首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteolytic degradation of extracellular matrix (ECM) components during tissue remodeling plays a pivotal role in normal and pathological processes including wound healing, inflammation, tumor invasion, and metastasis. Proteolytic enzymes in tumors may activate or release growth factors from the ECM or act directly on the ECM itself, thereby facilitating angiogenesis or tumor cell migration. Fibroblast activation protein (FAP) is a cell surface antigen of reactive tumor stromal fibroblasts found in epithelial cancers and in granulation tissue during wound healing. It is absent from most normal adult human tissues. FAP is conserved throughout chordate evolution, with homologues in mouse and Xenopus laevis, whose expression correlates with tissue remodeling events. Using recombinant and purified natural FAP, we show that FAP has both dipeptidyl peptidase activity and a collagenolytic activity capable of degrading gelatin and type I collagen; by sequence, FAP belongs to the serine protease family rather than the matrix metalloprotease family. Mutation of the putative catalytic serine residue of FAP to alanine abolishes both enzymatic activities. Consistent with its in vivo expression pattern determined by immunohistochemistry, FAP enzyme activity was detected by an immunocapture assay in human cancerous tissues but not in matched normal tissues. This study demonstrates that FAP is present as an active cell surface-bound collagenase in epithelial tumor stroma and opens up investigation into physiological substrates of its novel, tumor-associated dipeptidyl peptidase activity.  相似文献   

2.
Colorectal cancer is one of the leading causes of cancer death worldwide. To identify candidates for biomarkers and therapeutic targets, we investigated the proteome of colorectal cancer tissues. Using 2D-DIGE in combination with our original large format electrophoresis apparatus, we compared surgically resected normal and tumor tissues from 53 patients with colorectal cancer. We focused on proteins with an alkaline pI using IPG gels for the alkaline range. We observed 1687 protein spots, and found 100 spots with statistical (p<0.01) and significant (>2-fold) differences between the normal and the tumor tissue groups. Among these 100 protein spots, five showed a different intensity between tumor tissues from the stage-II and the stage-III patients. MS experiments revealed that these 100 protein spots corresponded to 58 unique proteins. These included six proteins which had not been previously reported to be associated with colorectal cancer. Among these proteins, five were not reported in any type of malignancy. IEF/western blotting confirmed the differences in protein expression between the normal and the tumor tissues. These results may provide an insight for biomarker development and drug target discovery in colorectal cancer.  相似文献   

3.
Development of suitable tools to assess enzyme activity directly from their complex cellular environment has a dramatic impact on understanding the functional roles of proteins as well as on the discovery of new drugs. In this study, a novel fluorescence-based chemosensor strategy for the direct readout of dipeptidase activities within intact living cells is described. Selective activity-based probes were designed to sense two important type II transmembrane serine proteases, fibroblast activation protein (FAP) and dipeptidyl peptidase IV (DPP-IV). These serine proteases have been implicated in diverse cellular activities, including blood coagulation, digestion, immune responses, wound healing, tumor growth, tumor invasion, and metastasis. Here, we validated that Ac-GPGP-2SBPO and GPGP-2SBPO probes are excellent reporters of both proteolytic activities. Furthermore, the novel probes can differentiate between FAP and DPP-IV proteolytic activities in cellular assay. Potentially, this assay platform is immediately useful for novel drug discovery.  相似文献   

4.
We have previously reported arginase expression in human breast cancer cells and demonstrated that the inhibition of arginase by Nω hydroxy L-arginine (NOHA) in MDA-MB-468 cells induces apoptosis. However, arginase expression and its possible molecular targets in human breast tumor samples and potential clinical implications have not been fully elucidated. Here, we demonstrate arginase expression in human breast tumor samples, and several established breast cancer cell lines, in which NOHA treatment selectively inhibits cell proliferation. The over-expression of Bcl2 in MDA-MB-468 cells abolished NOHA-induced apoptosis, suggesting that the mitochondria may be the main site of NOHA’s action. We, therefore, undertook a proteomics approach to identify key mitochondrial targets of arginase in MDA-MB-468 cells. We identified 54 non-mitochondrial and 13 mitochondrial proteins that were differentially expressed in control and NOHA treated groups. Mitochondrial serine hydroxymethyltransferase (mSHMT) was identified as one of the most promising targets of arginase. Both arginase II (Arg II) and mSHMT expressions were higher in human breast tumor tissues compared to the matched normal and there was a strong correlation between Arg II and mSHMT protein expression. MDA-MB-468 xenografts had significant upregulation of Arg II expression that preceded the induction of mSHMT expression. Small inhibitory RNA (siRNA)-mediated inhibition of Arg II in MDA-MB-468 and HCC-1806 cells led to significant inhibition of both the mSHMT gene and protein expression. As mSHMT is a key player in folate metabolism, our data provides a novel link between arginine and folate metabolism in human breast cancer, both of which are critical for tumor cell proliferation.  相似文献   

