首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The long cytoplasmic tail (CT) isoforms of carcinoembryonic Ag-related cell adhesion molecule 1 (CEACAM1) are expressed on activated human T cells and possess two ITIM motifs in the CT. These isoforms of CEACAM1 are inhibitory for T cell responses initiated by the TCR/CD3 complex with the inhibition dependent upon the ITIMs of CEACAM1 and Src homology 2 domain-containing phosphatase 1 (SHP-1). However, the mechanism by which this inhibition occurs in T cells is unknown. We demonstrate here that the Src family kinase, Lck, and the ability of CEACAM1 to bind homophilically are required for the ITIM phosphorylation of CEACAM1 that is a prerequisite for CEACAM1 association with SHP-1. We further show that CEACAM1 associates with and recruits SHP-1 to the TCR/CD3 complex leading to decreased phosphorylation of CD3-zeta and ZAP-70 and consequently decreased activation of the elements downstream of ZAP-70. This is physiologically relevant because extinction of SHP-1 expression or blockade of homophilic binding by CEACAM1 using a Fab that specifically recognizes the homophilic binding region of human CEACAM1 increases the cytolytic function initiated by the TCR/CD3 complex. These studies show that long CT isoforms of CEACAM1 orchestrate an inhibitory program that abrogates extremely proximal events downstream of the TCR/CD3 complex by focusing on the activation of ZAP-70.  相似文献   

2.
Platelet-endothelial cell adhesion molecule-1 (PECAM-1) is a cell adhesion molecule with a cytoplasmic immunoreceptor tyrosine-based inhibitory motif (ITIM) that, when phosphorylated, binds Src homology 2 domain-containing protein-tyrosine phosphatase (SHP-2). PECAM-1 is expressed at endothelial cell junctions where exposure to inflammatory intermediates may result in post-translational amino acid modifications that affect protein structure and function. Reactive nitrogen species (RNS), which are produced at sites of inflammation, nitrate tyrosine residues, and several proteins modified by tyrosine nitration have been found in diseased tissue. We show here that the RNS, peroxynitrite, induced nitration of both full-length cellular PECAM-1 and a purified recombinant PECAM-1 cytoplasmic domain. Mass spectrometric analysis of tryptic fragments revealed quantitative nitration of ITIM tyrosine 686. A synthetic peptide containing 3-nitrotyrosine at position 686 could not be phosphorylated nor bind SHP-2. These data suggest that ITIM tyrosine nitration may represent a mechanism for modulating phosphotyrosine-dependent signal transduction pathways.  相似文献   

3.
Killer cell Ig-like receptors (KIR) are MHC class I-binding immunoreceptors that can suppress activation of human NK cells through recruitment of the Src homology 2-containing protein tyrosine phosphatase-1 (SHP-1) to two immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in their cytoplasmic domains. KIR2DL4 (2DL4; CD158d) is a structurally distinct member of the KIR family, which is expressed on most, if not all, human NK cells. 2DL4 contains only one ITIM in its cytoplasmic domain and an arginine in its transmembrane region, suggesting both inhibitory and activating functions. While 2DL4 can activate IFN-gamma production, dependent upon the transmembrane arginine, the function of the single ITIM of 2DL4 remains unknown. In this study, tandem ITIMs of KIR3DL1 (3DL1) and the single ITIM of 2DL4 were directly compared in functional and biochemical assays. Using a retroviral transduction method, we show in human NK cell lines that 1) the single ITIM of 2DL4 efficiently inhibits natural cytotoxicity responses; 2) the phosphorylated single ITIM recruits SHP-2 protein tyrosine phosphatase, but not SHP-1 in NK cells; 3) expression of dominant-negative SHP-1 does not block the ability of 2DL4 to inhibit natural cytotoxicity; 4) surprisingly, mutation of the tyrosine within the single ITIM does not completely abolish inhibitory function; and 5) this correlates with weak SHP-2 binding to the mutant ITIM of 2DL4 in NK cells and a corresponding nonphosphorylated ITIM peptide in vitro. These results reveal new aspects of the KIR-inhibitory pathway in human NK cells, which are SHP-1 and phosphotyrosine independent.  相似文献   

