首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of various agents which are known to increase the differentiation of Friend erythroleukemia cells was investigated in cultures of mouse bone marrow cells. N, N-dimethylacetamide (5 and 15 mM) and acetamide (60 mM) significantly increased the number of erythroid colonies observed. Tetramethylurea, dimethylformamide, pyridine N-oxide, and butyric acid were ineffective. Dimethylsulfoxide at a concentration of 1% significantly increased colony number in cultures of marrow cells obtained from male mice, but had no effect in cultures of female bone marrow cells.  相似文献   

2.
Estrogen (E2) deficiency is responsible for increased bone turnover in the postmenopausal period, and it can be prevented by estrogen replacement therapy. The way estrogen acts on bone cells is not fully understood. Human bone marrow cell cultures may be a reliable model for studying the action of steroids on osteoclastogenesis in vitro. We examine the effects of estradiol and Raloxifene, a selective estrogen receptor modulator, on human primary bone marrow cells cultured for 15 days. 17beta-estradiol and Raloxifene significantly decreased the number of tartrate-resistant acid phosphatase multinucleate cells from osteoclast precursors on day 15. Estrogen receptor alpha (ER-alpha) mRNA was present in bone marrow mononuclear cells cultured for 5 days, but there was no estrogen receptor beta (ER-beta) mRNA, suggesting that this effect was mediated by ER-alpha. 15-day cultures no longer contained ER-alpha mRNA, suggesting that estrogen acts on early events of osteoclast differentiation. Finally, 10-8 M 17beta-estradiol has no effect on the release of IL-6 and IL-6-sr into the medium of marrow mononuclear cells cultured for 5 or 15 days. Osteoclast apoptosis was not affected by estradiol or Raloxifene after 15 days of culture under our conditions. In conclusion, we have shown that both estradiol and Raloxifene inhibit osteoclast differentiation in human bone marrow mononuclear cultures. The biological effect that can mimic in vivo differentiation could be mediated through ER-alpha.  相似文献   

3.
Antioxidants are known to influence metabolism and promote cell survival in a number of cell culture systems. However, their effects on the modulation of bone cell differentiationin vitroare not clearly defined. In the present studies we have investigated the effects of β-mercaptoethanol (βME) and ascorbate alone and in combination on human osteoprogenitors derived from bone marrow fibroblasts. In primary marrow cultures, βME stimulated colony formation (2-fold), alkaline phosphatase activity (3.5-fold) and, increased DNA synthesis (8-fold) after 21 days. Cell proliferation was increased significantly by βME during the first 4 days of a 10-day culture period, indicating stimulation of marrow osteoprogenitor proliferation. Ascorbate did not significantly augment the effects of βME in primary cultures or long-term cultures of passaged bone marrow fibroblasts. These findings indicate a potential beneficial role for βME addition for the optimal maintenance of colony formation, cell proliferation and differentiation of marrow osteoprogenitor cells in primary human bone marrow fibroblast cultures.  相似文献   

4.
Medium conditioned by human peripheral blood leukocytes (HLCM) was studied for its in vitro effects on haemopoietic progenitor cells (CFU-s and CFU-c) present in mouse bone marrow. HLCM has poor colony stimulating activity in semi-solid cultures of mouse bone marrow cells, but invariably increases the number of colonies obtained in the presence of plateau levels of semi-purified colony stimulating factor (CSF). In liquid cultures, HLCM appears to contain a potent initiator of DNA synthesis in CFU-s, an activity which coincides with an increased CFU-s maintenance and causes a three- to four-fold increase in CFU-c number. It is apparent from this study that HLCM, in addition to stimulating colony formation in cultures of human bone marrow cells, has a profound in vitro effect on primitive haemopoietic progenitor cells of the mouse, which cannot be attributed to CSF.  相似文献   

5.
Medium conditioned by human peripheral blood leukocytes (HLCM) was studied for its in vitro effects on haemopoietic progenitor cells (CFU-s and CFU-c) present in mouse bone marrow. HLCM has poor colony stimulating activity in semi-solid cultures of mouse bone marrow cells. but invariably increases the number of colonies obtained in the presence of plateau levels of semi-purified colony stimulating factor (CSF). In liquid cultures, HLCM appears to contain a potent initiator of DNA synthesis in CFU-s. an activity which coincides with an increased CFU-s maintenance and causes a three- to four-fold increase in CFU-c number. It is apparent from this study that HLCM, in addition to stimulating colony formation in cultures of human bone marrow cells, has a profound in vitro effect on primitive haemopoietic progenitor cells of the mouse, which cannot be attributed to CSF.  相似文献   