5.
Fibroblast activation protein (FAP) is a specific serine protease expressed in tumor stroma proven to be a stimulatory factor in the progression of some cancers. The purpose of this study was to investigate the effects of FAP knockdown on tumor growth and the tumor microenvironment. Mice bearing 4T1 subcutaneous tumors were treated with liposome-shRNA complexes targeting FAP. Tumor volumes and weights were monitored, and FAP, collagen, microvessel density (MVD), and apoptosis were measured. Our studies showed that shRNA targeting of FAP in murine breast cancer reduces FAP expression, inhibits tumor growth, promotes collagen accumulation (38%), and suppresses angiogenesis (71.7%), as well as promoting apoptosis (by threefold). We suggest that FAP plays a role in tumor growth and in altering the tumor microenvironment. Targeting FAP may therefore represent a supplementary therapy for breast cancer. [BMB Reports 2013; 46(5): 252-257]  相似文献   

6.
Fibroblast activation protein (FAP) is a non-classical serine protease expressed predominantly in conditions accompanied by tissue remodeling, particularly cancer. Due to its plasma membrane localization, FAP represents a promising molecular target for tumor imaging and treatment. The unique enzymatic activity of FAP facilitates development of diagnostic and therapeutic tools based on molecular recognition of FAP by substrates and small-molecule inhibitors, in addition to conventional antibody-based strategies.In this review, we provide background on the pathophysiological role of FAP and discuss its potential for diagnostic and therapeutic applications. Furthermore, we present a detailed analysis of the structural patterns crucial for substrate and inhibitor recognition by the FAP active site and determinants of selectivity over the related proteases dipeptidyl peptidase IV and prolyl endopeptidase. We also review published data on targeting of the tumor microenvironment with FAP antibodies, FAP-targeted prodrugs, activity-based probes and small-molecule inhibitors. We describe use of a recently developed, selective FAP inhibitor with low-nanomolar potency in inhibitor-based targeting strategies including synthetic antibody mimetics based on hydrophilic polymers and inhibitor conjugates for PET imaging.In conclusion, recent advances in understanding of the molecular structure and function of FAP have significantly contributed to the development of several tools with potential for translation into clinical practice.  相似文献   

7.
We investigated the immunohistochemical staining characteristics of cytochrome P450 1A1 (CYP1A1), CYPB1, CYP2E1, and glutathione S-transferase P1 (GSTP1), GSTT1, GSTO1, GSTK1 in colon tumor and surrounding normal colon tissues. Tissues were obtained from 47 patients with colon adenocarcinoma and the staining intensity of tumor and control tissues was compared. CYP1A1, CYP1B1, CYP2E1, GSTP1, GSTT1, GSTO1 and GSTK1 expressions in colon cancer cells were significantly greater than those in normal colon epithelial cells. No significant relation was found between the isoenzyme expressions and age, gender, smoking status, tumor grade and tumor stage. The higher expressions of CYP1A1, CYP1B1, CYP2E1, GSTP1, GSTO1, GSTT1 and GSTK1 in tumor than in normal colon tissues may be important for colon cancer progression and development.  相似文献   

8.
Here we investigated whether the cellular accumulation of p53 protein caused by over-expression of small ubiquitin-related modifier-1 (SUMO-1) could be used as a predictive marker for prognosis in colon cancer. We detected SUMO-1 and p53 protein levels in 46 cases of colon cancer and adjacent tissues by immunohistochemistry and found that SUMO-1 was expressed at much higher levels in colon cancer compared with that in normal colon tissue. Immunoprecipitation and Western blot analysis revealed that the tumor suppressor p53 was present predominantly in the sumoylated rather than the non-sumoylated form in the colon cancer cell lines. A small interfering RNA targeted to SUMO-1 mRNA sequences was used to observe the levels of the p53 protein. Patients who showed high dual expressions of SUMO-1 and p53 tended to experience metastasis more frequently. These results suggest that the cellular accumulation of p53 protein caused by over-expression of SUMO-1 may be involved in tumor aggressiveness. Multivariate analysis confirmed that the high dual expression of SUMO-1 and p53 was an independent factor for evaluating prognosis. SUMO-1 may be useful as a novel target for therapy in colon cancer as well as a clinical indicator for tumor aggressiveness.  相似文献   

