首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adipocytes are one of the non-professional phagocytes postulated to be a haven for Mycobacterium tuberculosis during persistence in the human host. The adipocyte – M. tuberculosis interaction data available to date are ex vivo. The present study was primarily aimed to investigate M. tuberculosis infection of adipocytes in course of infection of mouse model. Using primary murine adipocytes, the study first confirmed the infection and immunomodulation of natural adipocytes by M. tuberculosis. The bacilli could be isolated form visceral, subcutaneous, peri renal and mesenteric adipose depots of immunocompetent mice infected with M. tuberculosis intravenously. The bacilli could be isolated from adipocytes and the stromal vascular fraction, even though the numbers were significantly higher in the latter. The bacterial burden in the adipose depots was comparable to those in lungs in the early phase of infection. But with time, the burden in the adipose depots was either decreased or kept under control, despite the increasing burden in the lungs. Infected mice treated with standard anti tubercular drugs, despite effective elimination of bacterial loads in the lungs, continued to harbour M. tuberculosis in adipose depots at loads similar to untreated mice in the late infection phase.  相似文献   

2.
Human alveolar macrophages (AMphi) undergo apoptosis following infection with Mycobacterium tuberculosis in vitro. Apoptosis of cells infected with intracellular pathogens may benefit the host by eliminating a supportive environment for bacterial growth. The present study compared AMphi apoptosis following infection by M. tuberculosis complex strains of differing virulence and by Mycobacterium kansasii. Avirulent or attenuated bacilli (M. tuberculosis H37Ra, Mycobacterium bovis bacillus Calmette-Guérin, and M. kansasii) induced significantly more AMphi apoptosis than virulent strains (M. tuberculosis H37Rv, Erdman, M. tuberculosis clinical isolate BMC 96.1, and M. bovis wild type). Increased apoptosis was not due to greater intracellular bacterial replication because virulent strains grew more rapidly in AMphi than attenuated strains despite causing less apoptosis. These findings suggest the existence of mycobacterial virulence determinants that modulate the apoptotic response of AMphi to intracellular infection and support the hypothesis that macrophage apoptosis contributes to innate host defense in tuberculosis.  相似文献   

3.
Mycobacterium tuberculosis, the causative agent of tuberculosis, is an ancient pathogen and a major cause of death worldwide. Although various virulence factors of M. tuberculosis have been identified, its pathogenesis remains incompletely understood. TlyA is a virulence factor in several bacterial infections and is evolutionarily conserved in many Gram-positive bacteria, but its function in M. tuberculosis pathogenesis has not been elucidated. Here, we report that TlyA significantly contributes to the pathogenesis of M. tuberculosis. We show that a TlyA mutant M. tuberculosis strain induces increased IL-12 and reduced IL-1β and IL-10 cytokine responses, which sharply contrasts with the immune responses induced by wild type M. tuberculosis. Furthermore, compared with wild type M. tuberculosis, TlyA-deficient M. tuberculosis bacteria are more susceptible to autophagy in macrophages. Consequently, animals infected with the TlyA mutant M. tuberculosis organisms exhibited increased host-protective immune responses, reduced bacillary load, and increased survival compared with animals infected with wild type M. tuberculosis. Thus, M. tuberculosis employs TlyA as a host evasion factor, thereby contributing to its virulence.  相似文献   

4.

Background

An important mechanism of Mycobacterium tuberculosis pathogenesis is the ability to control cell death pathways in infected macrophages: apoptotic cell death is bactericidal, whereas necrotic cell death may facilitate bacterial dissemination and transmission.

Methods

We examine M.tuberculosis control of spontaneous and chemically induced macrophage cell death using automated confocal fluorescence microscopy, image analysis, flow cytometry, plate-reader based vitality assays, and M.tuberculosis strains including H37Rv, and isogenic virulent and avirulent strains of the Beijing lineage isolate GC1237.

Results

We show that bacterial virulence influences the dynamics of caspase activation and the total level of cytotoxicity. We show that the powerful ability of M.tuberculosis to inhibit exogenously stimulated apoptosis is abrogated by loss of virulence. However, loss of virulence did not influence the balance of macrophage apoptosis and necrosis – both virulent and avirulent isogenic strains of GC1237 induced predominantly necrotic cell death compared to H37Rv which induced a higher relative level of apoptosis.

