the uncoupling effects of palmitic acid and anionic detergents but had no effect on the uncoupling action of the nonionic detergent Triton X-100, the cationic detergent CTAB and FCCP. The data obtained are discussed in terms of the putative role of the ATP/ADP-antiporter in the electrophoretic transport of hydrophobic anions from the mitochondria.  相似文献   

8.
1. The organic mercurial sodium mersalyl, formaldehyde, dicyclohexylcarbodiimide and tributyltin each blocked respiratory-chain-linked ATP synthesis in rat liver mitochondria. 2. Mersalyl and formaldehyde also blocked a number of other processes dependent on the entry of inorganic phosphate into mitochondria, including mitochondrial respiration and swelling stimulated by cations and phosphate, the substrate-level phosphorylation reaction of the citric acid cycle, and swelling in ammonium phosphate. 3. Dicyclohexylcarbodi-imide and tributyltin did not inhibit the entry of phosphate into mitochondria. 4. Mersalyl and formaldehyde had a relatively slight effect on succinate oxidation and swelling stimulated by cations when phosphate was replaced by acetate, on succinate oxidation stimulated by uncoupling agents, and on swelling in solutions of ammonium salts other than phosphate or arsenate. 5. Formaldehyde blocked the oxidation of NAD-linked substrates in mitochondria treated with 2,4-dinitrophenol and the ATP-dependent reduction of NAD by succinate catalysed by ox heart submitochondrial particles. Both these effects appear to be due to an inhibition by formaldehyde of the NAD-flavin region of the respiratory chain. 6. Concentrations of dicyclohexylcarbodiimide or tributyltin sufficient to abolish ADP-stimulated respiration blocked the dinitrophenol-stimulated adenosine triphosphatase activity, whereas mersalyl and formaldehyde caused only partial inhibition of ATP hydrolysis. 7. When mitochondria were incubated with dinitrophenol and ATP, less than 10% of the total inorganic phosphate liberated was recovered in the mitochondria and no swelling occurred. In the presence of mersalyl or formaldehyde at least 80% of the total inorganic phosphate liberated was retained in the mitochondria and extensive swelling was observed. This swelling was inhibited by oligomycin but not by antimycin or rotenone. 8. The addition of mersalyl to mitochondria swollen by treatment with valinomycin, K(+) and phosphate blocked the contraction induced by dinitrophenol and caused an increase in the phosphate content of the mitochondria, but had no effect on the contraction of mitochondria when phosphate was replaced by acetate. 9. It is concluded that mitochondria contain a phosphate-transporter system, which catalyses the movement of phosphate in either direction across the mitochondrial membrane, and that this system is inactivated by organic mercurials and by formaldehyde. Evidence is presented that the phosphate-transporter system is situated in the inner membrane of rat liver mitochondria and is also present in other types of mammalian mitochondria.  相似文献   

9.
The synaptic vesicle protein synaptophysin was solubilized from rat brain synaptosomes with a relatively low concentration of Triton X-100 (0.2%) and was highly purified (above 95%) using a rapid single chromatography step on hydroxyapatite/celite resin. Purified synaptophysin was reconstituted into a planar lipid bilayer and the channel activity of synaptophysin was characterized. In asymmetric KCl solutions (cis 300 mM/trans 100 mM), synaptophysin formed a fast-fluctuating channel with a conductance of 414 +/- 13 pS at +60 mV. The open probability of synaptophysin channels was decreased upon depolarization, and channels were found to be cation-selective. Synaptophysin channels showed higher selectivity for K(+) over Cl(-) (P(K(+))/P(Cl(-)) > 8) and preferred K(+) over Li(+), Na(+), Rb(+), Cs(+), or choline(+). The synaptophysin channel is impermeable to Ca(2+), which has no effect on its channel activity. This study is the second demonstration of purified synaptophysin channel activity, but the first biophysical characterization of its channel properties. The availability of large amounts of purified synaptophysin and of its characteristic channel properties might help to establish the role of synaptophysin in synaptic transmission.  相似文献   

