共查询到20条相似文献,搜索用时 0 毫秒
1.
胰高血糖素样多肽-1(glucogen like peptide 1, GLP-1)在胰岛素分泌过程中扮演重要角色,并在改善β细胞功能方面有着令人瞩目的效应,但有关其作用机制尚需更深入研究。本研究探讨GLP-1对2型糖尿病(type 2 diabetes mellitus, T2DM)大鼠模型胰岛细胞损伤的影响,观察GLP-1在T2DM大鼠胰岛细胞凋亡损伤机制中所发挥的作用。HE染色结果发现,糖尿病大鼠胰岛损伤。ELISA结果表明,糖尿病患者和糖尿病大鼠血清中GLP-1表达水平上调。放射免疫结果表明,GLP-1和谷氧还蛋白1(Grx1)促进HIT-T 15细胞分泌胰岛素,Cd抑制胰岛素的分泌。免疫组化结果表明,糖尿病大鼠GLP-1加药处理后,各组与糖尿病组相比,药物提高了Grx1和胰岛素表达水平,降低了胰高血糖素表达水平,同时降低了活性胱天蛋白酶3(caspase-3)的表达。本研究结果提示,GLP-1在肥胖T2DM大鼠胰岛细胞凋亡中起保护作用,同时可调节胰岛素和胰高血糖素水平,其机制可能与Grx1相关 相似文献
2.
3.
Guangji Zhang Licheng Wang Jia Xu Yue Zhang Mingyang Wang Qifei Wang Kai Wang Liping Wang 《International journal of peptide research and therapeutics》2018,24(2):271-278
The prevalence of type-2 diabetes is rapidly increasing. Currently, exenatide is the first medicine which mimics incretin. However, it requires subcutaneous injection twice a day, an inconvenient way for patients. In this study, we identified a novel peptide with similar pharmacology to exenatide in rodents as GLP-1 receptor agonist which consists of 17 amino acids (17P). It promotes Ins-1 cell proliferation and insulin secretion and lowers blood glucose of diabetic rats. 17P was synthetized by solid-phase peptide synthesis. Interactions between GLP-1 receptor and 17P were studied by Bio-layer interferometry. Ins-1 cell proliferation was studied by MTT assay. ELISA was used to study Ins-1 cell insulin secretion. In vivo tests were performed with male Wistar rats. We used high fat diet and STZ injection to induce a type-2 diabetic rats model. Then, those rats were randomized to different test groups, and administered exenatide, 17P and saline water injection, to evaluate different responses. Based on HPLC (high performance liquid chromatography) and MS (mass spectrometry), 17P synthesis was successful. Bio-layer interferometry data showed a close interaction between GLP-1 receptor and 17P. 17P treatment of Ins-1 cells for 24 h could promote cell proliferation and insulin secretion in a dose-dependent manner. Administration of 17P in HF-STZ male Wistar rats demonstrated that 17P could lower the level of blood glucose and stabilize the body weight of the diabetic rats. All 17P treatments were similar to treatment with exenatide. In vitro and in vivo studies demonstrated that 17P could relieve symptoms of type-2 diabetes. Therefore, 17P could be developed as a promising type-2 diabetes therapeutic drug. 相似文献
4.
5.
