首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Girish KS  Kemparaju K 《Life sciences》2006,78(13):1433-1440
Hyaluronidase is present virtually in all snake venoms and has been known as a "spreading factor." The enzyme damages the extracellular matrix at the site of the bite, leading to severe morbidity. In this study, the benefits of inhibiting the hyaluronidase activity of Indian cobra (Naja naja) venom have been investigated. Anti-NNH1 and aristolochic acid both inhibited the in vitro activity of the purified hyaluronidase, (NNH1) and the hyaluronidase activity of whole venom in a dose-dependent manner. Both anti-NNH1 and aristolochic acid abolished the degradation of hyaluronan in human skin tissue sections by NNH1 and by whole venom. Aristolochic acid quenched the fluorescent emission of NNH1. A non-competitive mechanism of NNH1 inhibition was observed with aristolochic acid. NNH1 potentiates the toxicity of Daboia russellii VRV-PL-VIII myotoxin and hemorrhagic complex-I. However, the potentiation of toxicity was inhibited dose-dependently by anti-NNH1 and aristolochic acid. Further, mice injected with whole venom which had been preincubated with anti-NNH1/aristolochic acid, showed more than a two-fold increase in survival time, compared to mice injected with venom alone. A more moderate increase in survival time was observed when mice were injected with anti-NNH1/aristolochic acid 10 min after whole venom injection. This study illustrates the significance of venom hyaluronidase in the pathophysiology of snake venom poisoning and the therapeutic value of its inhibition.  相似文献   

2.
A low molecular weight isoform of hyaluronidase (NNH2) has been isolated from Indian cobra (Naja naja) venom by successive chromatography on Sephadex G-75 and CM-Sephadex C-25 columns. The apparent molecular weight determined by SDS-PAGE is 52 kD, and the pI value is 9.7. NNH2 is an endoglycosidase and exhibits in vitro absolute specificity for hyaluronan; it also hydrolyzed hyaluronan in human skin sections. NNH2 is nontoxic, but it indirectly potentiates the hemorrhagic activity of hemorrhagic complex-I. Curcumin, indomethacin, and tannic acid inhibited dose dependently the degradation of hyaluronan by NNH2.  相似文献   

3.
Hyaluronidase was isolated from the lizard (Heloderma horridum horridum) crude venom. The chemical properties were characterized and compared to the same enzyme from other sources. The enzyme was found to be a single polypeptide chain with a molecular weight of 63,000 daltons. It possesses an isoelectric point and pH optimum of 5.0, and was observed to be extremely temperature sensitive. The role of hyaluronidase as a spreading factor which serves to aid in the diffusion of toxins has been suspected for a long time; yet no experimental proof has been offered until now. It was shown that hyaluronidase promotes the spread of the hemorrhagic area in mice when injected with hemorrhagic toxin. Thus experimental evidence is supplied for the first time that the enzyme plays a role as a "spreading factor" in the toxic action of venom.  相似文献   

4.
The diffusion of toxins from the site of a bite into the circulation is essential for successful envenomation. Degradation of hyaluronic acid in the extracellular matrix (ECM) by venom hyaluronidase is a key factor in this diffusion. Hyaluronidase not only increases the potency of other toxins but also damages the local tissue. In spite of its important role, little attention has been paid to this enzyme. Hyaluronidase exists in various isoforms and generates a wide range of hyaluronic acid degradation products. This suggests that beyond its role as a spreading factor venom hyaluronidase deserves to be explored as a possible therapeutic target for inhibiting the systemic distribution of venom and also for minimizing local tissue destruction at the site of the bite.  相似文献   

5.
6.
Snake venoms are a rich source of enzymes including many hydrolytic enzymes. Some enzymes such as phospholipase A2, proteolytic enzymes, and phosphodiesterases are well characterized. However many enzymes, such as the glycosidase, hyaluronidase, have not been studied extensively. Here we describe the characterization of snake venom hyaluronidase. In order to determine which venom was the best source for isolation of the enzyme, the hyaluronidase activity of 19 venoms from Elapidae, Viperidae, and Crotalidae snakes was determined. Since Agkistrodon contortrix contortrix venom showed the highest activity, this venom was used for purification of hyaluronidase. Molecular weight was determined by matrix-assisted laser desorption ionization mass spectroscopy and was found to be 59,290 Da. The molecular weight value as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 61,000 Da. Substrate specificity studies indicated that the snake venom enzyme was specific only for hyaluronan and did not hydrolyze similar polysaccharides of chondroitin, chondroitin sulfate A (chondroitin 4-sulfate), chondroitin sulfate B (dermatan sulfate), chondroitin sulfate C (chondroitin 6-sulfate), chondroitin sulfate D, chondroitin sulfate E, or heparin. The enzyme is an endo-glycosidase without exo-glycosidase activity, as it did not hydrolyze p-nitrophenyl-beta-D-glucuronide or p-nitrophenyl-N-acetyl-beta-D-glucosaminide. The main hydrolysis products from hyaluronan were hexa- and tetrasaccharides with N-acetylglucosamine at the reducing terminal. The cleavage point is at the beta1,4-glycosidic linkage and not at the beta1,3-glycosidic linkage. Thus, snake venom hyaluronidase is an endo-beta-N-acetylhexosaminidase specific for hyaluronan.  相似文献   