9.
梁聪  胡皓  方诚  梁洁  吴开春  聂勇战 《生物磁学》2014,(9):1683-1685,1661
目的:观察朊蛋白(PrPc)在正常结肠粘膜、结肠炎及结肠癌组织中的表达,并探讨其临床意义。方法:采用免疫组织化学法分别检测PrPc在正常结肠组织、结肠炎及结肠癌组织(各40例)中的表达,并分析其在结肠癌及结肠炎组织中的表达与患者性别、分化程度、TNM分期、淋巴结转移及炎症程度等临床特征间的关系。结果:PrPc在正常结肠及结肠癌组织中均有表达,在结肠炎中表达较低,在结肠癌组织中阳性表达率为60%(24/40),明显高于正常结肠组织的35%(14/40)及结肠炎组织的30%(12/40)(P〈0.05)。轻度结肠炎中PrPc的阳性表达率明显高于重度结肠炎,结肠癌中PrPc的表达与患者的肿瘤分级、分期显著相关(P〈0.05)。结论:PrPc在结肠癌中的表达增高,在结肠炎中表达较低,可作为临床判断结肠癌恶性程度及结肠炎炎症程度的重要参考指标。  相似文献   

10.
A functional proteomics screen of proteases in colorectal carcinoma   总被引:7,自引:0,他引:7  
BACKGROUND: Proteases facilitate several steps in cancer progression. To identify proteases most suitable for drug targeting, actual enzyme activity and not messenger RNA levels or immunoassay of protein is the ideal assay readout. MATERIALS AND METHODS: An automated microtiter plate assay format was modified to allow detection of all four major classes of proteases in tissue samples. Fifteen sets of colorectal carcinoma biopsies representing primary tumor, adjacent normal colon, and liver metastases were screened for protease activity. RESULTS: The major proteases detected were matrix metalloproteases (MMP9, MMP2, and MMP1), cathepsin B, cathepsin D, and the mast cell serine proteases, tryptase and chymase. Matrix metalloproteases were expressed at higher levels in the primary tumor than in adjacent normal tissue. The mast cell proteases, in contrast, were at very high levels in adjacent normal tissue, and not detectable in the metastases. Cathepsin B activity was significantly higher in the primary tumor, and highest in the metastases. The major proteases detected by activity assays were then localized in biopsy sections by immunohistochemistry. Mast cell proteases were abundant in adjacent normal tissue, because of infiltration of the lamina propria by mast cells. Matrix metalloproteases were localized to the tumor cells themselves; whereas, cathepsin B was predominantly expressed by macrophages at the leading edge of invading tumors. Although only low levels of urinary plasminogen activator were detected by direct enzyme assay, immunohistochemistry showed abundant protein within the tumor. CONCLUSIONS: This analysis, surveying all major classes of proteases by assays of activity rather than immunolocalization or in situ hybridization alone, serves to identify proteases whose activity is not completely balanced by endogenous inhibitors and which may be essential for tumor progression. These proteases are logical targets for initial efforts to produce low molecular weight protease inhibitors as potential chemotherapy.  相似文献   

11.
Apatinib is a novel tyrosine kinase inhibitor that targets VEGFR2 signal and exhibits potent anti-tumor effects in human cancers. In this study, we aim to investigate the efficacy of Apatinib in cervical cancer. The protein expression of VEGFR2 and its relationships with clinical parameters were investigated in a panel of cervical cancer patients. In vitro, a series of experiments were performed to detect the effects of Apatinib on the proliferation, apoptosis and cell cycle in cervical cancer cells. Both the immortalized cell lines and primary cultured tissues were used to investigate the synergy between Apatinib and chemotherapeutic drugs. The in vivo effects of Apatinib were validated in a nude mouse model. Compared to that in normal cervix, VEGFR2 protein was significantly upregulated in cervical cancer tissues (P < 0.001); this was positively correlated with advanced tumor stage, lymph node metastasis, and a poor prognosis. In vitro, Apatinib markedly induced apoptosis and G1-phase arrest, suppressed cell growth, and decreased colony formation ability. We also found that primary cancer tissues with higher level of VEGFR2 were much more sensitive to Apatinib. Further, we proved that Apatinib significantly increased the sensitivity to Paclitaxel in cervical cancer cells and the mouse model. Collectively, we firstly report the anti-tumor efficacy of Apatinib in cervical cancer. Moreover, Apatinib synergized with Paclitaxel to achieve more significant suppression on tumor growth, proposing that Apatinib might be a potent drug for cervical cancer.  相似文献   