4.
The B and T lymphocyte attenuator (BTLA) is a recently identified member of the CD28 family of cell receptors. Initial reports demonstrated that mice deficient in BTLA expression were more susceptible to experimental autoimmune encephalomyelitis, indicating that BTLA was likely to function as a negative regulator of T cell activation. However, cross-linking of BTLA only resulted in a 2-fold reduction of IL-2 production, questioning the potency with which BTLA engagement blocks T cell activation. We established a model in which BTLA signaling could be studied in primary human CD4 T cells. We observed that cross-linking of a chimeric receptor consisting of the murine CD28 extracellular domain and human BTLA cytoplasmic tail potently inhibits IL-2 production and completely suppresses T cell expansion. Mutation of any BTLA tyrosine motifs had no effect on the ability of BTLA to block T cell activation. Only mutation of all four tyrosines rendered the BTLA cytoplasmic tail nonfunctional. We performed structure-function studies to determine which factors recruited to the BTLA cytoplasmic tail correlated with BTLA function. Using pervanadate as a means to phosphorylate the BTLA cytoplasmic tail, we observed both Src homology protein (SHP)-1 and SHP-2 recruitment. However, upon receptor engagement, we observed only SHP-1 recruitment, and mutations that abrogated SHP-1 recruitment did not impair BTLA function. These studies question whether SHP-1 or SHP-2 have any role in BTLA function and caution against the use of pervanadate as means to initiate signal transduction cascades in primary cells.  相似文献   

5.
6.
Recent studies have shown that, in addition to its role as an adhesion receptor, platelet endothelial cell adhesion molecule 1/CD31 becomes phosphorylated on tyrosine residues Y663 and Y686 and associates with protein tyrosine phosphatases SHP-1 and SHP-2. In this study, we screened for additional proteins which associate with phosphorylated platelet endothelial cell adhesion molecule 1, using surface plasmon resonance. We found that, besides SHP-1 and SHP-2, platelet endothelial cell adhesion molecule 1 binds the cytoplasmic signalling proteins SHIP and PLC-gamma1 via their Src homology 2 domains. Using two phosphopeptides, NSDVQpY663TEVQV and DTETVpY686SEVRK, we demonstrate differential binding of SHP-1, SHP-2, SHIP and PLC-gamma1. All four cytoplasmic signalling proteins directly associate with cellular platelet endothelial cell adhesion molecule 1, immunoprecipitated from pervanadate-stimulated THP-1 cells. These results suggest that overlapping immunoreceptor tyrosine-based inhibition motif/immunoreceptor tyrosine-based activation motif-like motifs within platelet endothelial cell adhesion molecule 1 mediate differential interactions between the Src homology 2 containing signalling proteins SHP-1, SHP-2, SHIP and PLC-gamma1.  相似文献   

7.
The intracellular Src homology 2 (SH2) domain-containing protein tyrosine phosphatase (SHP-1) is a negative regulator of cell signaling and contributes to the establishment of TCR signaling thresholds in both developing and mature T lymphocytes. Although there is much functional data implicating SHP-1 as a regulator of TCR signaling, the molecular basis for SHP-1 activation in T lymphocytes is poorly defined. A modification of the yeast two-hybrid system was employed to identify in T cells phosphotyrosine-containing proteins capable of binding the SH2 domains of SHP-1. From this yeast tri-hybrid screen, the p85beta subunit of phosphatidylinositol 3-kinase and the immunoreceptor tyrosine-based inhibitory motif-containing receptors, leukocyte-associated Ig-like receptor-1 (LAIR-1) and programmed death-1 (PD-1), were identified. Coimmunoprecipitation studies demonstrated that the exclusive phosphotyrosine-containing protein associated with SHP-1 in Jurkat T cells under physiological conditions is LAIR-1. Significantly, this interaction is constitutive and was detected only in the membrane-enriched fraction of cell lysates. Ligand engagement of the SH2 domains of SHP-1 is a prerequisite to activation of the enzyme, and, consistent with an association with LAIR-1, SHP-1 was found to be constitutively active in unstimulated Jurkat T cells. Importantly, a constitutive interaction between LAIR-1 and SHP-1 was also detected in human primary T cells. These results illustrate the sustained recruitment and activation of SHP-1 at the plasma membrane of resting human T cells by an inhibitory receptor. We propose that this mechanism may exert a constitutive negative regulatory role upon T cell signaling.  相似文献   