6.
Normal human bone marrow stroma cells include stem cells for both haemopoietic and osteochondrogenic lineages and express both bone morphogenetic protein (BMP) type I and type II receptors. As a member of the TGF-beta super-family, BMP-6 binds to both BMP type I and type II receptors and is involved in the developmental processes of renal and hepatic systems as well as of human foetal intestine. Also, BMP-6 induces osteoblastic differentiation of pluripotent mesenchymal cells and is an autocrine stimulator of chondrocyte differentiation. The present study was carried out to investigate the effect of BMP-6 on human cobblestone-area-forming cells (CAFC), that represent the functional primitive repopulating haemopoietic stem cell in long-term bone marrow culture. Also, the effect of BMP-6 on marrow stroma production of interleukin-6, -11 and their common receptor gp130 that is expressed in haemopoietic stem cells and is indispensable for their proliferation and tri-lineage differentiation was examined. Moreover, the effect of BMP-6 on marrow stroma release of soluble adhesion molecule VCAM-1 mediating the primitive haemopoietic stem cell adhesion to marrow stroma was examined. The number of CAFC was significantly reduced after BMP-6 treatment from 88+/-10 per 10(5)cells in control cultures in a dose dependent manner to only 48+/-3 per 10(5)cells in 50 ng/ml BMP-6-treated cultures, P< 0.01. Quantitative ELISA measurement revealed 50 ng/ml BMP-6 was able to significantly reduce IL-6 and IL-11 production from marrow stroma, P< 0.01. Also, BMP-6 significantly increased soluble gp130 release by 7.4-fold in 50 ng/ml BMP-6-treated marrow stroma cultures. The profound rapid increase in this natural antagonist of human IL-6 cytokine family may reduce the gp130 signaling. Also, the soluble VCAM-1 released increased by two-fold in 50 ng/ml BMP-6-treated marrow stroma cultures. The marked increase in the soluble form may exert an antagonist effect on the function of VCAM-1 (ligand for VLA4). Recently, blocking the VLA4/VCAM-1 adhesion pathway was shown to mobilise haemopoietic CD34 positive cells in normal individuals. Also, we previously observed a significantly lower expression of VLA4 (CD49d) on G-CSF-mobilised blood CD34 positive cells than on bone marrow CD34 positive cells before mobilisation in the same normal donors. Since BMP are currently being used in clinical trials for bone repair and fracture healing, the present results suggest a possible role for BMP-6 in mobilising CD34 positive cells for transplantation. Further in vitro tests are required to evaluate this potential mobilising role of BMP-6 in human long-term bone marrow culture.  相似文献   

7.
Addition of prostaglandin E2 (PGE2) significantly altered the cellular composition of murine long-term bone marrow cultures. After 4–5 weeks of culture, increased cellularity in the suspension phase was observed in all cultures containing prostaglandin. These suspension cells contained markedly higher proportions of differentiated neutrophils than did cells cultured in the absence of PGE2. Granulocyte-macrophage progenitor cell levels in the suspension layer were increased 3–20 fold after five weeks in prostaglandin-containing cultures compared with control cultures. Fewer cells comprised the adherent layer in cultures containing prostaglandin. The number of macrophages in this layer was reduced 3–8 fold in these cultures compared with control cultures, while the number of granulocytes was increased 2–3 fold. The progenitor cells biased toward macrophage development were selectively inhibited in the cultures with PGE2. There was no significant effect of PGE2 on pluripotent stem cell levels or on the longevity of the cultures. It is concluded that excessive monopoiesis in bone marrow may be limited by PGE2 without influencing either stem cell maintenance or the development of other marrow-derived cell types.  相似文献   

8.
Skeletal unloading induces trabecular bone loss in loaded bones. The tail-suspended mouse model simulates conditions associated with lack of mechanical stress such as space flight for the loaded bones. In such a model, the tail supports the body weight. The forelimbs are normally loaded and the movement of its hindlimbs is free without weight bearing. Histomorphometric analyses of the murine tibiae of the elevated hindlimbs show that trabecular bone volume rapidly diminishes within one week and stabilizes at that level in the subsequent week of tail suspension. Two-week reloading after one-week unloading completely restores trabecular bone volume, but this does not happen after two-week unloading. Unloading for one or two weeks significantly reduces bone formation rate and increases both the osteoclast surface and number compared with age-matched ground control mice. Subsequent reloading restores reduced bone formation and suppresses increased bone resorption. In bone marrow cell cultures, the numbers of alkaline phosphatase (ALP)-positive colony-forming units-fibroblastic (CFU-f) and mineralized nodules are significantly reduced, but the numbers of adherent marrow cells and total CFU-f are unaltered after tail suspension. On the other hand, subsequent reloading increases the number of adherent marrow cells. Unloading for one week significantly increases the number of tartrate-resistant acid phosphatase (TRAP)- positive multinucleated cells compared with the control level. Our data demonstrate that tail suspension in mice reduces trabecular bone formation, enhances bone resorption, and is closely associated with the formation of mineralized nodules and TRAP-positive multinucleated cells in bone marrow cultures obtained from tibiae. Two-week reloading restores bone volume reduced after one-week unloading, but does not after two-week unloading. The tail-suspended model provides a unique opportunity to evaluate the physiological and cellular mechanisms of the skeletal response to unloading and reloading.  相似文献   

