首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oilseeds offer some protection to the access of ruminal microorganisms and may be an alternative to calcium salts of fatty acids (FA), which are not fully inert in the ruminal environment. This study aimed to evaluate the effects of different sources of FA supplementation on apparent total tract nutrient digestibility, milk yield and composition, and energy balance (EB) of cows during the transition period and early lactation. We compared diets rich in C18:2 and C18:3 FA. Multiparous Holstein cows were randomly assigned to receive one of the four diets: control (n=11); whole flaxseed (WF, n=10), 60 and 80 g/kg (diet dry matter (DM) basis) of WF during the prepartum and postpartum periods, respectively; whole raw soybeans (WS, n=10), 120 and 160 g/kg (diet DM basis) of WS during the prepartum and postpartum periods, respectively; and calcium salts of unsaturated fatty acids (CSFA, n=11), 24 and 32 g/kg (diet DM basis) of CSFA during the prepartum and postpartum periods, respectively. Dry cows fed WF had higher DM and net energy of lactation (NEL) intake than those fed WS or CSFA. The FA supplementation did not alter DM and NDF apparent total tract digestibility, dry cows fed WF exhibited greater NDF total tract digestion than cows fed WS or CSFA. Feeding WS instead of CSFA did not alter NEL intake and total tract digestion of nutrients, but increased milk fat yield and concentration. Calculated efficiency of milk yield was not altered by diets. FA supplementation increased EB during the postpartum period. Experimental diets increased long-chain FA (saturated and unsaturated FA) in milk. In addition, cows fed WS and CSFA had higher C18:1 trans-11 FA and C18:2 cis, and lower C18:3 FA in milk than those fed WF. Furthermore, cows fed CSFA had higher C18:1 trans-11 and cis-9, trans-11 FA than cows fed WS. Although supplemental C18:2 and C18:3 FA did not influence the milk yield of cows, they positively affected EB and increased unsaturated long-chain FA in milk fat.  相似文献   

2.
The effect of botanical diversity on supply of polyunsaturated fatty acids (PUFA) to ruminants in vitro, and the fatty acid (FA) composition of muscle in lambs was investigated. Six plant species, commonly grown as part of UK herbal ley mixtures (Trifolium pratense, Lotus corniculatus, Achillea millefolium, Centaurea nigra, Plantago lanceolata and Prunella vulgaris), were assessed for FA profile, and in vitro biohydrogenation of constituent PUFA, to estimate intestinal supply of PUFA available for absorption by ruminants. Modelling the in vitro data suggested that L. corniculatus and P. vulgaris had the greatest potential to increase 18:3n-3 supply to ruminants, having the highest amounts escaping in vitro biohydrogenation. Biodiverse pastures were established using the six selected species, under-sown in a perennial ryegrass-based sward. Lambs were grazed (~50 days) on biodiverse or control pastures and the effects on the FA composition of musculus longissimus thoracis (lean and subcutaneous fat) and musculus semimembranosus (lean) were determined. Biodiverse pasture increased 18:2n-6 and 18:3n-3 contents of m. semimembranosus (+14.8 and +7.2 mg/100 g tissue, respectively) and the subcutaneous fat of m. longissimus thoracis (+158 and +166 mg/100 g tissue, respectively) relative to feeding a perennial ryegrass pasture. However, there was no effect on total concentrations of saturated FA in the tissues studied. It was concluded that enhancing biodiversity had a positive impact on muscle FA profile reflected by increased levels of total PUFA.  相似文献   

3.
4.
5.
6.
Pregnant rats received soybean (SO), olive (OO), fish (FO) and linseed (LO) oil diets from conception to d12 of gestation (early diets) and standard diet thereafter. At d12 and d20 the lipoprotein lipase (LPL) activity was evaluated in maternal adipose tissues (ATs). Fatty Acid (FA) profile was determined in maternal lumbar AT (LAT), in milk and in pup's plasma and brain. LPL activity was higher in ATs at d12 than d20, all groups presenting hypertriglyceridemia at d20. At d12, the LO diet resulted higher LPL activity and incorporation of 18:3 n-3 into LAT. FA profile in maternal LAT at d20 and colostrum was similar to early diets, reflected also in FA composition of pup's plasma. In FO, brain phospholipids had higher 22:6 n-3 without affecting arachidonic acid. These results suggest that specifics dietary FA in early pregnancy modulates lipid metabolism and the provision of LC-PUFA in milk and pups brain.  相似文献   