7.
Hyaluronidase “venom spreading factor” is a common component of snake venoms and indirectly potentiates venom toxicity. It may cause permanent local tissue destruction at the bite site/systemic collapse of the envenomated victim. The present study was performed to assess the benefits of inhibiting the hyaluronidase activity of Egyptian horned viper, Cerastes cerastes (Cc). The aqueous extracts of some medicinal plants were screened for their inhibitory effect on hyaluronidase activity of Cc venom. The results revealed that the Rosmarinus officinalis (Ro) extract is the most potent hyaluronidase inhibitor among the tested extracts. The Ro extract is more potent inhibitory effect on the hyaluronidase activity than the prepared rabbit monoclonal antiserum of previously purified hyaluronidase enzyme from Cc venom (anti-CcHaseII). In addition, the Ro extract is efficiently inhibited the activity of hemorrhagic toxin previously purified from Cc venom, and it also neutralized the edema inducing activity of the Cc venom in vivo. Furthermore, the Ro extract markedly increased the survival time of experimental mice injected with lethal dose of Cc venom up to 7 h in compared to mice injected with venom alone or with venom/anti-CcHaseII (15 ± 5, 75 ± 4 min), respectively. Our findings imply the significance of plant-derived hyaluronidase inhibitor in the neutralization of local effects of Cc venom and retardation of death time. Therefore, it may use as a therapeutic value in complementary snakebite therapy.  相似文献   

8.
Hyaluronidase and high levels of hyaluronan are found together in tumours. It is highly likely that hyaluronidase activity controls the balance between high molecular mass hyaluronan and oligosaccharides, and thus plays an important role in cancer development. The hyaluronan hydrolysis catalysed by bovine testicular hyaluronidase was studied as a model. The kinetics was investigated at pH 5 and 37 degrees C using the colorimetric N-acetyl-d-glucosamine reducing end assay method. While the substrate dependence obtained in the presence of 0.15 mol L(-1) ionic strength exhibited a Michaelis-Menten behaviour, an atypical behaviour was observed under low ionic strength: for increasing hyaluronan concentrations, the initial reaction rate increased, reached a maximum and then decreased to a very low level, close to zero at high substrate concentrations. One of the various hypotheses examined to explain this atypical behaviour is the formation of non-specific complexes between hyaluronan and hyaluronidase based on electrostatic interactions. This hypothesis is the only one that can explain all the experimental results including the variation of the reaction medium turbidity as a function of time and the influence on the initial reaction rate of the hyaluronan concentration over hyaluronidase concentration. However, phenomena such as the high viscosity of highly concentrated hyaluronan solutions or the steric exclusion of hyaluronidase from hyaluronan solutions may contribute to the atypical behaviour. Finally, the biological implications of the non-linear and non-monotonous shape of the hyaluronan-hyaluronidase substrate dependence in the regulation of the hyaluronan chain molecular mass are discussed, in particular in the case of cancer development.  相似文献   

9.
P R Griffin  S D Aird 《FEBS letters》1990,274(1-2):43-47
Fast atom bombardment (FAB) mass spectrometry was used to identify a new small myotoxin from the venom of the prairie rattlesnake (Crotalus viridis viridis). FAB mass spectrometry and Edman degradation were used to characterize its structure. This toxin is similar to myotoxin I from C. v. concolor, except that it possesses an additional. C-terminal asparaginyl-alanine. At 45 residues it is the longest known myotoxin a homolog. A myotoxin of 43 residues, identical to myotoxin I from C. v. concolor, was also found. To date no other species has been shown to produce more than one length of myotoxin. The present paper documents 42-, 43-, and 45-residue myotoxins from the venom of a single animal.  相似文献   