10.
1. In electron-transport particles (ET particles) prepared from Nitrobacter winogradskyi, the uncoupling agent carbonyl cyanide phenylhydrazone increased the rate of NADH oxidation but decreased the rate of oxidation of NO2-. Its effectiveness in stimulating NADH oxidation closely paralleled its effectiveness in inhibiting NO2- oxidation. 2. In the presence of ADP and phosphate the oxidation of NADH was stimulated, whereas the oxidation of NO2- was inhibited. In the presence of excess of Pi the concentration dependence with respect to ADP was the same for acceleration of NADH oxidation and inhibition of NO2- oxidation. 3. Oligomycin inhibited NADH oxidation and stimulated the oxidation of NO2-. The concentration of oligomycin required to produce half-maximal effect in both systems was the same. 4. The apparent Km for NO2- was not affected by ADP together with Pi, by uncoupling agent or by oligomycin. 5. With NADH as substrate, classical respiratory control was observed. With NO2- as substrate the respiratory-control ratio was less than unity. 6. A reversible uptake of H+ accompanied the oxidation of NO2- by ET particles. 7. In the presence of NH4Cl or cyclohexylamine hydrochloride, H+ uptake was abolished and increased rates of NO2- oxidation were observed. When valinomycin was present in the reaction medium, low concentrations of NH4Cl inhibited NO2- oxidation. 8. Pretreatment of ET particles with oligomycin enhanced the stimulation of NO2- oxidation induced by NH4Cl or by cyclohexylamine hydrochloride. Pretreatment with the uncoupler carbonyl cyanide phenylhydrazone prevented these stimulations. 9. In the presence of dianemycin together with K+, the uptake of H+ was abolished and the rate of NO2- oxidation was increased. In contrast, in the presence of valinomycin together with K+, the uptake of H+ was increased, and the rate of NO2- oxidation decreased. 10. Sodium tetraphenylboron was found to be an inhibitor of NO2- oxidation, but caused a stimulation of NADH oxidation which was dependent on the presence of NH4Cl or cyclohexylamine hydrochloride. 11. It is concluded that the enhanced rate of NO2- oxidation observed in the absence of energy-dissipating processes clearly relates to some state before the involvement of adenine nucleotides, and it is suggested that the oxidation of NO2- generates a protonmotive force, the electrical component of which controls the rate of NO2- oxidation.  相似文献   

11.
Mitochondria from Neurospora crassa, like mammalian mitochondria, carry out rapid, energy-linked K+ uptake and H+ release in the presence of valinomycin. The maximal rate of K+ uptake was about 1.0 mumol/mg of mitochondrial protein per min and was seen at valinomycin concentrations in the range of 100 to 200 mug per mg of mitochondrial protein and at K+ concentrations of 4 mM or above. Uptake could be supported either by substrate oxidation or by adenosine 5'-triphosphate (ATP), and was inhibited in the former case by antimycin or cyanide, in the latter case by oligomycin, and in both cases by 2,4-dinitrophenol. Mitochondria from the cytochrome-deficient mutant poky carried out substrate-driven K+ uptake at reduced rates, but oligomycin-sensitive, ATP-driven K+ uptake at rates about 60% greater than those shown by wild-type mitochondria. This result is consistent with the recent finding (Mainzer and Slayman 1976) that poky contains elevated amounts of oligomycin-sensitive mitochondrial adenosine 5'-triphosphatase activity.  相似文献   

12.
Complex I (NADH-ubiquinone reductase) catalyzes pyridine nucleotide transhydrogenase at rates several fold higher than those found in submitochondrial particles from bovine heart. An ATP-dependent reduction of NADP+ by NADH was demonstrated after combination of Complex I with phospholipids, hydrophobic proteins derived from bovine heart mitochondria, and mitochondrial ATPase (F1)1. The reaction was inhibited by oligomycin, uncoupling agents and low concentrations of Triton X-100.  相似文献   

13.
M Iino  C Long  X Wang 《Plant & cell physiology》2001,42(11):1219-1227
Protoplasts isolated from the laminar pulvinus of Phaseolus vulgaris and bathed in a medium containing KCl as the major salt were found to swell in response to IAA and to shrink in response to ABA. The protoplasts of flexor cells and those of extensor cells responded similarly. The results indicate that the cellular content of osmotic solutes is enhanced by IAA and reduced by ABA. The IAA-induced swelling was abolished when either the K(+) or the Cl(-) of the bathing medium was replaced by an impermeant ion or when the medium was adjusted to neutral pH (instead of pH 6). The response was inhibited by vanadate. It is concluded that the swelling is caused by enhanced influxes of K(+) and Cl(-), which probably occur through K(+) channels and Cl(-)/H(+) symporters, respectively. The ABA-induced shrinking was inhibited by 5-nitro-2-(3-phenylpropylamino)-benzoic acid, an anion-channel inhibitor, suggesting that it is caused by Cl(-) efflux through anion channels and charge-balancing K(+) efflux through outward-rectifying K(+) channels. It appears that the two plant hormones act on pulvinar motor cells to regulate their turgor pressure, as they do in stomatal guard cells. The findings are discussed in relation to the pulvinar movements induced by environmental stimuli.  相似文献   