12.
The adenosine 3',5'-cyclic monophosphate (cAMP)-dependent and cAMP-independent kinase activities were measured in the 1,2-dimethylhydrazine (DMH) induced rat colon cancer and in untreated colon. Previous studies had shown that intestinal tumors induced by chronic exposure to DMH contained 2-fold less intracellular cAMP. The present findings indicate that reduction in cAMP-dependent protein kinase activities also occur in colon cancer cells. Similar hydrogen ion dependence (pH 6-7) and approximate association constants (Ka approximately 0.1 microM) were observed for the enzymes existing in both normal and tumor tissues, while the cAMP-dependent tumor protein kinase was found to phosphorylate phosvitin and casein to a greater degree. These recent findings are consistent with the concept that the concentrations of cAMP and activities of its associated enzyme system are inversely related to the cell proliferation state.  相似文献   

13.
This study compared lung tumor growth in PRDX6-overexpressing transgenic (Tg) mice and normal mice. These mice expressed elevated levels of PRDX6 mRNA and protein in multiple tissues. In vivo, Tg mice displayed a greater increase in the growth of lung tumor compared with normal mice. Glutathione peroxidase and calcium-independent phospholipase 2 (iPLA2) activities in tumor tissues of Tg mice were much higher than in tumor tissues of normal mice. Higher tumor growth in PRDX6-overexpressing Tg mice was associated with an increase in activating protein-1 (AP-1) DNA-binding activity. Moreover, expression of proliferating cell nuclear antigen, Ki67, vascular endothelial growth factor, c-Jun, c-Fos, metalloproteinase-9, cyclin-dependent kinases, and cyclins was much higher in the tumor tissues of PRDX6-overexpressing Tg mice than in tumor tissues of normal mice. However, the expression of apoptotic regulatory proteins including caspase-3 and Bax was slightly less in the tumor tissues of normal mice. In tumor tissues of PRDX6-overexpressing Tg mice, activation of mitogen-activated protein kinases (MAPKs) was much higher than in normal mice. In cultured lung cancer cells, PRDX6 siRNA suppressed glutathione peroxidase and iPLA2 activities and cancer cell growth, but the enforced overexpression of PRDX6 increased cancer cell growth associated with their increased activities. In vitro, among the tested MAPK inhibitors, c-Jun NH2-terminal kinase (JNK) inhibitor clearly suppressed the growth of lung cancer cells and AP-1 DNA binding, glutathione peroxidase activity, and iPLA2 activity in normal and PRDX6-overexpressing lung cancer cells. These data indicate that overexpression of PRDX6 promotes lung tumor growth via increased glutathione peroxidase and iPLA2 activities through the upregulation of the AP-1 and JNK pathways.  相似文献   

14.

Background

Colon cancer has always been diagnosed at a late stage, which is associated with poor prognosis. The currently used serum tumor markers CEA and CA19-9 display low sensitivity and specificity and may not have diagnostic value in early stage colon cancer. Thus, there is an urgent need to identify novel serum biomarkers for use in the early detection of colon cancer.

Methods

In this study, the expression of DC-SIGN and DC-SIGNR in serum was detected by enzyme-linked immunosorbent assay (ELISA). DC-SIGN and DC-SIGNR expression was detected in cancer tissues by immunohistochemistry (IHC).

Results

The level of sDC-SIGN was lower in patients than in the healthy controls, while the level of sDC-SIGNR in patients was higher than in the healthy controls. Both sDC-SIGN and sDC-SIGNR had diagnostic significances for cancer patients, and the combined diagnosis of these two markers was higher than both of them alone. Furthermore, there were significant differences between both sDC-SIGN and sDC-SIGNR in stage I/II patients and the healthy controls. Moreover, high sDC-SIGN level was accompanied with the long survival time. Additionally, DC-SIGNR was negative in the cancer foci and matched normal colon tissues but was weakly positive between the cancer foci. DC-SIGN staining was faint in matched normal colon tissues, strong in the tumor stroma and the invasive margin of colon cancer tissues, and negatively correlated with the sDC-SIGN level in serum from the same patient. Interestingly, the percent survival of patients with a DC-SIGN mean density of>0.001219 (the upper 95% confidence interval of matched normal colon tissues) was higher than for all other patients.