Niina Matikainen Elias Bj?rnson Sanni S?derlund Christofer Borén Bj?rn Eliasson Kirsi H. Pietil?inen Leonie H. Bogl Antti Hakkarainen Nina Lundbom Angela Rivellese Gabriele Riccardi Jean-Pierre Després Natalie Alméras Jens Juul Holst Carolyn F. Deacon Jan Borén Marja-Riitta Taskinen 《PloS one》2016,11(1)
Context
Glucose and lipids stimulate the gut-hormones glucagon-like peptide (GLP)-1, GLP-2 and glucose-dependent insulinotropic polypeptide (GIP) but the effect of these on human postprandial lipid metabolism is not fully clarified.Objective
To explore the responses of GLP-1, GLP-2 and GIP after a fat-rich meal compared to the same responses after an oral glucose tolerance test (OGTT) and to investigate possible relationships between incretin response and triglyceride-rich lipoprotein (TRL) response to a fat-rich meal.Design
Glucose, insulin, GLP-1, GLP-2 and GIP were measured after an OGTT and after a fat-rich meal in 65 healthy obese (BMI 26.5–40.2 kg/m2) male subjects. Triglycerides (TG), apoB48 and apoB100 in TG-rich lipoproteins (chylomicrons, VLDL1 and VLDL2) were measured after the fat-rich meal.Main Outcome Measures
Postprandial responses (area under the curve, AUC) for glucose, insulin, GLP-1, GLP-2, GIP in plasma, and TG, apoB48 and apoB100 in plasma and TG-rich lipoproteins.Results
The GLP-1, GLP-2 and GIP responses after the fat-rich meal and after the OGTT correlated strongly (r = 0.73, p<0.0001; r = 0.46, p<0.001 and r = 0.69, p<0.001, respectively). Glucose and insulin AUCs were lower, but the AUCs for GLP-1, GLP-2 and GIP were significantly higher after the fat-rich meal than after the OGTT. The peak value for all hormones appeared at 120 minutes after the fat-rich meal, compared to 30 minutes after the OGTT. After the fat-rich meal, the AUCs for GLP-1, GLP-2 and GIP correlated significantly with plasma TG- and apoB48 AUCs but the contribution was very modest.Conclusions
In obese males, GLP-1, GLP-2 and GIP responses to a fat-rich meal are greater than following an OGTT. However, the most important explanatory variable for postprandial TG excursion was fasting triglycerides. The contribution of endogenous GLP-1, GLP-2 and GIP to explaining the variance in postprandial TG excursion was minor. 相似文献6.
7.
8.
9.
Kong Xiaodong Yang Yuting Li Huijie Cui Weiyun Wu Xiaohui Gong Min Li Ying 《International journal of peptide research and therapeutics》2021,27(3):1699-1707
International Journal of Peptide Research and Therapeutics - Alzheimer’s disease (AD) is characterized by neuronal necroptosis and neuroinflammation, retardation of these pathological... 相似文献
10.
Huinan Zhang Yunhan Liu Shaoyu Guan Di Qu Ling Wang Xinshang Wang Xubo Li Shimeng Zhou Ying Zhou Ning Wang Jingru Meng Xue Ma 《PloS one》2016,11(2)
Diabetes is a major risk factor for the development of stroke. Glucagon-like peptide-1 receptor (GLP-1R) agonists have been in clinical use for the treatment of diabetes and also been reported to be neuroprotective in ischemic stroke. The quinoxaline 6,7-dichloro-2-methylsulfonyl-3-N-tert- butylaminoquinoxaline (DMB) is an agonist and allosteric modulator of the GLP-1R with the potential to increase the affinity of GLP-1 for its receptor. The aim of this study was to evaluate the neuroprotective effects of DMB on transient focal cerebral ischemia. In cultured cortical neurons, DMB activated the GLP-1R, leading to increased intracellular cAMP levels with an EC50 value about 100 fold that of exendin-4. Pretreatment of neurons with DMB protected against necrotic and apoptotic cell death was induced by oxygen-glucose deprivation (OGD). The neuroprotective effects of DMB were blocked by GLP-1R knockdown with shRNA but not by GLP-1R antagonism. In C57BL/6 mice, DMB was orally administered 30 min prior to middle cerebral artery occlusion (MCAO) surgery. DMB markedly reduced the cerebral infarct size and neurological deficits caused by MCAO and reperfusion. The neuroprotective effects were mediated by activation of the GLP-1R through the cAMP-PKA-CREB signaling pathway. DMB exhibited anti-apoptotic effects by modulating Bcl-2 family members. These results provide evidence that DMB, a small molecular GLP-1R agonist, attenuates transient focal cerebral ischemia injury and inhibits neuronal apoptosis induced by MCAO. Taken together, these data suggest that DMB is a potential neuroprotective agent against cerebral ischemia. 相似文献
11.
Zhang Wen Li Ming Zan Yanlu Bai Yi 《International journal of peptide research and therapeutics》2021,27(4):2517-2526
International Journal of Peptide Research and Therapeutics - Human GLP-1 (glucagon-like peptide-1) can produce a remarkable improvement in glycemic control in patients with type 2 diabetes.... 相似文献
12.