7.
This study reports the metabolic and morphological characteristics of bovine intermuscular adipose tissue (AT) throughout foetal growth. Our hypothesis was that the histological and molecular features of intermuscular AT would be different from those previously reported for foetal perirenal AT, based on its anatomical location near the muscle and the recent identification of two distinct adipocyte precursors in mouse AT depending on their locations. To address this question, intermuscular AT was sampled from Charolais and Blond d'Aquitaine foetuses at 180, 210 and 260 days post conception (dpc). The two bovine breeds were chosen because of the higher adiposity of Charolais than Blond d'Aquitaine cattle during the postnatal life. Regardless of the breed, adipocyte volume increased slightly (+38%, P < 0.01) with increasing foetal age. This was concomitant with a decrease (P < 0.05) in the activity of enzymes involved in de novo fatty acid (FA) synthesis (FA synthase and glucose-6-phosphate dehydrogenase) and FA esterification (glycerol-3-phosphate dehydrogenase) when expressed per million adipocytes, and with an increase (P ⩽ 0.01) in mRNA abundances for uncoupling protein 1, adiponectin and leptin (LEP) between 180 and 260 dpc. No difference was observed in the adipocyte volume between breeds, which was consistent with the lack of major between-breed differences in mRNA abundances or activities of enzymes involved in lipid metabolism. The mRNA abundance of lipoprotein lipase was maintained across ages, suggesting a storage of circulating FA rather than of FA synthesized de novo. Plasma LEP increased with foetal age, but only in the Charolais breed (+71%, P ⩽ 0.01), and was two- to threefold higher in Charolais than Blond d'Aquitaine foetuses. Regardless of the breed, bovine intermuscular AT contained predominantly unilocular adipocytes believed to be white adipocytes that were larger at 260 dpc than at 180 dpc. These data thus challenge current concepts of the largely brown nature of bovine foetal AT (based on histological and metabolic features of perirenal AT as previously reported a few days before or after birth).  相似文献   

8.
The objective of this study was to evaluate the effects of vegetable oil supplementation of ewe diets on the performance and fatty acid (FA) composition of their suckling lambs. Forty-eight pregnant Churra ewes (mean BW 64.3±0.92 kg) with their 72 newborn lambs (prolificacy=1.5) were assigned to one of four experimental diets, supplemented with 3% of hydrogenated palm (PALM), olive (OLI), soya (SOY) or linseed (LIN) oil. Lambs were nourished exclusively by suckling from their respective mothers. Ewes were milked once daily, and milk samples were taken once a week. When lambs reached 11 kg, they were slaughtered and samples were taken from musculus longissimus dorsi (intramuscular fat) and subcutaneous fat tissue. No changes were observed in milk yield, proximal composition or lamb performance (P>0.10). Milk and lamb subcutaneous and intramuscular fat samples from the PALM diet had the highest saturated fatty acid concentration, whereas those of the OLI, SOY and LIN diets had the lowest (P<0.05). The greatest monounsaturated fatty acid concentration was observed in milk from ewes fed OLI, and the least in milk and in lamb subcutaneous and intramuscular fat samples from LIN and PALM diets. Milk and lamb fat from ewes fed PALM displayed the highest 16:0 proportion and the lowest 18:0 (P<0.05). There were higher concentrations of cis-9 18:1 in OLI samples (P<0.05), more 18:2n-6 in SOY lambs and milk fat (P<0.001) and the highest levels of 18:3n-3 and 20:5n-3 in LIN samples (P<0.01). Milk and lamb subcutaneous and intramuscular samples from SOY and LIN diets contained the most cis-9, trans-11 conjugated linoleic acid, whereas PALM samples had the least (P<0.01). Sheep diet supplementation with different oils, constituting up to 3% of their diets, resulted in changes in the FA composition of milk and the subcutaneous and intramuscular fat of suckling lambs, but did not affect either milk production or lamb performance.  相似文献   