Conclusion

DC-SIGN and DC-SIGNR are blood-based molecular markers that can potentially be used for the diagnosis of early stage patients. Moreover, expression of DC-SIGN in serum and cancer tissues may affect the survival time for colon cancer patients.  相似文献   

15.
Proteasomes (multiproteinase protein complexes) are known to play an important role in cancer pathogenesis, however, few information about their activity in human tumor tissues is available so far. We studied chymotrypsin-like activity of proteasomes in tissues of breast cancer (BC) and endometrial cancer (EC). The chymotrypsin-like total proteasome activity and the 20S and 26S proteasome activity in malignant tissues were shown to be significantly higher in malignant tumors than in normal tissues. No increase in proteasome activity was registered with larger tumor size in both BC and EC, whereas proteasome activity was changed with respect to the extent of tumor involvement. In breast cancer tissues, significant reductions in the total and the 26S proteaome activities were observed in tumors with regional lymph node metastases as compared to tumors without metastases. In endometrial cancer tissues, the total proteasome activity and the 20S and 26S proteasome activities were increased as the depth of myometrial invasion. The data obtained indicate that the proteasome acyivity is significantly changed in the process of cancerogenesis and further study is needed to develop new additional prognostic criteria and effective anti-tumor agents in molecular-directed therapy.  相似文献   

16.
目的:探讨S100A11在结肠癌和正常肠粘膜组织中的表达及其与患者临床特征的的关系。方法:采用RT-PCR、WesternBlotting技术,检测S100A11在24例结肠癌及正常肠粘膜中的表达,并分析S100A11与患者年龄,性别,临床病理分型之间的关系。结果:S100A11mRNA在结肠癌组织的表达量(0.944+0.032)高于正常肠粘膜组织中的表达量(0.828+0.079),两组比较差异有统计学意义(p〈0.05)。S100A11蛋白在结肠癌组织中的表达量(0.951+0.02)高于在正常肠粘膜组织中的表达量(0.860+0.05),两组比较差异有统计学意义(p〈0.05)。但与患者临床特征之间比较差异无统计学意义(p〉0.05)。结论:S100A11在结肠癌组织中表达量高于正常肠粘膜组织,提示其与结肠癌的发生和发展有关.是判断结肠癌生物学行为的有价值的参考指标。  相似文献   

17.
18.
Fibroblast activation protein-alpha (FAPα) is a cell surface glycoprotein which is selectively expressed by tumor-associated fibroblasts in malignant tumors but rarely on normal tissues. FAPα has also been reported to promote tumor growth and invasion and therefore has been of increasing interest as a promising target for designing tumor-targeted drugs and imaging agents. Although medicinal study on FAPα inhibitors has led to the discovery of many FAPα-targeting inhibitors including a drug candidate in a phase II clinical trial, the development of imaging probes to monitor the expression and activity of FAPα in vivo has largely lagged behind. Herein, we report an activatable near-infrared (NIR) fluorescent probe (ANP(FAP)) for in vivo optical imaging of FAPα. The ANP(FAP) consists of a NIR dye (Cy5.5) and a quencher dye (QSY21) which are linked together by a short peptide sequence (KGPGPNQC) specific for FAPα cleavage. Because of the efficient fluorescence resonance energy transfer (FRET) between Cy5.5 and QSY21 in ANP(FAP), high contrast on the NIR fluorescence signal can be achieved after the cleavage of the peptide sequence by FAPα both in vitro and in vivo. In vitro assay on ANP(FAP) indicated the specificity of the probe to FAPα. The in vivo optical imaging using ANP(FAP) showed fast tumor uptake as well as high tumor to background contrast on U87MG tumor models with FAPα expression, while much lower signal and tumor contrast were observed in the C6 tumor without FAPα expression, demonstrating the in vivo targeting specificity of the ANP(FAP). Ex vivo imaging also demonstrated ANP(FAP) had high tumor uptake at 4 h post injection. Collectively, these results indicated that ANP(FAP) could serve as a useful NIR optical probe for early detection of FAPα expressing tumors.  相似文献   

19.
Activity-based protein profiling (ABPP) is recognized as a powerful and versatile chemoproteomic technology in drug discovery. Central to ABPP is the use of activity-based probes to report the activity of specific enzymes or reactivity of amino acid types in complex biological systems. Over the last two decades, ABPP has facilitated the identification of new drug targets and discovery of lead compounds in human and infectious disease. Furthermore, as part of a sustained global effort to illuminate the druggable proteome, the repertoire of target classes addressable with activity-based probes has vastly expanded in recent years. Here, we provide an overview of ABPP and summarise the major technological advances with an emphasis on probe development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号