8.
The importance of regulatory T cells (Tregs) for immune tolerance is well recognized, yet the signaling molecules influencing their suppressive activity are relatively poorly understood. In this article, through in vivo studies and complementary ex vivo studies, we make several important observations. First, we identify the cytoplasmic tyrosine phosphatase Src homology region 2 domain-containing phosphatase 1 (SHP-1) as an endogenous brake and modifier of the suppressive ability of Tregs; consistent with this notion, loss of SHP-1 expression strongly augments the ability of Tregs to suppress inflammation in a mouse model. Second, specific pharmacological inhibition of SHP-1 enzymatic activity via the cancer drug sodium stibogluconate potently augmented Treg suppressor activity both in vivo and ex vivo. Finally, through a quantitative imaging approach, we directly demonstrate that Tregs prevent the activation of conventional T cells and that SHP-1-deficient Tregs are more efficient suppressors. Collectively, our data reveal SHP-1 as a critical modifier of Treg function and a potential therapeutic target for augmenting Treg-mediated suppression in certain disease states.  相似文献   

9.
The myeloid restricted membrane glycoprotein, CD33, is a member of the recently characterized "sialic acid-binding immunoglobulin-related lectin" family. Although CD33 can mediate sialic acid-dependent cell interactions as a recombinant protein, its function in myeloid cells has yet to be determined. Since CD33 contains two potential immunoreceptor tyrosine-based inhibition motifs in its cytoplasmic tail, we investigated whether it might act as a signaling receptor in myeloid cells. Tyrosine phosphorylation of CD33 in myeloid cell lines was stimulated by cell surface cross-linking or by pervanadate, and inhibited by PP2, a specific inhibitor of Src family tyrosine kinases. Phosphorylated CD33 recruited both the protein-tyrosine phosphatases, SHP-1 and SHP-2. CD33 was dephosphorylated in vitro by the co-immunoprecipitated tyrosine phosphatases, suggesting that it might also be an in vivo substrate. The first CD33 phosphotyrosine motif is dominant in CD33-SHP-1/SHP-2 interactions, since mutating tyrosine 340 in a CD33-cytoplasmic tail fusion protein significantly reduced binding to SHP-1 and SHP-2 in THP-1 lysates, while mutation of tyrosine 358 had no effect. Furthermore, the NH2-terminal Src homology 2 domain of SHP-1 and SHP-2, believed to be essential for phosphatase activation, selectively bound a CD33 phosphopeptide containing tyrosine 340 but not one containing tyrosine 358. Finally, mutation of tyrosine 340 increased red blood cell binding by CD33 expressed in COS cells. Hence, CD33 signaling through selective recruitment of SHP-1/SHP-2 may modulate its ligand(s) binding activity.  相似文献   

10.
11.
12.
To study the mechanism by which protein tyrosine phosphatases (PTPs) regulate CD3-induced tyrosine phosphorylation, we investigated the distribution of PTPs in subdomains of plasma membrane. We report here that the bulk PTP activity associated with T cell membrane is present outside the lipid rafts, as determined by sucrose density gradient sedimentation. In Jurkat T cells, approximately 5--10% of Src homology 2 domain-containing tyrosine phosphatase (SHP-1) is constitutively associated with plasma membrane, and nearly 50% of SHP-2 is translocated to plasma membrane after vanadate treatment. Similar to transmembrane PTP, CD45, the membrane-associated populations of SHP-1 and SHP-2 are essentially excluded from lipid rafts, where other signaling molecules such as Lck, linker for activation of T cells, and CD3 zeta are enriched. We further demonstrated that CD3-induced tyrosine phosphorylation of these substrates is largely restricted to lipid rafts, unless PTPs are inhibited. It suggests that a restricted partition of PTPs among membrane subdomains may regulate protein tyrosine phosphorylation in T cell membrane. To test this hypothesis, we targeted SHP-1 into lipid rafts by using the N-terminal region of Lck (residues 1--14). The results indicate that the expression of Lck/SHP-1 chimera inside lipid rafts profoundly inhibits CD3-induced tyrosine phosphorylation of CD3 zeta/epsilon, IL-2 generation, and nuclear mobilization of NF-AT. Collectively, these results suggest that the exclusion of PTPs from lipid rafts may be a mechanism that potentiates TCR/CD3 activation.  相似文献   