9.
Normal rat bone marrow cells incubated with serum or lymph from Nippostrongylus brasiliensis (Nb)-infected rats showed an increase in the proportion of IgE-bearing cells in culture. This effect was produced in a similar fashion by cell-free supernatants (CFS) from cultures of mesenteric lymph node cells obtained from Nb-infected rats. The action of CFS on bone marrow cells appeared to be specific for the generation of IgE-bearing cells since the proportion of IgM-bearing cells in the culture did not change. The IgE-bearing cells in bone marrow cell cultures consisted of small lymphocytes, blast cells, and mast cells, and the addition of CFS to the cultures predominantly increased the number of IgE-bearing blast cells. CFS was also effective in increasing the proportion of IgE-bearing small lymphocytes in cultures of normal mesenteric lymph node cells. Removal of IgE in CFS by an anti-IgE immunosorbent did not affect the ability of CFS to generate IgE-bearing cells. The factor(s) in CFS responsible for this activity was shown to migrate with serum beta-globulins in zone electrophoresis and to possess a molecular size of between 10(4) and 2 X 10(4) m.w. The ability of CFS to generate IgE-bearing cells was diminished by treatment with the enzymes trypsin and ribonuclease A, but was unaffected by chymotrypsin.  相似文献   

10.
Bone marrow from barrier-sustained specific pathogen-free (SPF) CBA and C57BL/6 mice gave relatively low numbers of BFU-E colonies in methylcellulose culture, as compared to conventional mice. Addition of thymocytes to the marrow cultures increased the yield of BFU-E colonies more than fourfold in SPF mice but only 1.5-fold in conventional mice. Colony size was also increased. Increased yield of BFU-E colonies was also obtained by co-culture of bone marrow with lymph node cells or with bone marrow or spleen cells from 900R whole-body-irradiated mice. The effect appeared to be cellular rather than humoral. It was not reproduced by conditioned medium from thymus or pokeweed mitogen stimulated spleen cells. The helper effect of thymus cells was eliminated or reduced by freezing and thawing, or by 48 hours of incubation after irradiation. Treatment of bone marrow cells in vitro with anti-theta serum and complement did not decrease the number of BFU-E colonies. The putative helper cells appear not to be T cells, were non-adherent to the plastic culture dish, and were cortisone resistant and radioresistant. The low BFU-E colony yield from SPF mouse marrow is presumed to be largely the result of deficiency of these non-T helper cells in SPF bone marrow, rather than of BFU-E progenitor cells.  相似文献   

11.
The effect of granulocyte-macrophage colony stimulating factor (GM-CSF) on the synthesis of RNA in liquid cultures of mouse bone marrow, spleen, thymus, peritoneal, peripheral blood leukocytes and lymph node cells was investigated. GM-CSF appeared to stimulate RNA-synthesis in syngeneic bone marrow cells within ten minutes of adding it to the culture. In the presence of GM-CSF bone marrow cultures maintained their initial rate of RNA synthesis for approximately ten hours. GM-CSF had no apparent effect on the uptake of 3H-uridine into bone marrow cells. This stimulation was still observed in the presence of puromycin and cycloheximide, but was abrogated by actinomycin D. The magnitude of the stimulation was not affected by the density of cells between 1 and 20 x 10(6) cells/ml but was slightly smaller at 0.1 and 40 x 10(6) cells/ml. Increasing concentration of GM-CSF (up to 2 X 105 units per ml) led to increased stimulation of RNA synthesis in bone marrow cells, but a significant stimulation could be detected at concentrations as low as 800 units/ml. GM-CSF did not significantly stimulate RNA synthesis in spleen, thymus, mesenteric or subcutaneous lymph node cells. However a small stimulation was observed in peripheral blood leukocytes and peritoneal cells. Autoradiographic studies showed that GM-CSF stimulated RNA synthesis in blast cells, myelocytes, metamyelocytes and polymorphs. Nucleated erythroid cells showed no increased labeling with GM-CFS. Labeling in lymphoid-like cells was highly variable but the level of labeling did not appear to be influenced by GM-CSF.  相似文献   