9.
The nutritional quality of beef relates to the fatty acid (FA) composition of bovine adipose tissue. Those molecular mechanisms that induce the differing amounts and composition of fat in cattle breeds according to age at maturity and purpose of production remain unclear. Therefore, this study investigated the composition of total FAs, adipocyte size, and expression of some key genes involved in several adipogenesis and lipogenesis pathways measured in distinct adipose tissue depots from bulls of the genetically diverse cattle breeds Aberdeen Angus (n = 9), Gascon (n = 10), Holstein (n = 9), and Fleckvieh (n = 10). The animals were finished under identical housing and feeding conditions until slaughter at a similar age of 17 months. After slaughter, cod adipose tissue (CAT), subcutaneous adipose tissue (SAT), and M. longissimus lumborum (MLL) samples were collected. The saturated FA proportions were higher (P < .01) in CAT than in SAT across all breeds, whereas monounsaturated FA proportions were consistently higher (P < .001) in SAT compared to CAT and MLL. Aberdeen Angus bulls were distinguished from the other breeds in the proportions of mostly de novo synthesized C14:0, C16:0, C14:1n-5, C16:1n-7, and conjugated linoleic acid (P < .05). Adipocyte size decreased in the order CAT > SAT > MLL, and the largest adipocytes were observed in CAT of Holstein bulls (P < .05). Gene expression differences were more pronounced between adipose tissue depots than between breeds. The expression levels of ACACA, FASN, and SCD1 genes were related to tissue-specific, and to a lesser extent also breed-specific, differences in FA composition.  相似文献   

10.
The aim of this study was to investigate the accuracy to predict detailed fatty acid (FA) composition of bovine milk by mid-infrared spectrometry, for a cattle population that partly differed in terms of country, breed and methodology used to measure actual FA composition compared with the calibration data set. Calibration equations for predicting FA composition using mid-infrared spectrometry were developed in the European project RobustMilk and based on 1236 milk samples from multiple cattle breeds from Ireland, Scotland and the Walloon Region of Belgium. The validation data set contained 190 milk samples from cows in the Netherlands across four breeds: Dutch Friesian, Meuse-Rhine-Yssel, Groningen White Headed (GWH) and Jersey (JER). The FA measurements were performed using gas–liquid partition chromatography (GC) as the gold standard. Some FAs and groups of FAs were not considered because of differences in definition, as the capillary column of the GC was not the same as used to develop the calibration equations. Differences in performance of the calibration equations between breeds were mainly found by evaluating the standard error of validation and the average prediction error. In general, for the GWH breed the smallest differences were found between predicted and reference GC values and least variation in prediction errors, whereas for JER the largest differences were found between predicted and reference GC values and most variation in prediction errors. For the individual FAs 4:0, 6:0, 8:0, 10:0, 12:0, 14:0 and 16:0 and the groups’ saturated FAs, short-chain FAs and medium-chain FAs, predictions assessed for all breeds together were highly accurate (validation R2 > 0.80) with limited bias. For the individual FAs cis-14:1, cis-16:1 and 18:0, the calibration equations were moderately accurate (R2 in the range of 0.60 to 0.80) and for the individual FA 17:0 predictions were less accurate (R2 < 0.60) with considerable bias. FA concentrations in the validation data set of our study were generally higher than those in the calibration data. This difference in the range of FA concentrations, mainly due to breed differences in our study, can cause lower accuracy. In conclusion, the RobustMilk calibration equations can be used to predict most FAs in milk from the four breeds in the Netherlands with only a minor loss of accuracy.  相似文献   