Conclusions

This reveals that macrophage necrosis and apoptosis are independently regulated during M. tuberculosis infection of macrophages. Virulence affects the level of host cell death and ability to inhibit apoptosis but other strain-specific characteristics influence the ultimate mode of host cell death and alter the balance of apoptosis and necrosis.  相似文献   

5.
Mycobacterium tuberculosis strains CDC1551 and Erdman were used to assess cytotoxicity in infected A549 human alveolar epithelial cell monolayers. Strain CDC1551 was found to induce qualitatively greater disruption of A549 monolayers than was strain Erdman, although total intracellular and cell-associated bacterial growth rates over the course of the infections were not significantly different. Cell-free culture supernatants from human monocytic cells infected with either of the 2 M. tuberculosis strains produced a cytotoxic effect on A549 cells, correlating with the amount of tumor necrosis factor alpha (TNF-α) released by the infected monocytes. The addition of TNF-α-neutralizing antibodies to the supernatants from infected monocyte cultures did prevent the induction of a cytotoxic effect on A549 cells overlaid with this mixture but did not prevent the death of epithelial cells when added prior to infection with M. tuberculosis bacilli. Thus, these data agree with previous observations that lung epithelial cells infected with M. tuberculosis bacilli are rapidly killed in vitro. In addition, the data indicate that some of the observed epithelial cell killing may be collateral damage; the result of TNF-α released from M. tuberculosis-infected monocytes.  相似文献   

6.
Neutrophils enter sites of infection, where they can eliminate pathogenic bacteria in an oxidative manner. Despite their predominance in active tuberculosis lesions, the function of neutrophils in this important human infection is still highly controversial. We observed that virulent Mycobacterium tuberculosis survived inside human neutrophils despite prompt activation of these defence cells' microbicidal effectors. Survival of M. tuberculosis was accompanied by necrotic cell death of infected neutrophils. Necrotic cell death entirely depended on radical oxygen species production since chronic granulomatous disease neutrophils were protected from M. tuberculosis-triggered necrosis. More, importantly, the M. tuberculosis ΔRD1 mutant failed to induce neutrophil necrosis rendering this strain susceptible to radical oxygen species-mediated killing. We conclude that this virulence function is instrumental for M. tuberculosis to escape killing by neutrophils and contributes to pathogenesis in tuberculosis.  相似文献   

7.
Experiments in the late 19th century sought to define the host specificity of the causative agents of tuberculosis in mammals. Mycobacterium tuberculosis, the human tubercle bacillus, was independently shown by Smith, Koch, and von Behring to be avirulent in cattle. This finding was erroneously used by Koch to argue the converse, namely that Mycobacterium bovis, the agent of bovine tuberculosis, was avirulent for man, a view that was subsequently discredited. However, reports in the literature of M. tuberculosis isolation from cattle with tuberculoid lesions suggests that the virulence of M. tuberculosis for cattle needs to be readdressed. We used an experimental bovine infection model to test the virulence of well-characterized strains of M. tuberculosis and M. bovis in cattle, choosing the genome-sequenced strains M. tuberculosis H37Rv and M. bovis 2122/97. Cattle were infected with approximately 106 CFU of M. tuberculosis H37Rv or M. bovis 2122/97, and sacrificed 17 weeks post-infection. IFN-γ and tuberculin skin tests indicated that both M. bovis 2122 and M. tuberculosis H37Rv were equally infective and triggered strong cell-mediated immune responses, albeit with some indication of differential antigen-specific responses. Postmortem examination revealed that while M. bovis 2122/97–infected animals all showed clear pathology indicative of bovine tuberculosis, the M. tuberculosis–infected animals showed no pathology. Culturing of infected tissues revealed that M. tuberculosis was able to persist in the majority of animals, albeit at relatively low bacillary loads. In revisiting the early work on host preference across the M. tuberculosis complex, we have shown M. tuberculosis H37Rv is avirulent for cattle, and propose that the immune status of the animal, or genotype of the infecting bacillus, may have significant bearing on the virulence of a strain for cattle. This work will serve as a baseline for future studies into the genetic basis of host preference, and in particular the molecular basis of virulence in M. bovis.  相似文献   