12.
The antihypertensive drug methyldopa (Aldomet) was tested for possible clastogenic activity on normal and hypertensive rats and on human lymphocyte cultures and for its influence on the cell cycle of Allium cepa. The drug had no clastogenic effect on rat bone marrow cells but showed a toxic effect on A. cepa root tip cells and significantly increased the frequency of sister-chromatid exchanges in lymphocyte cultures, without any effect on the frequency of chromosome aberrations.  相似文献   

13.
The effect of hydrocortisone (HC) on colony-stimulating activity (CSA) production from mouse bone marrow adherent cells, spleen cells and peritoneal macrophages with or without bacterial lipopolysaccharide (LPS) stimulation was studied. CSA in the supernatant from bone marrow adherent cells incubated with HC was found to be five times higher than CSA from cultures without LPS stimulation. In contrast, the CSA production by spleen cells and peritoneal macrophages were significantly suppressed by HC in both LPS-stimulated and non-stimulated cultures. These studies suggest that the effect of HC on CSA production was quite different depending on the target cells.  相似文献   

14.
The controversial effect of autologous serum (AS) on human mesenchymal stem cells (MSC) was studied in rat MSC culture. Rat bone marrow cells were plated in a medium containing either FBS (fetal bovine serum) or AS were cultured to passage 3, during which the population doubling number (PDN) of both cultures were measured and compared statistically. The number of viable cells, the cell colonogic activity, and cell growth rate were also compared. In addition, mineralization in the osteogenic cultures from each system was measured. Our data indicated that AS enriched medium provided a microenvironment in which growth rate as well as bone differentiation of the isolated MSCs were significantly higher than in FBS enriched medium.  相似文献   

15.
NK cells originate from progenitors in the bone marrow and maturate independently of other lymphoid organs. NK cell maturation represents an important site for regulation of the level of NK activity and constitutes a potentially interesting target for therapeutic intervention. The effect of the immunomodulator Linomide (carboxamide-3-quinoline) on the regeneration of NK cells was studied in vivo after depletion of mature NK cells. Linomide significantly, although to various extent, accelerated the maturation of NK cells after specific depletion with antibodies to asialomonoganglioside, treatment with cyclophosphamide or lethal irradiation and syngeneic bone marrow grafting. Examination of the target cell spectrum lysed by spleen effector cells during Linomide treatment as well as studies of phenotype, clearly indicated that the effector cells studied were NK cells. Treatment of mice for 4 days with Linomide increased the frequency of bone marrow NK cell progenitors from 1/11,900 to 1/6,000 as judged by limiting dilution analysis. Direct addition of Linomide in vitro had no effect on cultures of mature NK cells from spleen, but had an additive effect to IL-2 on the generation of NK cells when added to bone marrow cultures. Our study indicates that different mechanisms exist for the regulation of progenitor and mature NK cells, and that the immunomodulator Linomide represent a potentially important tool for investigating the mechanisms governing NK cell maturation.  相似文献   

16.
Blast colony-forming cells (CFU-BL) represent a specific subpopulation of special primitive progenitors characterized by colony formation only in close contact with a preformed stromal layer. CFU-BL derived from bone marrow of chronic myeloid leukaemia (CML) patients have been proved to adhere poorly to bone marrow derived stromal layers suggesting that the appearance of progenitors and precursors in the circulation is due to a defective adhesion of these cells to the bone marrow microenvironment. In the present experiments the effect of short-term incubation of preformed normal bone marrow stroma on the adherence of CML derived CFU-BL was studied. For stroma cultures bone marrow cells were cultured in microplates in the presence of hydrocortisone. Cultures were used when stromal layers became confluent and no sign of haemopoiesis could be observed. CFU-BL were studied by panning plastic non-adherent mononuclear (PNAMNC) bone marrow or blood cells. 8.9 +/- 2.4 colonies/103 PNAMNC (six experiments) were formed from normal bone marrow on stromal layers and 4.8 +/- 2.1 colonies/103 PNAMNC (five experiments) from CML bone marrow. Colony formation from normal bone marrow was not increased if stromal layers were incubated with 100 ng/mL granulocyte colony-stimulating factor (G-CSF) or stem cell factor (SCF). Incubation of stroma with G-CSF or SCF, however, increased the colony formation of PNAMNC from CML bone marrow or blood significantly. These findings suggest that local concentration of haemopoietic growth factors at the time of panning may influence the attachment of CML progenitors to the stroma.  相似文献   