《Peptides》2017
GLP-1 is an incretin hormone that can effectively lower blood glucose, however, the short time of biological activity and the side effect limit its therapeutic application. Many methods have been tried to optimize GLP-1 to extend its in vivo half-time, reduce its side effect and enhance its activity. Here we have chosen the idea to dimerize GLP-1 with a C-terminal lysine to form a new GLP-1 analog, DLG3312. We have explored the structure and the biological property of DLG3312, and the results indicated that DLG3312 not only remained the ability to activate the GLP-1R, but also strongly stimulated Min6 cell to secrete insulin. The in vivo bioactivities have been tested on two kinds of animal models, the STZ induced T2DM mice and the db/db mice, respectively. DLG3312 showed potent anti-diabetic ability in glucose tolerance assay and single-dose administration of DLG3312 could lower blood glucose for at least 10 hours. Long-term treatment with DLG3312 can reduce fasted blood glucose, decrease water consumption and food intake and significantly reduce the HbA1c level by 1.80% and 2.37% on STZ induced T2DM mice and the db/db mice, respectively. We also compared DLG3312 with liraglutide to investigate its integrated control of the type 2 diabetes. The results indicated that DLG3312 almost has the same effect as liraglutide but with a much simpler preparation process. In conclusion, we, by using C-terminal lysine as a linker, have synthesized a novel GLP-1 analog, DLG3312. With simplified preparation and improved physiological characterizations, DLG3312 could be considered as a promising candidate for the type 2 diabetes therapy. 相似文献
13.
Small bowel motility was studied in rats at increasing (1-20 pmol/kg/min) intravenous doses of either glucagon-like peptide-1 (GLP-1) or glucagon-like peptide-2 (GLP-2) alone, or in combination in the fasted and fed state. There was a dose-dependent inhibitory action of GLP-1 on the migrating myoelectric complex (MMC), where the dose of 5 pmol/kg/min induced an increased MMC cycle length. No effect was seen with GLP-2 alone, but the combination of GLP-1 and GLP-2 induced a more pronounced inhibitory effect, with significant increase of the MMC cycle length from a dose of 2 pmol/kg/min. During fed motility, infusion of GLP-1 resulted in an inhibition of spiking activity compared to control. In contrast, infusion of GLP-2 only numerically increased spiking activity compared to control, while the combination of GLP-1 and GLP-2 resulted in no change compared to control. In summary, this study demonstrates an additive effect of peripheral administration of GLP-1 and GLP-2 on fasted small bowel motility. In the fed state, GLP-1 and GLP-2 seem to display counter-balancing effects on motility of the small intestine. 相似文献
14.
目的:观察胰岛素泵强化治疗对合并肥胖和高脂血症的初诊2型糖尿病(T2DM)患者的疗效。方法:采用胰岛素泵持续皮下输注(CS‖)超短效门冬胰岛素(诺和锐)强化治疗15天(15d)54例合并肥胖和高脂血症的新诊断T2DM患者,分别在强化治疗15d结束时和继治疗90d时观察患者的血糖、糖化血红蛋白、血脂、体重指数和反应胰岛β细胞功能的胰岛素和C肽指标改变情况。结果:在强化治疗15d撤泵时和治疗90d后患者血糖明显下降;而糖化血红蛋白、血脂、体重指数、胰腺β细胞功能在治疗90d时改善明显。结论:早期胰岛素泵强化治疗新诊断的2型糖尿病(T2DM)患者,不仅可使其血糖尽早达标,而且还可明显降低血脂和体重指数、糖化血红蛋白,并使部分患者胰岛β细胞功能恢复,一段时期内脱离药物治疗,提高生活质量。 相似文献
15.