8.
Though much is known about the function of T lymphocytes in the adaptive immune response against Mycobacterium tuberculosis, comparably little is understood regarding the corresponding role of B lymphocytes. Indicating B cells as components of lymphoid neogenesis during pulmonary tuberculosis, we have identified ectopic germinal centers (GCs) in the lungs of infected mice. B cells in these pulmonary lymphoid aggregates express peanut agglutinin and GL7, two markers of GC B cells, as well as CXCR5, and migrate in response to the lymphoid-associated chemokine CXCL13 ex vivo. CXCL13 is negatively regulated by the presence of B cells, as its production is elevated in lungs of B cell-deficient (B cell(-/-)) mice. Upon aerosol with 100 CFU of M. tuberculosis Erdman, B cell(-/-) mice have exacerbated immunopathology corresponding with elevated pulmonary recruitment of neutrophils. Infected B cell(-/-) mice show increased production of IL-10 in the lungs, whereas IFN-gamma, TNF-alpha, and IL-10R remain unchanged from wild type. B cell(-/-) mice have enhanced susceptibility to infection when aerogenically challenged with 300 CFU of M. tuberculosis corresponding with elevated bacterial burden in the lungs but not in the spleen or liver. Adoptive transfer of B cells complements the phenotypes of B cell(-/-) mice, confirming a role for B cells in both modulation of the host response and optimal containment of the tubercle bacillus. As components of ectopic GCs, moderators of inflammatory progression, and enhancers of local immunity against bacterial challenge, B cells may have a greater role in the host defense against M. tuberculosis than previously thought.  相似文献   

9.
The blockade of sPLA-2, as well as the removal of calcium during the infection with Mycobacterium tuberculosis, prevents necrosis in mononuclear phagocytes. In addition, previous evidence indicates that the necrosis is modulated by cytokines and may condition the inflammatory environment. The production of cytokines and chemokines in response to infection with M. tuberculosis, fatty acid profile and the lactate dehydrogenase activity in mononuclear phagocytes from tuberculosis patients and healthy controls were interrelated using a principal component analysis in order to establish whether there was an association between the induction and effector stages of necrosis with the production of cytokines and chemokines.Differentiation increased the ratio of saturated/unsaturated fatty acids. The oleate and palmitate correlated with differentiation, laureate, arachidonate and linolenate with infection and necrosis correlates with the production of IL-10. Monocytes from tuberculosis patients seem to be lees differentiated ex vivo.  相似文献   

10.

Background

It has been hypothesized that the virulence of lab-passaged Mycobacterium tuberculosis and recombinant M. tuberculosis mutants might be reduced due to multiple in vitro passages, and that virulence might be augmented by passage of these strains through mice before quantitative virulence testing in the mouse or guinea pig aerosol models.

Methodology/Principal Findings

By testing three M. tuberculosis H37Rv samples, one deletion mutant, and one recent clinical isolate for survival by the quantitative organ CFU counting method in mouse or guinea pig aerosol or intravenous infection models, we could discern no increase in bacterial fitness as a result of passaging of M. tuberculosis strains in mice prior to quantitative virulence testing in two animal models. Surface lipid expression as assessed by neutral red staining and thin-layer chromatography for PDIM analysis also failed to identify virulence correlates.

Conclusions/Significance

These results indicate that animal passaging of M. tuberculosis strains prior to quantitative virulence testing in mouse or guinea pig models does not enhance or restore potency to strains that may have lost virulence due to in vitro passaging. It is critical to verify virulence of parental strains before genetic manipulations are undertaken and comparisons are made.  相似文献   