13.
Recognition of antigen by the B cell antigen receptor (BCR) determines the subsequent fate of a B cell and is regulated in part by the involvement of other surface molecules, termed coreceptors. CD22 is a B cell-restricted coreceptor that gets rapidly tyrosyl-phosphorylated and recruits various signaling molecules to the membrane following BCR ligation. Although CD22 contains three immunoreceptor tyrosine-based inhibitory motifs (ITIMs), only the two carboxyl-terminal ITIM tyrosines are required for efficient recruitment of the SHP-1 phosphatase after BCR ligation. Furthermore, Grb2 is inducibly recruited to CD22 in human and murine B cells. Unlike SHP-1, Grb2 recruitment to CD22 is not inhibited by specific doses of the Src family kinase-specific inhibitor PP1. The tyrosine residue in CD22 required for Grb2 recruitment (Tyr-828) is distinct and independent from the two ITIM tyrosines required for efficient SHP-1 recruitment (Tyr-843 and Tyr-863). Individually both Lyn and Syk are required for maximal phosphorylation of CD22 following ligation of the BCR, and together Lyn and Syk are required for all of the constitutive and induced tyrosine phosphorylation of CD22. We propose that the cytoplasmic tail of CD22 contains two domains that regulate signal transduction pathways initiated by the BCR and B cell fate.  相似文献   

14.
We describe the molecular cloning and characterization of a novel myeloid inhibitory siglec, MIS, that belongs to the family of sialic acid-binding immunoglobulin-like lectins. A full-length MIS cDNA was obtained from murine bone marrow cells. MIS is predicted to contain an extracellular region comprising three immunoglobulin-like domains (V-set amino-terminal domain followed by two C-set domains), a transmembrane domain and a cytoplasmic tail with two immunoreceptor tyrosine-based inhibitory motif (ITIM)-like sequences. The closest relative of MIS in the siglec family is human siglec 8. Extracellular regions of these two siglecs share 47% identity at the amino acid level. Southern blot analysis suggests the presence of one MIS gene. MIS is expressed in the spleen, liver, heart, kidney, lung and testis tissues. Several isoforms of MIS protein exist due to the alternative splicing. In a human promonocyte cell line, MIS was able to bind Src homology 2-containing protein-tyrosine phosphatases, SHP-1 and SHP-2. This binding was mediated by the membrane-proximal ITIM of MIS. Moreover, MIS exerted an inhibitory effect on FcgammaRI receptor-induced calcium mobilization. These data suggest that MIS can play an inhibitory role through its ITIM sequences.  相似文献   

15.
Engagement of the immunoinhibitory receptor, programmed death-1 (PD-1) attenuates T-cell receptor (TCR)-mediated activation of IL-2 production and T-cell proliferation. Here, we demonstrate that PD-1 modulation of T-cell function involves inhibition of TCR-mediated phosphorylation of ZAP70 and association with CD3zeta. In addition, PD-1 signaling attenuates PKCtheta activation loop phosphorylation in a cognate TCR signal. PKCtheta has been shown to be required for T-cell IL-2 production. A phosphorylated PD-1 peptide, corresponding to the C-terminal immunoreceptor tyrosine-switch motif (ITSM), acts as a docking site in vitro for both SHP-2 and SHP-1, while the phosphorylated peptide containing the N-terminal PD-1 immunoreceptor tyrosine based inhibitory motif (ITIM) associates only with SHP-2.  相似文献   

16.
17.
The intracellular Src homology 2 (SH2) domain-containing protein-tyrosine phosphatase (SHP-1) has been characterized as a negative regulator of T cell function, contributing to the definition of T cell receptor signaling thresholds in developing and peripheral mouse T lymphocytes. The activation of SHP-1 is achieved through the engagement of its tandem SH2 domains by tyrosine-phosphorylated proteins; however, the identity of the activating ligand(s) for SHP-1, within mouse primary T cells, is presently unresolved. The identification of SHP-1 ligand(s) in primary T cells would provide crucial insight into the molecular mechanisms by which SHP-1 contributes to in vivo thresholds for T cell activation. Here we present a combination of biochemical and yeast genetic analyses indicating CD22 to be a T cell ligand for the SHP-1 SH2 domains. Based on these observations we have confirmed that CD22 is indeed expressed on mouse primary T cells and capable of associating with SHP-1. Significantly, CD22-deficient T cells demonstrate enhanced proliferation in response to anti-CD3 or allogeneic stimulation. Furthermore, the co-engagement of CD3 and CD22 results in a raising of TCR signaling thresholds hence demonstrating a previously unsuspected functional role for CD22 in primary T cells.  相似文献   