Briatore L Salani B Andraghetti G Danovaro C Sferrazzo E Scopinaro N Adami GF Maggi D Cordera R 《Obesity (Silver Spring, Md.)》2008,16(1):77-81
Objective: Biliopancreatic diversion (BPD) restores normal glucose tolerance in a few weeks in morbid obese subjects with type 2 diabetes, improving insulin sensitivity. However, there is less known about the effects of BPD on insulin secretion. We tested the early effects of BPD on insulin secretion in obese subjects with and without type 2 diabetes. Methods and Procedures: Twenty‐one consecutive morbid obese subjects, 9 with type 2 diabetes (T2DM) and 12 with normal fasting glucose (NFG) were evaluated, just before and 1 month after BPD, by measuring body weight (BW), glucose, adipocitokines, homeostasis model assessment of insulin resistance (HOMA‐IR), acute insulin response (AIR) to e.v. glucose and the insulinogenic index adjusted for insulin resistance ([ΔI5/ΔG5]/HOMA‐IR). Results: Preoperatively, those with T2DM differed from those with NFG in showing higher levels of fasting glucose, reduced AIR (57.9 ± 29.5 vs. 644.9 ± 143.1 pmol/l, P < 0.01) and reduced adjusted insulinogenic index (1.0 ± 0.5 vs. 17.6 ± 3.9 1/mmol2, P < 0.001). One month following BPD, in both groups BW was reduced (by ~11%), but all subjects were still severely obese; HOMA‐IR and leptin decreased significanlty, while high‐molecular weight (HMW) adiponectin and adjusted insulinogenic index increased. In the T2DM group, fasting glucose returned to non‐diabetic values. AIR did not change in the NFG group, while in the T2DM group it showed a significant increase (from 58.0 ± 29.5 to 273.8 ± 47.2 pmol/l, P < 0.01). In the T2DM group, the AIR percentage variation from baseline was significantly related to changes in fasting glucose (r = 0.70, P = 0.02), suggesting an important relationship exists between impaired AIR and hyperglycaemia. Discussion: BPD is able to restore AIR in T2DM even just 1 month after surgery. AIR restoration is associated with normalization of fasting glucose concentrations. 相似文献
16.
Rapoport MJ Bistritzer T Aharoni D Weiss M Ramot Y Buchs A Bloch K Vardi P 《Cytokine》2005,30(5):219-227
Th1/Th2 cytokine imbalance has been demonstrated in Type 1 diabetes (T1DM) patients. We characterized the peak levels, secretory pattern and total cytokine production of the Th1 cytokines (IL-2 and IFN gamma) and Th2 cytokines (IL-4 and IL-10), by stimulated peripheral blood mononuclear cells of twenty six first-degree relatives of T1DM patients, and eleven matched controls. At enrollment, first degree relatives demonstrated a significant increase in peak and overall secretion of IL-2; P<0.01 and P<0.005 respectively and IL-4 cytokine; P<0.05 and P<0.01 respectively, as compared to normal controls. Their mean IFN gamma secretion increased significantly, P<0.05, after one year while their higher IL-2 and IL-4 secretion remained unchanged. Ab-negative and Ab-positive relatives demonstrated a similar cytokine secretion pattern. Four relatives all Ab positive, developed diabetes: Peak IL-4 levels were low in three and markedly decreased within one year in one of these relatives, while peak IL-2 and IFN gamma levels were elevated in all of them. These data demonstrate that secretion of both Th1 and Th2 cytokines is increased in first-degree relatives of T1DM patients independently of their diabetes-associated autoantibodies. The presence of low IL-4 and elevated IL-2 and IFN gamma levels in autoAb positive relatives is associated with progression to overt disease. 相似文献
17.
目的:通过对不同活性检测方法的综合比较,筛选最适的胰高血糖素样肽1(GLP-1)或其类似物的体外活性检测方法,为GLP-1类似物的体外生物活性检测奠定基础。方法:以GLP-1作为阳性药物,用MTT方法检测其对RIN-m-5F、MIN6细胞增殖的影响;用ELISA方法检测其对INS-1、MIN6细胞胰岛素分泌量的影响;用ELISA方法检测其对BHK-GLP-1R细胞cAMP分泌水平的影响。通过对上述方法的综合比较,筛选出最适的活性检测方法。结果:GLP-1对细胞增殖的影响实验结果并不显著,对胰岛素分泌量影响的实验效果明显,对cAMP分泌水平的实验无明显效果。结论:ELISA检测GLP-1或其类似物对MIN6细胞胰岛素分泌量实验可用于GLP-1或其类似物的体外活性检测。 相似文献
18.