10.
Inhibitors of the hyaluronidases.   总被引:5,自引:0,他引:5  
The inhibitors of hyaluronidase present in mammalian sera, first described half a century ago, have remained uncharacterized. Because of increased interest in hyaluronidases and their hyaluronan substrate, a study of these inhibitors was undertaken recently. The predominant serum inhibitor is magnesium-dependent and is eliminated by protease or chondroitinase digestion, and by heat. Kinetics of inhibition are similar against hyaluronidases from testis, snake and bee venom. The inhibitor has no effect on Streptomyces hyaluronidase; indicating inhibition is not through protection of the hyaluronan substrate. Circulating inhibition levels are increased in mice following carbon tetrachloride or interleukin-1 injection, inducers of the acute-phase response. Reverse hyaluronan gel zymography reveals a predominant band of 120 kDa relative molecular size. Additional studies indicate that the inhibitor resembles a member of the Kunitz type inter-alpha-inhibitor family. Inhibition of hyaluronidase activity is observed using purified inter-alpha-inhibitor and is reversed by antibodies specific for inter-alpha-inhibitor. This molecule, found in the hyaluronan-rich cumulus mass surrounding mammalian ova and the pericellular coat of fibroblasts and mesothelial cells, may function to stabilize such matrices by protecting against hyaluronidase degradation. Turnover of circulating hyaluronan is extraordinarily rapid, with a half-life of two to five min. Prompt increases in levels of serum hyaluronan occur in patients with shock, septicemia or massive burns, increases that may be partly attributed to suppression by these acute phase reactants of the constant and rapid rates of hyaluronan degradation by hyaluronidase. A literature survey of other hyaluronidase inhibitors is also presented.  相似文献   

11.
A hyaluronidase (CdtHya1) from Crotalus durissus terrificus snake venom (CdtV) was isolated and showed to exhibit a high activity on hyaluronan cleavage. However, surveys on this enzyme are still limited. This study aimed at its isolation, functional/structural characterization and the evaluation of its effect on the spreading of crotoxin and phospholipase A2 (PLA2). The enzyme was purified through cation exchange, gel filtration and hydrophobic chromatography. After that, it was submitted to a reverse-phase fast protein liquid chromatography (RP-FPLC) and Edman degradation sequencing, which showed the first N-terminal 44 amino acid residues whose sequence evidenced identity with other snake venom hyaluronidases. CdtHya1 is a monomeric glycoprotein of 64.5 kDa estimated by SDS-PAGE under reducing conditions. It exhibited maximum activity in the presence of 0.2 M NaCl, at 37 °C, pH 5.5 and a specificity to hyaluronan higher than that to chondroitin-4-sulphate, chondroitin-6-sulphate or dermatan. Divalent cations (Ca2+ and Mg2+) and 1 M NaCl significantly reduced the enzyme activity. The specific activity of CdtHya1 was 5066 turbidity reducing units (TRU)/mg, against 145 TRU/mg for the soluble venom, representing a 34.9-fold purification. The pure enzyme increased the diffusion of crotoxin and PLA2 through mice tissues. CdtHya1 (32 TRU/40 μL) potentiated crotoxin action, as evidenced by mice death, and it decreased the oedema caused by subplantar injections of buffer, crotoxin or PLA2, thus evidencing the relevance of hyaluronidase in the crotalic envenoming. This work yielded a highly active antiedematogenic hyaluronidase from CdtV, the first one isolated from rattlesnake venoms.  相似文献   

12.
13.
Hyaluronidase expression in human skin fibroblasts   总被引:2,自引:0,他引:2  
Hyaluronidase activity has been detected for the first time in normal human dermal fibroblasts (HS27), as well as in fetal fibroblasts (FF24) and fibrosarcoma cells (HT1080). Enzymatic activity was secreted predominantly into the culture media, with minor amounts of activity associated with the cell layer. In both classes of fibroblasts, hyaluronidase expression was confluence-dependent, with highest levels of activity occurring in quiescent, post-confluent cells. However, in the fibrosarcoma cell cultures, expression was independent of cell density. The enzyme had a pH optimum of 3.7 and on hyaluronan substrate gel zymography, activity occurred as a single band corresponding to an approximate molecular size of 57 kDa. The enzyme could be immunoprecipitated in its entirety using monoclonal antibodies raised against Hyal-1, human plasma hyaluronidase. PCR confirmed that fibroblast hyaluronidase was identical to Hyal-1. The conclusion by previous investigators using earlier technologies that fibroblasts do not contain hyaluronidase activity should be reevaluated.  相似文献   