14.
The accumulation of some organic anions in the space inaccessible to sucrose of rat liver mitochondria was measured. In untreated mitochondria anions were apparently concentrated from 1mm applied concentration by between five- and 22-fold, depending on their charge. After depletion of endogenous reserves either with uncoupling agent or with oligomycin uptakes were decreased. The accumulation of citrate was restored by combinations of a dicarboxylic acid (malate, succinate, maleate or meso-tartrate) and energy. The energy could either be provided by oxidation of a suitable dicarboxylic acid or from ascorbate in the presence of tetramethylphenylenediamine, or from ATP. The restoration of citrate uptake is not necessarily accompanied by a gain of K(+), but a cation- and energy-linked citrate uptake can be induced with valinomycin. When citrate is added to mitochondria in the presence of malate the latter is competitively displaced. The anion accumulation could arise from an internal energy-linked positive potential.  相似文献   

15.
Antibody raised in rabbits against Complex V (miochondrial ATP synthetase complex) purified from beef heart mitochondria cross-reacted with Complex V and submitochondrial particles from beef heart, beef adrenals, and rat liver as shown by double-diffusion and rocket immunoelectrophoresis analysis. Of the various isolated and purified components of Complex V, only the oligomycin sensitivity-conferring protein showed strong reactivity with the anti-Complex V antibody, soluble F1-ATPase reacted very faintly, while F6 and ATPase inhibitor protein showed no precipitin lines. Crossed immunoelectrophoresis indicated that antigenic determinants recognized by the antibody were present on OSCP and possibly on the dicyclohexylcarbodiimide-binding protein. The components of Complex V could be precipitated from beef heart submitochondrial particles dissolved in Triton X-100 and pretreated with control IgG. When the composition of the immunoprecipitate was compared to that of purified Complex V, all the constituent polypeptides of the latter were present in the immunoprecipitate, except for one polypeptide in the low-molecular-weight region. Incubation of Complex V or submitochondrial particles with the anti-Complex V antibody in the absence of Triton X-100 caused inhibition of ATP-Pi exchange but not of ATPase activity. In the presence of Triton X-100, oligomycin sensitivity of Complex V was lost and the antibody was able to inhibit also the ATPase activity. The enzymic activity of soluble F1-ATPase was unaffected by the antibody in the absence or presence of Triton X-100. These results suggest that the anti-Complex V antibody might be a useful tool for identifying and probing the role of Complex V components involved in energy transduction.  相似文献   

16.
1. Net movements of K(+) into metabolizing liver mitochondria before and after the addition of valinomycin have been measured by using selective glass electrodes. The advantage of using an automatic titrator to hold the K(+) concentration constant is demonstrated. 2. According to the energy source provided the induced movement after the addition of valinomycin can be either in or out. 3. Uptakes and rates of movement are higher in media containing acetate (20mm) than in media containing chloride (20mm). In each mixture comparisons were made at three pH values; at pH6.36 the induced rates are less than at pH7.0 or 7.8 but the final uptakes attained are increased. 4. The rate of uptake is increased by inorganic phosphate. 5. The presence of Mg(2+) slightly decreases the induced uptake and rate of movement; Ca(2+) can cause the induced movement of K(+) to be outward. 6. The rate of induced K(+) movement is related to the rate of extra oxygen consumption but with different factors in acetate (24 K(+) ions/oxygen molecule) and chloride media (10 K(+) ions/oxygen molecule). 7. The amount of K(+) gained is proportional to the loss of fluorescence of the suspension. 8. When K(+) moves there is a contrary movement of H(+) but the ratio depends on the conditions. At pH6.36 in chloride media the K(+)/H(+) ratio exceeded 10:1 and in no case did it fall to unity. 9. When K(+) is taken up there is a proportional diminution of light-scattering; it is inferred that swelling takes place along with K(+) accumulation. 10. It is shown by the use of tracer (42)K(+) that turnover of the ion in mitochondria is increased by valinomycin. 11. It is concluded that valinomycin both increases the permeability to K(+) and also, given an adequate energy supply, stimulates the K(+)-accumulating mechanism.  相似文献   