11.
Fat supplementation plays an important role in defining milk fatty acids (FA) composition of ruminant products. The use of sources rich in linoleic and α-linolenic acid favors the accumulation of conjugated linoleic acids isomers, increasing the healthy properties of milk. Ruminal microbiota plays a pivotal role in defining milk FA composition, and its profile is affected by diet composition. The aim of this study was to investigate the responses of rumen FA production and microbial structure to hemp or linseed supplementation in diets of dairy goats. Ruminal microbiota composition was determined by 16S amplicon sequencing, whereas FA composition was obtained by gas-chromatography technique. In all, 18 pluriparous Alpine goats fed the same pre-treatment diet for 40±7 days were, then, arranged to three dietary treatments consisting of control, linseed and hemp seeds supplemented diets. Independently from sampling time and diets, bacterial community of ruminal fluid was dominated by Bacteroidetes (about 61.2%) and Firmicutes (24.2%) with a high abundance of Prevotellaceae (41.0%) and Veillonellaceae (9.4%) and a low presence of Ruminococcaceae (5.0%) and Lachnospiraceae (4.3%). Linseed supplementation affected ruminal bacteria population, with a significant reduction of biodiversity; in particular, relative abundance of Prevotella was reduced (−12.0%), whereas that of Succinivibrio and Fibrobacter was increased (+50.0% and +75.0%, respectively). No statistically significant differences were found among the average relative abundance of archaeal genera between each dietary group. Moreover, the addition of linseed and hemp seed induced significant changes in FA concentration in the rumen, as a consequence of shift from C18 : 2n-6 to C18 : 3n-3 biohydrogenation pathway. Furthermore, dimethylacetal composition was affected by fat supplementation, as consequence of ruminal bacteria population modification. Finally, the association study between the rumen FA profile and the bacterial microbiome revealed that Fibrobacteriaceae is the bacterial family showing the highest and significant correlation with FA involved in the biohydrogenation pathway of C18 : 3n-3.  相似文献   

12.
The aim of this work was to investigate the variations of milk fatty acid (FA) composition because of changing paddocks in two different rotational grazing systems. A total of nine Holstein and nine Montbéliarde cows were divided into two equivalent groups according to milk yield, fat and protein contents and calving date, and were allocated to the following two grazing systems: a long duration (LD; 17 days) of paddock utilisation on a heterogeneous pasture and a medium duration (MD) of paddock utilisation (7 to 10 days) on a more intensively managed pasture. The MD cows were supplemented with 4 kg of concentrate/cow per day. Grazing selection was characterised through direct observations and simulated bites, collected at the beginning and at the end of the utilisation of two subsequent MD paddocks, and at the same dates for the LD system. Individual milks were sampled the first 3 days and the last 2 days of grazing on each MD paddock, and simultaneously also for the LD system. Changes in milk FA composition at the beginning of each paddock utilisation were highly affected by the herbage characteristics. Abrupt changes in MD milk FA composition were observed 1 day after the cows were moved to a new paddock. The MD cows grazed by layers from the bottom layers of the previous paddock to the top layers of the subsequent new paddock, resulting in bites with high organic matter digestibility (OMD) value and CP content and a low fibre content at the beginning of each paddock utilisation. These changes could induce significant day-to-day variations of the milk FA composition. The milk fat proportions of 16:0, saturated FA and branched-chain FA decreased, whereas proportions of de novo-synthesised FA, 18:0, c9-18:1 and 18:2n-6 increased at paddock change. During LD plot utilisation, the heterogeneity of the vegetation allowed the cows to select vegetative patches with higher proportion of leaves, CP content, OMD value and the lowest fibre content. These small changes in CP, NDF and ADF contents of LD herbage and in OMD values, from the beginning to the end of the experiment, could minimally modify the ruminal ecosystem, production of precursors of de novo-synthesised FA and ruminal biohydrogenation, and could induce only small day-to-day variations in the milk FA composition.  相似文献   

13.
The intra-and interspecific variability of fatty acid (FA) composition of soft corals was examined in the tropical alcyonarian Sarcophyton sp., tropical gorgonian Euplexaura erecta, and boreal alcyonarian Gersemia rubiformis. Characteristic significant differences in the FA composition were found between these species belonging to different taxonomic groups and habitats. We assume that the FA groups 14: 0 + 16: 0 + 18: 3n-6, 16: 2 + 20: 4n-6 + 24: 5n-6, and 18: 1n-7 + 20: 1n-7 + 20: 5n-3 + 24: 6n-3 are characteristic of Sarcophyton sp., E. erecta, and G. rubiformis respectively. There were no significant differences (p > 0.05) between the three soft coral species in the content of oleic, linoleic, and docosahexaenoic acids. The relative content of more than 45% of individual FA did not significantly differ (p > 0.05) between the pairs of species, i.e., intraspecific variations exceeded interspecific ones. The reasons for intraspecific variability of soft coral FA composition are discussed. Control of this variability is needed when using individual FA as chemotaxonomic and food markers.  相似文献   