Alessandra Citro Rossana Scrivo Helene Martini Carmela Martire Paolo De Marzio Anna Rita Vestri John Sidney Alessandro Sette Vincenzo Barnaba Guido Valesini 《PloS one》2015,10(6)
CD8+ T cells specific to caspase-cleaved antigens derived from apoptotic T cells (apoptotic epitopes) represent a principal player in chronic immune activation, which is known to amplify immunopathology in various inflammatory diseases. The purpose of the present study was to investigate the relationship involving these autoreactive T cells, the rheumatoid arthritis immunopathology, and the response to tumor necrosis factor-α inhibitor therapy. The frequency of autoreactive CD8+ T cells specific to various apoptotic epitopes, as detected by both enzyme-linked immunospot assay and dextramers of major histocompatibility complex class I molecules complexed with relevant apoptotic epitopes, was longitudinally analyzed in the peripheral blood of rheumatoid arthritis patients who were submitted to etanercept treatment (or other tumor necrosis factor inhibitors as a control). The percentage of apoptotic epitope-specific CD8+ T cells was significantly higher in rheumatoid arthritis patients than in healthy donors, and correlated with the disease activity. More important, it was significantly more elevated in responders to tumor necrosis factor-α inhibitor therapy than in non-responders before the start of therapy; it significantly dropped only in the former following therapy. These data indicate that apoptotic epitope-specific CD8+ T cells may be involved in rheumatoid arthritis immunopathology through the production of inflammatory cytokines and that they may potentially represent a predictive biomarker of response to tumor necrosis factor-α inhibitor therapy to validate in a larger cohort of patients. 相似文献
19.
Victor A. Gault Vikas K. Bhat Nigel Irwin Peter R. Flatt 《The Journal of biological chemistry》2013,288(49):35581-35591
Glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and glucagon bind to related members of the same receptor superfamily and exert important effects on glucose homeostasis, insulin secretion, and energy regulation. The present study assessed the biological actions and therapeutic utility of novel GIP/glucagon/GLP-1 hybrid peptides. Nine novel peptides were synthesized and exhibited complete DPP-IV resistance and enhanced in vitro insulin secretion. The most promising peptide, [dA2]GLP-1/GcG, stimulated cAMP production in GIP, GLP-1, and glucagon receptor-transfected cells. Acute administration of [dA2]GLP-1/GcG in combination with glucose significantly lowered plasma glucose and increased plasma insulin in normal and obese diabetic (ob/ob) mice. Furthermore, [dA2]GLP-1/GcG elicited a protracted glucose-lowering and insulinotropic effect in high fat-fed mice. Twice daily administration of [dA2]GLP-1/GcG for 21 days decreased body weight and nonfasting plasma glucose and increased circulating plasma insulin concentrations in high fat-fed mice. Furthermore, [dA2]GLP-1/GcG significantly improved glucose tolerance and insulin sensitivity by day 21. Interestingly, locomotor activity was increased in [dA2]GLP-1/GcG mice, without appreciable changes in aspects of metabolic rate. Studies in knock-out mice confirmed the biological action of [dA2]GLP-1/GcG via multiple targets including GIP, GLP-1, and glucagon receptors. The data suggest significant promise for novel triple-acting hybrid peptides as therapeutic options for obesity and diabetes. 相似文献
20.
Beta cell death caused by endoplasmic reticulum (ER) stress is a key factor aggravating type 2 diabetes. Exenatide, a glucagon-like peptide (GLP)-1 receptor agonist, prevents beta cell death induced by thapsigargin, a selective inhibitor of ER calcium storage. Here, we report on our proteomic studies designed to elucidate the underlying mechanisms. We conducted comparative proteomic analyses of cellular protein profiles during thapsigargin-induced cell death in the absence and presence of exenatide in INS-1 rat insulinoma cells. Thapsigargin altered cellular proteins involved in metabolic processes and protein folding, whose alterations were variably modified by exenatide treatment. We categorized the proteins with thapsigargin initiated alterations into three groups: those whose alterations were 1) reversed by exenatide, 2) exaggerated by exenatide, and 3) unchanged by exenatide. The most significant effect of thapsigargin on INS-1 cells relevant to their apoptosis was the appearance of newly modified spots of heat shock proteins, thimet oligopeptidase and 14-3-3β, ε, and θ, and the prevention of their appearance by exenatide, suggesting that these proteins play major roles. We also found that various modifications in 14-3-3 isoforms, which precede their appearance and promote INS-1 cell death. This study provides insights into the mechanisms in ER stress-caused INS-1 cell death and its prevention by exenatide. 相似文献