11.
We examined the ability of recombinant guinea pig IL-8 (CXCL8) to activate neutrophils upon infection with virulent Mycobacterium tuberculosis. Using a Transwell insert culture system, contact-independent cell cultures were studied in which rgpIL-8-treated neutrophils were infected with virulent M. tuberculosis in the upper well, and AM were cultured in the lower well. IL-1β and TNF-α mRNA expression was significantly upregulated by AM. Neutralizing anti-rgpTNF-α polyclonal antibody abrogated the response of AM to supernatants from the rgpIL-8-treated, infected neutrophils, while an anti-rgpIL-8 polyclonal antibody had no effect. This suggests that TNF-α produced by rgpIL-8 treated, infected neutrophils may play an important role in the activation of AM in the early response of the host against M. tuberculosis infection. Significant induction of apoptosis in M. tuberculosis-infected neutrophils was observed as compared to the uninfected neutrophils. Feeding of infected, apoptotic neutrophils to AM induced a significant up-regulation of TNF-α and IL-1β mRNA compared to AM exposed to staurosporine-treated apoptotic neutrophils. Suppressed intracellular mycobacterial growth was also seen in AM fed with infected, apoptotic neutrophils as compared to the AM infected with M. tuberculosis H37Rv alone. Taken together, these data suggest that neutrophil–macrophage interactions may contribute to host defense against M. tuberculosis infection.  相似文献   

12.
The prophylactic capacity of the RUTI® vaccine, based on fragmented cells of Mycobacterium tuberculosis, has been evaluated in respect to aerosol challenge with virulent bacilli. Subcutaneous vaccination significantly reduced viable bacterial counts in both lungs and spleens of C57Bl mice, when challenged 4 weeks after vaccination. RUTI® protected the spleen less than BCG. Following a 9 month vaccination-challenge interval, protection was observed for the lungs, but not for the spleen. Survival of infected guinea pigs was prolonged by vaccination given 5 weeks before challenge. Inoculations of RUTI® shortly after infection significantly reduced the viable bacterial counts in the lungs, when compared with infected control mice. Thus, vaccination by RUTI® has potential for both the prophylaxis and immunotherapy of tuberculosis.  相似文献   

13.
Intracellular pathogen Mycobacterium tuberculosis survives and replicates in macrophages but limited information is available on its replication into non-phagocytic cells. Here we study the role of the M. tuberculosis virulence gene phoP in the intracellular growth with rat and human lung fibroblasts. In contrast to macrophages, attenuated M. tuberculosis phoP mutant was able to multiply intracellularly in fibroblasts at the same level as the virulent M. tuberculosis. However, when M. tuberculosis virulence was studied using human foetal lung fibroblasts, MRC-5 cell line, the virulent strain caused a significant damage in cells compared with attenuated strains BCG and M. tuberculosis phoP mutant. We analysed the effect of cytoskeleton inhibitors in NRK-49F fibroblasts. M. tuberculosis invasion was not inhibited, suggesting that mycobacterial uptake was microtubule and microfilament independent. Our results suggest that PhoP in M. tuberculosis does not regulate intracellular replication in fibroblasts, contrary to what happens in macrophages. The ability of M. tuberculosis phoP mutant to replicate within non-phagocytic cells, such as fibroblasts, without causing damage, could be a potential advantage for a live attenuated vaccine against tuberculosis.  相似文献   

14.
Tuberculosis, caused by Mycobacterium (M.) tuberculosis, is a devastating infectious disease causing many deaths worldwide. Non-specific host defense mechanisms such as the coagulation and fibrinolytic system may give insight in possible new therapeutic targets. Plasminogen activator inhibitor type-1 (PAI-1), an important regulator of inflammation and fibrinolysis, might be of interest as tuberculosis patients have elevated plasma levels of PAI-1. In this study we set out to investigate the role of PAI-1 during tuberculosis in vivo. Wildtype (WT) and PAI-1 deficient (PAI-1?/?) mice were intranasally infected with M. tuberculosis H37rv and sacrificed after 2, 5 and 29 weeks. Five weeks post-infection, bacterial loads in lungs of PAI-1?/? mice were significantly higher compared to WT mice, while no differences were seen 2 and 29 weeks post-infection. At two weeks post-infection increased influx of macrophages and lymphocytes was observed. PAI-1 deficiency was associated with a reduced cytokine response in the lungs; however, upon stimulation with tuberculin purified protein derivative (PPD), PAI-1?/? splenocytes released increased levels of IFN-γ compared to WT. No clear differences were found between PAI-1?/? and WT mice at 29 weeks after infection. In conclusion, these data suggest that PAI-1 contributes to transient, non-specific changes in immunity during the early phase of murine tuberculosis.  相似文献   