14.
Even though extensive research has examined the role of nutrition on milk fat composition, there is less information on the impact of forages on milk fatty acid (FA) composition. In the current study, the effect of replacing grass silage (GS) with maize silage (MS) as part of a total mixed ration on animal performance and milk FA composition was examined using eight multiparous mid-lactation cows in a replicated 4 × 4 Latin square with 28-day experimental periods. Four treatments comprised the stepwise replacement of GS with MS (0, 160, 334 and 500 g/kg dry matter (DM)) in diets containing a 54 : 46 forage : concentrate ratio on a DM basis. Replacing GS with MS increased (P < 0.001) the DM intake, milk yield and milk protein content. Incremental replacement of GS with MS in the diet enhanced linearly (P < 0.001) the proportions of 6:0-14:0, decreased (P < 0.01) the 16:0 concentrations, but had no effect on the total milk fat saturated fatty acid content. Inclusion of MS altered the distribution of trans-18:1 isomers and enhanced (P < 0.05) total trans monounsaturated fatty acid and total conjugated linoleic acid content. Milk total n-3 polyunsaturated fatty acid (PUFA) content decreased with higher amounts of MS in the diet and n-6 PUFA concentration increased, leading to an elevated n-6 : n-3 PUFA ratio. Despite some beneficial changes associated with the replacement of GS with MS, the overall effects on milk FA composition would not be expected to substantially improve long-term human health. However, the role of forages on milk fat composition must also be balanced against the increases in total milk and protein yield on diets containing higher proportions of MS.  相似文献   

15.
Conjugated linoleic acid (CLA) dietary supplementation reduces milk fat content and yield, but its effects on lipid metabolism and energy status remain controversial. The objective of this study was to investigate the effects of dietary CLA on adipose tissue (AT) mRNA abundance of genes related to lipid metabolism, plasma indicators of metabolic status, body condition score (BCS) and BW changes in dairy cows. Sixteen multiparous Holstein cows (3.2 ± 1.4 lactations, 615 ± 15 kg BW) were randomly assigned to treatments: 1) CLA; rumen-protected CLA (75 g/d) or 2) Control; equivalent amount of rumen inert fatty acid (FA) as the previous diet (78 g/d), from − 20.2 ± 3.2 (mean ± SEM) to 21 d relative to calving (d 0). Subcutaneous AT was biopsied from the tail-head region at d 21 to determine the mRNA abundance of genes related to lipid metabolism. Blood samples were collected at − 20.2 ± 3.2, 0, 7, 14 and 21 d relative to calving to determine plasma non-esterified fatty acids (NEFA), beta-hydroxybutyrate (BHBA), insulin and glucose. Conjugated linoleic acid decreased milk fat yield and milk fat content by 15 and 16%, respectively. Cows fed CLA had lower plasma NEFA and BHBA and greater glucose and insulin concentrations (P < 0.05). Mean BCS at 21 d postpartum was greater (P < 0.01; 2.89 vs 2.25), and BCS loss from the day of enrollment to 21 d postpartum was reduced (P < 0.01; − 0.13 vs − 0.64) in the CLA group. The expression of acylcoenzyme A oxidase, carnitine palmitoyltransferase 1A, hormone-sensitive lipase, β2 adrenergic receptor and acetyl-CoA carboxylase was downregulated by CLA supplementation, whereas the expression of sterol regulatory element binding protein, lipoprotein lipase and peroxisome proliferator-activated receptor gamma was upregulated (P < 0.01). In summary, CLA-supplemented cows showed signs of better metabolic status and less severe fat mobilization. Moreover, CLA increased mRNA abundance of genes related to lipogenesis and decreased mRNA abundance of genes related to FA oxidation and lipolysis in the AT of dairy cows during early lactation.  相似文献   