17.
Most zinc studies show its benefits or changes that coincide with its deficiency, but some have reported damages by supplements. In this work, the effects of zinc in different cell lines (U-937, human monocytes, and murine bone marrow cells) were analyzed. The cells were put in their specific culture medium either alone or with a stimulant [1-phorbol 12-myristate 13-acetate (PMA) for U-937 and monocytes, granulocyte macrophage colony stimulating factor (GM-CSF) for bone marrow cells]. These preparations, with or without zinc (0.05 to 1.0 mM), were incubated and microscopically analyzed on days 3, 9, and 11. The viability of all cells cultivated with 0.05 and 0.1 mM of zinc was similar to that of the controls without zinc (90%). With 1.0 mM of zinc, the viability diminished (p < 0.005) to 80% in U-937 and to 50% in monocytes and bone marrow cells; the number of cells increased in the three lines, but there was no differentiation. We conclude that the effects observed with different doses of zinc vary not only among the different species but also according to the time the cells were exposed to the metal. The same doses of zinc can have either a stimulatory or an inhibitory effect.  相似文献   

18.
The acute graft-versus-host disease (GVHD) generated in BDF1 mice by the injection of spleen cells from the C57BL/6 parental strain induces a direct cell-mediated attack on host lymphohematopoietic populations, resulting in the reconstitution of the host with donor hematopoietic stem cells. We examined the effect of GVHD on the donor and host hematopoiesis in parental-induced acute GVHD. The bone marrow was hypoplastic and the number of hematopoietic progenitor cells significantly decreased at 4 weeks after GVHD induction. However, extramedullary splenic hematopoiesis was present and the number of hematopoietic progenitor cells in the spleen significantly increased at this time. Fas expression on the host spleen cells and bone marrow cells significantly increased during weeks 2 to 8 of GVHD. Host cell incubation with anti-Fas Ab induced apoptosis, and the number of hematopoietic progenitor cells decreased during these weeks. A significant correlation between the augmented Fas expression on host bone marrow cells and the decreased number of host bone marrow cells by acute GVHD was observed. Furthermore, the injection of Fas ligand (FasL)-deficient B6/gld spleen cells failed to affect host bone marrow cells. Although Fas expression on repopulating donor cells also increased, Fas-induced apoptosis by the repopulating donor cells was not remarkable until 12 weeks, when more than 90% of the cells were donor cells. The number of hematopoietic progenitor cells in the bone marrow and the spleen by the repopulating donor cells, however, decreased over an extended time during acute GVHD. This suggests that Fas-FasL interactions may regulate suppression of host hematopoietic cells but not of donor hematopoietic cells. Hematopoietic dysfunctions caused by the reconstituted donor cells are independent to Fas-FasL interactions and persisted for a long time during parental-induced acute GVHD.  相似文献   

19.
The content of stromal precursor cells in the bone marrow of young (1-4-month-old) and old (24-30-month-old) CBA mice was measured by cloning in primary monolayer cultures. It was found that both the concentration (fibroblast colony forming efficiency) and the total number of stromal precursors in femoral bone marrow markedly increased with aging.  相似文献   

20.
The cellular response to an intraperitoneal injection of antigen (tetanus toxoid) was studied in reconstituted animals in order to determine the mechanism of control of eosinophil granulocytopoiesis. Antigen treatment of the marrow cell donors did not consistently increase the number of spleen and bone marrow colonies in recipient animals or change the percentage of eosinophil or other hemopoietic colony types. Antigen pre-treatment of the irradiated recipients increased the percentage of eosinophil-containing colonies in the spleen and femoral bone marrow without significantly changing the total number of either spleen or marrow colonies. Antigen treatment of both the bone marrow cell donor and recipient produced a further increase in the percentage of eosinophil-containing colonies in the marrow cavity, but not in the spleen. Antigen treatment of the irradiated recipient increased the number of eosinophilic cells (but not the total number of cells) in both the peritoneal cavity and the bone marrow. Antigen treatment of both the marrow donor and recipient produced a further increase in the number of eosinophilic cells in the peritoneal cavity, but not in a single femur. Since antigen treatment of the marrow recipient, or recipient and donor, but not of the marrow donor alone, results in increased eosinophilic cell and colony numbers, the effect of antigen appears to be mediated through some host factor(s), perhaps the eosinophilic hemopoietic inducing microenvironment (HIM), rather than directly on the hemopoietic stem cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号