18.
B and T lymphocytes express receptors providing positive and negative co-stimulatory signals. We recently identified a novel co-stimulatory molecule, B and T lymphocyte attenuator (BTLA), which exerts inhibitory effects on B and T lymphocytes. The cytoplasmic domain of murine and human BTLA share three conserved tyrosine-based signaling motifs, a Grb-2 recognition consensus, and two immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Phosphorylation of the cytoplasmic domain of BTLA induced the association with the protein tyrosine phosphatases SHP-1 and SHP-2. Association of SHP-1 and SHP-2 to other receptors can involve recruitment to either a single receptor ITIM or to two receptor ITIMs. Here, we analyzed the requirements of BTLA interaction with SHP-1 and SHP-2 in a series of murine and human BTLA mutants. For human BTLA, mutations of either Y257 or Y282, but not Y226, abrogated association with both SHP-1 and SHP-2. For murine BTLA, mutation of either Y274 or Y299, but not Y245, also abrogated association with both SHP-1 and SHP-2. These results indicate that for both murine and human BTLA, association with SHP-1 or SHP-2 requires both of conserved ITIM motifs and does not involve the conserved Grb-2 consensus. Thus, similar to the bisphosphoryl tyrosine-based activation motif (BTAM) by which the Grb-2 associated binder (Gab1), PDGF receptor, and PECAM-1 recruit SHP-2, BTLA also relies on dual ITIMs for its association with the phosphatases SHP-1 and SHP-2.  相似文献   

19.
Human NK cells use class I MHC-binding inhibitory receptors, such as the killer cell Ig-like receptor (KIR) family, to discriminate between normal and abnormal cells. Some tumors and virus-infected cells down-regulate class I MHC and thereby become targets of NK cells. Substantial evidence indicates that the mechanism of KIR-mediated inhibition involves recruitment of the protein tyrosine phosphatases, Src homology 2-containing protein tyrosine phosphatase-1 (SHP-1) and SHP-2, to two phosphorylated cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs). KIR2DL5 is a type II member of the KIR2D family with an atypical extracellular domain and an intracytoplasmic domain containing one typical ITIM and one atypical ITIM sequence. Although KIR2DL5 structure is expressed by approximately 50% of humans and is conserved among primate species, its function has not been determined. In the present study, we directly compared functional and biochemical properties of KIR2DL5, KIR3DL1 (a type I KIR with two ITIMs), and KIR2DL4 (the only other type II KIR, which has a single ITIM) in a human NK-like cell line. Our results show that KIR2DL5 is an inhibitory receptor that can recruit both SHP-1 and SHP-2, and its inhibitory capacity is more similar to that of the cytoplasmic domain of KIR2DL4 than KIR3DL1. Interestingly, inhibition of NK cell cytotoxicity by KIR2DL5 was blocked by dominant-negative SHP-2, but not dominant-negative SHP-1, whereas both dominant-negative phosphatases can block inhibition by KIR3DL1. Therefore, the cytoplasmic domains of type II KIRs (2DL4 and 2DL5) exhibit distinct inhibitory capacities when compared with type I KIRs (3DL1), due to alterations in the canonical ITIM sequences.  相似文献   

20.
It is a consensus that a cytotoxic T lymphocyte associated molecule-4 (CTLA-4) transduces inhibitory signal for T cell activation under physiological condition, indicating that this molecule is an important regulator of T cell homeostasis in vivo. It has been reported that phosphorylation and dephosphorylation of tyrosine residue Y-165 in the cytoplasmic region of CTLA-4 play an important role in its negative signaling and cell surface expression. Some signaling molecules such as Src homology 2 protein tyrosine phosphatase 2 (SHP-2) and the p85 subunit of phosphatidylinositol 3 kinase (PI3 kinase) associate with phosphorylated tyrosine residue Y-165, through Src homology 2 (SH2) domains. On the other hand, the adapter complex proteins, AP-2 and AP-50 interact with the same tyrosine residue when unphosphorylated, resulting in clathrin-mediated endocytosis of CTLA-4 molecules. The objective of this study is to identify a tyrosine kinase that can directly bind and phosphorylate the critical tyrosine residue, Y-165 in the cytoplasmic domain of CTLA-4. Here, we demonstrated that 1) Janus Kinase 2 (Jak2) was directly associated with a box 1-like motif in the cytoplasmic tail of CTLA-4 molecule, 2) Jak2 phosphorylated Y-165 residue in the cytoplasmic region of CTLA-4 molecule, and 3) Jak2 was associated with CTLA-4 in HUT 78 T cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号