14.
Squamous cell laryngeal carcinoma undergoes significant structural-related modifications of the extracellular matrix components (ECM), the most characteristics being the presence of degraded collagen, aggrecan and hyaluronan. We examined the presence of hyaluronidase and of the cellular hyaluronan receptor CD44 during the various stages of cancer. ECM components were extracted by using PBS, 4 M GdnHCl and 4 M GdnHCl-0.1% Triton-X 100 sequentially and hyaluronidase and CD44 analyzed by zymography and immunochemistry techniques. Total RNA was also extracted and the mRNA of the various hyaluronidases and of CD44 was analyzed after amplification with RT-PCR. Hyaluronidase was detected as a double band of 45 and 55 kDa molecular mass, only in cancer samples. The analysis of mRNA indicated an aberrant expression of PH-20, the testicular-type hyaluronidase, at late stages of cancer and an overexpression of HYAL1 only at stage IV. In addition, CD44 was identified in two protein bands of 80 and 64 kDa in cancer samples. The analysis of mRNA showed that hyaluronan receptor was expressed in a stage-related order. Thus, it could be suggested that in laryngeal squamous cell carcinoma, cancer cells migrated and proliferated under the influence of small molecular mass hyaluronan, by expressing increased amounts of its receptor.  相似文献   

15.
Exquisite control of chondrocyte function in the zone of hypertrophy results in expansive growth of cartilaginous growth plates, and is a prerequisite for normal skeletal lengthening. We hypothesize that hyaluronan-mediated hydrostatic pressure causes lacunae expansion in the zone of hypertrophy; an important mechanism in cartilaginous growth plate and associated skeletal expansion. The role of hyaluronan and CD44 in this mechanism was studied using organ culture of the bipolar cranial base synchondroses. Hyaluronan was present in the hypertrophic zones, pericellular to the hypertrophic chondrocytes, while no hyaluronan was detected in the resting, proliferating and maturing zones. This localization of hyaluronan was associated with increased lacunae size, suggesting that chondrocytes deposit and retain pericellular hyaluronan as they mature. In comparison, Toluidine Blue staining was associated with the territorial matrix. Hyaluronidase, the hyaluronan-degrading enzyme, and CD44, the receptor for hyaluronan which also participates in the uptake and degradation of hyaluronan, were co-localized within the zone of ossification. This pattern of expression suggests that cells in the early zone of ossification internalize and degrade hyaluronan through a CD44-mediated mechanism. Treatment of the cultured segments with either Streptomyces hyaluronidase or hyaluronan hexasaccharides inhibited lacunae expansion. These observations demonstrate that hyaluronan-mediated mechanisms play an important role in controlling normal skeletal lengthening.  相似文献   

16.

Background

Scorpionism is a public health problem in Brazil, and Tityus serrulatus (Ts) is primarily responsible for severe accidents. The main toxic components of Ts venom are low-molecular-weight neurotoxins; however, the venom also contains poorly characterized high-molecular-weight enzymes. Hyaluronidase is one such enzyme that has been poorly characterized.

Methods and principal findings

We examined clones from a cDNA library of the Ts venom gland and described two novel isoforms of hyaluronidase, TsHyal-1 and TsHyal-2. The isoforms are 83% identical, and alignment of their predicted amino acid sequences with other hyaluronidases showed conserved residues between evolutionarily distant organisms. We performed gel filtration followed by reversed-phase chromatography to purify native hyaluronidase from Ts venom. Purified native Ts hyaluronidase was used to produce anti-hyaluronidase serum in rabbits. As little as 0.94 µl of anti-hyaluronidase serum neutralized 1 LD50 (13.2 µg) of Ts venom hyaluronidase activity in vitro. In vivo neutralization assays showed that 121.6 µl of anti-hyaluronidase serum inhibited mouse death 100%, whereas 60.8 µl and 15.2 µl of serum delayed mouse death. Inhibition of death was also achieved by using the hyaluronidase pharmacological inhibitor aristolochic acid. Addition of native Ts hyaluronidase (0.418 µg) to pre-neutralized Ts venom (13.2 µg venom+0.94 µl anti-hyaluronidase serum) reversed mouse survival. We used the SPOT method to map TsHyal-1 and TsHyal-2 epitopes. More peptides were recognized by anti-hyaluronidase serum in TsHyal-1 than in TsHyal-2. Epitopes common to both isoforms included active site residues.