16.
Based on potential benefits to human health, there is increasing interest in altering the composition of ruminant-derived foods. Including rapeseeds in the dairy cow diet is an effective strategy for replacing medium-chain saturated fatty acids (SFA) with cis-monounsaturated fatty acids (MUFA) in bovine milk, but there is limited information on the optimum level of supplementation. Decreases in SFA due to plant oils are also accompanied by increases in milk trans fatty acid (FA) content and it is possible that high oleic acid rapeseeds may result in a higher enrichment of cis-9 18:1 and lower increases in trans FAs in milk compared with conventional varieties. Seven multiparous lactating Holstein-Friesian cows were allocated to one of seven treatments in an incomplete Latin square design with five 28-day experimental periods, to evaluate the effect of replacing calcium salts of palm oil distillate (CPO; 41 g/kg diet dry matter, DM) with 128, 168 or 207 g/kg diet DM of conventional (COR) or a high oleic acid (HOR) rapeseed fed as a supplement milled with wheat. Rapeseed variety and inclusion level had no effect (P > 0.05) on DM intake, milk yield and composition. Both rapeseed varieties decreased linearly (P < 0.001) milk fat SFA content, which was partially compensated for by a linear increase (P < 0.001) in cis-9 18:1 concentration. Reductions in milk SFA were also associated with increases (P < 0.05) in trans 18:1 and total trans FA content, with no difference (P > 0.05) between rapeseed varieties. Replacing CPO in the diet with milled rapeseeds had no effect (P > 0.05) on total milk conjugated linoleic acid (CLA) concentration. Relative to a COR, inclusion of a high oleic acid variant in the diet increased (P = 0.01) the ratio of trans-MUFA : trans-polyunsaturated fatty acids in milk that may have implications with respect to cardiovascular disease risk in humans. In conclusion, data indicated that replacing CPO with milled rapeseeds at levels up to 1150 g oil/day could be used as a nutritional strategy to lower milk SFA content without inducing adverse effects on DM intake and milk production. HOR reduced milk fat SFA content to a greater extent than a conventional variety, but did not minimise associated increases in trans FA concentrations. However, the high oleic acid variant did alter the relative abundance of specific trans 18:1, CLA and trans 18:2 isomers compared with conventional rapeseeds.  相似文献   

17.
The endocannabinoid system (ECS) controls feed intake and energy balance in nonruminants. Recent studies suggested that dietary management alters the expression of members of the ECS in the liver and endometrium of dairy cows. The aim of this study was to determine the relationship between body condition score (BCS) loss and the mRNA abundance of genes related to fatty acid metabolism and the ECS in the subcutaneous adipose tissue (AT) of dairy cows. The BCS was determined in multiparous (3.2 ± 0.5 lactations) Holstein cows at −21 and 42 days relative to calving (designated as d = 0). Cows were grouped into three categories according to BCS loss between both assessments as follows: (1) lost ≤0.25 unit (n = 8, low BCS loss (LBL)), (2) lost between 0.5 and 0.75 units (n = 8, moderate BCS loss (MBL)) and (3) lost ≥1 unit (n = 8, high BCS loss (HBL)). Concentrations of haptoglobin and non-esterified fatty acids (NEFAs) were determined in plasma. Real-time PCR was used to determine mRNA abundance of key genes related to fatty acid metabolism, inflammation and ECS in AT. Milk yield (kg/day) between week 2 and 6 post-calving was greater in the LBL group (49.4 ± 0.75) compared to MBL (47.9 ± 0.56) and HBL (47.4 ± 0.62) groups (P < 0.05). The overall mean plasma haptoglobin and NEFA concentrations were greater in MBL and HBL groups compared with the LBL group (P < 0.05). The mRNA abundance of TNF-α, Interleukin-6 (IL-6) and IL-1β was greatest at 21 and 42 days post-calving in HBL, intermediate in MBL and lowest in LBL groups, respectively. Cows in the HBL group had the greatest AT gene expression for carnitine palmitoyltransferase 1A, hormone sensitive lipase and adipose triglyceride lipase at 21 and 42 days post-calving (P < 0.05). Overall, mRNA abundance for very long chain acyl-CoA dehydrogenase and peroxisome proliferator-activated receptor gamma, which are related to NEFA oxidation, were greater in MBL and HBL groups compared to the LBL group at 42 days post-calving. However, mRNA abundance of fatty acid amide hydrolase was lower at 21 and 42 days post-calving in HBL cows than in LBL cows (P < 0.05). In summary, results showed a positive association between increased degree of BCS loss, inflammation and activation of the ECS network in AT of dairy cows. Findings suggest that the ECS might play an important role in fatty acid metabolism, development of inflammation and cow’s adaptation to onset of lactation.  相似文献   