17.
Nemorosone, a natural-occurring polycyclic polyprenylated acylphloroglucinol, has received increasing attention due to its strong in vitro anti-cancer action. Here, we have demonstrated the toxic effect of nemorosone (1-25 μM) on HepG2 cells by means of the MTT assay, as well as early mitochondrial membrane potential dissipation and ATP depletion in this cancer cell line. In mitochondria isolated from rat liver, nemorosone (50-500 nM) displayed a protonophoric uncoupling activity, showing potency comparable to the classic protonophore, carbonyl cyanide m-chlorophenyl hydrazone (CCCP). Nemorosone enhanced the succinate-supported state 4 respiration rate, dissipated mitochondrial membrane potential, released Ca(2+) from Ca(2+)-loaded mitochondria, decreased Ca(2+) uptake and depleted ATP. The protonophoric property of nemorosone was attested by the induction of mitochondrial swelling in hyposmotic K(+)-acetate medium in the presence of valinomycin. In addition, uncoupling concentrations of nemorosone in the presence of Ca(2+) plus ruthenium red induced the mitochondrial permeability transition process. Therefore, nemorosone is a new potent protonophoric mitochondrial uncoupler and this property is potentially involved in its toxicity on cancer cells.  相似文献   

18.
It is shown that 2-10 microM Zn2+ induces swelling of rat liver mitochondria incubated in a buffered sucrose medium either with valinomycin or with FCCP, Ca2+, ionophore A23187, oligomycin, and nigericin. This swelling was associated with the release of GSH from mitochondria. Both processes were sensitive to known inhibitors of the mitochondrial permeability transition (MPT), cyclosporin A, and Mg2+. Mitochondrial swelling induced by Zn2+ was also inhibited by rotenone, antymycin A, N-ethylmaleimide, butylhydroxytoluene, and spermine, whereas it was stimulated by tert-butyl hydroperoxide, diamide, and monobromobimane. It did not require the addition of phosphate. The same sensitivity to pH of the mitochondrial swelling induced by Zn2+ and by phenylarsine oxide suggests the same site of the interaction, namely, thiol groups. The ability of Zn2+ to induce mitochondrial swelling gradually decreased along with its increasing concentration above 10 microM. It is concluded that micromolar Zn2+ induces the MPT presumably by the interaction with cysteinyl residues. This process is independent of the mitochondrial membrane potential.  相似文献   

19.
Mitochondria isolated from rat heart contained nucleoside diphosphokinase (EC 2.7.4.6) at a specific activity of 30 mIU/mg protein, or about one half of liver mitochondrial activity, 60 mIU/mg. In contrast to liver mitochondria, no stimulation of O2 uptake was observed when 150 μM GDP was added to heart mitochondria respiring in post-ADP State 4, and the transphosphorylation of [γ-32Pi] from ATP into GTP was marginal. However, when heart mitochondria pretreated with oligomycin were solubilized with 0.03% Triton X-100, a five fold increase in the rate of GTP formation was observed. These results show that in heart mitochondria approximately 80% of the nucleoside diphosphokinase activity is localized within the inner compartment.  相似文献   

20.
The interaction of the non-ionic detergent Triton X-100 with photosynthetic membrane components of Pisum sativum (pea) is described. The detergent affected both the wavelength and the intensity of the 77K fluorescence-emission peaks of both Photosystem I and Photosystem II preparations, in addition to the effects on whole thylakoids recently described by Murphy & Woodrow [(1984) Biochem. J. 224, 989-993]. Below its critical micellar concentration, Triton X-100 had no effect on 77K fluorescence emissions even after prolonged incubations of up to 30 min. Above the critical micellar concentration of about 0.16 mg X ml-1, Triton X-100 caused a dramatic increase in the intensity of the 680 nm emission. The intensity of the 680 nm fluorescence emission continued to increase as more Triton X-100 was added, until limiting concentrations of detergent were reached. These limiting concentrations were proportional to the amount of membrane present and generally occurred at Triton X-100/chlorophyll (w/w) ratios of 100-200:1. In all cases the detergent effect was seen within 10 min, and is often considerably faster, with longer detergent treatments causing no further effects. The data are discussed in terms of a three-stage mechanism for detergent solubilization of membrane components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号