Conclusions

Hyaluronidase inhibition and immunoneutralization reduced the toxic effects of Ts venom. Our results have implications in scorpionism therapy and challenge the notion that only neurotoxins are important to the envenoming process.  相似文献   

17.
The venom from the Brazilian scorpion Tityus stigmurus was fractionated by high performance liquid chromatography (HPLC) and the corresponding components were used for molecular mass determination using electrospray ion trap mass spectrometry. One hundred distinct components were clearly assigned showing molecular masses from 216.5 to 44,800.0 Da. Fifteen new components were isolated and sequenced, four of them to completion: Tst-3 (similar to Na(+) channel specific scorpion toxins), Tst-17 (a K(+) channel blocking peptide similar to Tc1), Tst beta KTx (a peptide with identical sequence as that of TsTX-K beta toxin earlier described to exist in T. serrulatus venom) and finally a novel proline-rich peptide of unknown function. Among the eleven components partially sequenced were two enzymes: hyaluronidase and lysozyme. The first enzyme has a molecular mass of 44,800.0 Da. This enzyme showed high activity against the substrate hyaluronan in vitro. Amino acid sequence of the second enzyme showed that it is similar to other known lysozymes, with similar molecular mass and sequence to that of bona fide lysozymes reported in public protein data banks. Finally, this communication reports a correlation among HPLC retention times and molecular masses of folded scorpion toxins as well as a comparative structural and physiological analysis of components from the venom of several species of the genus Tityus.  相似文献   

18.
Hyaluronidase is a common component of scorpion venom and has been considered as “spreading factor” that promotes a fast penetration of the venom in the anaphylactic reaction. In the current study, a novel full-length of hyaluronidase BmHYI and three noncoding isoforms of BmHYII, BmHYIII and BmHYIV were cloned by using a combined strategy based on peptide sequencing and Rapid Amplification of cDNA Ends (RACE). BmHYI has 410 amino acid residues containing the catalytic, positional and five potential N-glycosylation sites. The deduced protein sequence of BmHYI shares significant identity with venom hyaluronidases from bees and snakes. The phylogenetic analysis showed early divergence and independent evolution of BmHYI from other hyaluronidases. An extraordinarily high level of sequence similarity was detected among four sequences. But, BmHYII, BmHYIII and BmHYIV were short of stop-codon in the open reading frame and poly(A) signal in the 3′ end.  相似文献   

19.
Bovine testicular hyaluronidase (BTH) has been used as a spreading factor for many years and was primarily characterized by its enzymatic activity. As recombinant human hyaluronidases are now available the bovine preparations can be replaced by the human enzymes. However, data on the pH-dependent activity of hyaluronidases reported in literature are inconsistent in part or even contradictory. Detection of the pH-dependent activity of PH-20 type hyaluronidases, i.e. recombinant human PH-20 (rhPH-20) and BTH, showed a shift of the pH optimum from acidic pH values in a colorimetric activity assay to higher pH values in a turbidimetric activity assay. Contrarily, recombinant human Hyal-1 (rhHyal-1) and bee venom hyaluronidase (BVH) exhibited nearly identical pH profiles in both commonly used types of activity assays. Analysis of the hyaluronic acid (HA) degradation products by capillary zone electrophoresis showed that hyaluronan was catabolized by rhHyal-1 continuously into HA oligosaccharides. BTH and, to a less extent, rhPH-20 exhibited a different mode of action: at acidic pH (pH 4.5) HA was degraded as described for rhHyal-1, while at elevated pH (pH 5.5) small oligosaccharides were produced in addition to HA fragments of medium molecular weight, thus explaining the pH-dependent discrepancies in the activity assays. Our results suggest a sub-classification of mammalian-type hyaluronidases into a PH-20/BTH and a Hyal-1/BVH subtype. As the biological effects of HA fragments are reported to depend on the size of the molecules it can be speculated that different pH values at the site of hyaluronan degradation may result in different biological responses.  相似文献   

20.
东亚钳蝎毒透明质酸酶的纯化和部分性质的研究   总被引:1,自引:0,他引:1  
用CM-SephadexC50,CM-SephadexC25和SephadexG-75凝胶过滤,从东亚钳蝎毒中提纯蝎毒透明质酸酶,应用低pH系统不连续聚丙烯酰胺凝胶圆盘电泳,SDS-不连续聚丙烯酰胺凝胶垂直板电泳鉴定均为单一条带,活力提高34倍,产率为12%,纯品无出血活性,无神经毒性。用凝胶过滤法和SDS电泳法测得分子量为54000,PAS染色证实为糖蛋白。 纯化的透明质酸酶的最适pH为4.5~6.5,最适温度为37℃,该酶对热的稳定性比蛇毒透明质酸酶高一些,但在碱性环境中也易失活。0.15MNaCl对酶活性有明显稳定作用,Fe~(2+)、Fe~(3+)及肝素对酶活性有明显的抑制作用,Cu~(2+)对酶活力也有一定影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号