18.
The goal of this study was to examine the fatty acid (FA) profile of two Artemia species, A. persimilis (Argentina) and A. franciscana (Great Salt Lake,Utah; USA) in coexistence at mesocosm scale. The experiment was carried out to 1) evaluate putative differences in the fatty acid composition of both species while they share resources and 2) to investigate the causes of such differences. Although the coexistence of these species in nature has not yet been observed, it remains possible that this situation may arise in the future mainly due to the invasive ability of A. franciscana. FA analyses were performed on individuals as well as on pooled biomasses of each species, and integrated in multivariate principal components analysis (PCA). Comparison of the relative abundance of FA between the two species revealed that interspecific differences in FA composition are greater than intraspecific variability. Higher percentages of unsaturation were found in the fatty acids of A. persimilis compared to A. franciscana, demonstrating that aside from a high phenotypic effect of diet on the FA composition of the animals, a species-specific genotypic effect should not be discarded.  相似文献   

19.
Sheep rearing on mountain pastures is an ancestral tradition in northwestern Slovenia. The indigenous Bovec sheep are widespread there and are well adapted to the rough Alpine rearing conditions. Every year, after weaning, the sheep start grazing in the lowlands (L) and then gradually move to mountain pastures, and finally, to the highland (H) pastures of the Alps. Grazing positively affects the fatty acid (FA) composition in sheep milk fat with increased availability of polyunsaturated FA (PUFA) in grass, and subsequently, in milk. Consequently, the objective of this work was to study the FA profile in sheep milk during grazing in four geographical areas in the Alps. A total of 15 ewes of the Bovec sheep breed were randomly selected and milk samples from these ewes were taken at four different pasture locations that differed with regard to altitude: the L pasture location at an altitude of 480 m, the mountain pastures (M1 and M2) at altitudes of 1100 to 1300 m and 1600 to 1900 m, respectively, and the H pastures at altitudes of 2100 to 2200 m. Milk samples from the ewes were taken during the grazing season from April to September. The chemical and FA composition of the milk samples from each pasture location were determined. There were significant differences in the concentrations of FA among the L, M1, M2 and H milk samples. We observed decreases of the concentrations of saturated FA (SFA) in milk from L to H pastures. The concentration of α-linolenic FA, monounsaturated FA (MUFA), PUFA and n-3 PUFA in milk were increased significantly with pasture altitude. The n-6/n-3 PUFA ratio was reduced by the change of pasture altitude with the lowest value at the M1 pasture (1.5). The concentrations of total SFA decreased significantly and was lowest at the L pasture. Our results underline the importance of the effect of grazing in the Alpine region associated with pasture altitude on the FA profile of sheep milk. The first variation in FA concentration in sheep milk occurred between L and M1, although it was more evident on H pastures in the Alpine mountains. Changes of the FA profile in sheep milk due to pasture altitude were related to variation in FA concentration in the pasture and the botanical composition of the pasture location.  相似文献   

20.
Recent studies suggested the persistence of brown adipocytes in adult humans, as opposed to being exclusively present in infancy. In this study, we investigated the presence of brown-like adipocytes in adipose tissue (AT) samples of children and adolescents aged 0 to 18 years and evaluated the association with age, location, and obesity. For this, we analysed AT samples from 131 children and 23 adults by histological, immunohistochemical and expression analyses. We detected brown-like and UCP1 positive adipocytes in 10.3% of 87 lean children (aged 0.3 to 10.7 years) and in one overweight infant, whereas we did not find brown adipocytes in obese children or adults. In our samples, the brown-like adipocytes were interspersed within white AT of perirenal, visceral and also subcutaneous depots. Samples with brown-like adipocytes showed an increased expression of UCP1 (>200fold), PRDM16 (2.8fold), PGC1α and CIDEA while other brown/beige selective markers, such as PAT2, P2RX5, ZIC1, LHX8, TMEM26, HOXC9 and TBX1 were not significantly different between UCP1 positive and negative samples. We identified a positive correlation between UCP1 and PRDM16 within UCP1 positive samples, but not with any other brown/beige marker. In addition, we observed significantly increased PRDM16 and PAT2 expression in subcutaneous and visceral AT samples with high UCP1 expression in adults. Our data indicate that brown-like adipocytes are present well beyond infancy in subcutaneous depots of non-obese children. The presence was not restricted to typical perirenal locations, but they were also interspersed within WAT of visceral and subcutaneous depots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号