15.
Mycobacterium tuberculosis CDC1551, a clinical isolate reported to be hypervirulent and to grow faster than other isolates, was compared with two other clinical isolates (HN60 and HN878) and two laboratory strains (H37Rv and Erdman). The initial (1-14 days) growth of CDC1551, HN60, HN878, and H37Rv was similar in the lungs of aerosol-infected mice, but growth of Erdman was slower. Thereafter, the growth rate of CDC1551 decreased relative to the other strains which continued to grow at comparable rates up to day 21. In the lungs of CDC1551-infected mice, small well-organized granulomas with high levels of TNF-alpha, IL-6, IL-10, IL-12, and IFN-gamma mRNA were apparent sooner than in lungs of mice infected with the other strains. CDC1551-infected mice survived significantly longer. These findings were confirmed in vitro. The growth rates of H37Rv and CDC1551 in human monocytes were the same, but higher levels of TNF-alpha, IL-10, IL-6, and IL-12 were induced in monocytes after infection with CDC1551 or by exposure of monocytes to lipid fractions from CDC1551. CD14 expression on the surface of the monocytes was up-regulated to a greater extent by exposure to the lipids of CDC1551. Thus, CDC1551 is not more virulent than other M. tuberculosis isolates in terms of growth in vivo and in vitro, but it induces a more rapid and robust host response.  相似文献   

16.
It has been proposed that Mycobacterium tuberculosis virulent strains inhibit apoptosis and trigger cell death by necrosis of host macrophages to evade innate immunity, while non-virulent strains induce typical apoptosis activating a protective host response. As part of the characterization of a novel tuberculosis vaccine candidate, the M. tuberculosis phoP mutant SO2, we sought to evaluate its potential to induce host cell death. The parental M. tuberculosis MT103 strain and the current vaccine against tuberculosis Bacillus Calmette-Guérin (BCG) were used as comparators in mouse models in vitro and in vivo. Our data reveal that attenuated SO2 was unable to induce apoptotic events neither in mouse macrophages in vitro nor during lung infection in vivo. In contrast, virulent MT103 triggers typical apoptotic events with phosphatidylserine exposure, caspase-3 activation and nuclear condensation and fragmentation. BCG strain behaved like SO2 and did not induce apoptosis. A clonogenic survival assay confirmed that viability of BCG- or SO2-infected macrophages was unaffected. Our results discard apoptosis as the protective mechanism induced by SO2 vaccine and provide evidence for positive correlation between classical apoptosis induction and virulent strains, suggesting apoptosis as a possible virulence determinant during M. tuberculosis infection.  相似文献   

17.
The role of neutrophils in tuberculosis (TB), and whether neutrophils express granzyme B (grzB), a pro‐apoptotic enzyme associated with cytotoxic T cells, is controversial. We examined neutrophils in peripheral blood (PB) and lung granulomas of Mycobacterium tuberculosis‐infected cynomolgus macaques and humans to determine whether mycobacterial products or pro‐inflammatory factors induce neutrophil grzB expression. We found large numbers of grzB‐expressing neutrophils in macaque and human granulomas and these cells contained more grzB+ granules than T cells. Higher neutrophil, but not T cell, grzB expression correlated with increased bacterial load. Although unstimulated PB neutrophils lacked grzB expression, grzB expression increased upon exposure to M. tuberculosis bacilli, M. tuberculosis culture filtrate protein or lipopolysaccharide from Escherichia coli. Perforin is required for granzyme‐mediated cytotoxicity by T cells, but was not observed in PB or granuloma neutrophils. Nonetheless, stimulated PB neutrophils secreted grzB as determined by enzyme‐linked immunospot assays. Purified grzB was not bactericidal or bacteriostatic, suggesting secreted neutrophil grzB acts on extracellular targets, potentially enhancing neutrophil migration through extracellular matrix and regulating apoptosis or activation in other cell types. These data indicate mycobacterial products and the pro‐inflammatory environment of granulomas up‐regulates neutrophil grzB expression and suggests a previously unappreciated aspect of neutrophil biology in TB.  相似文献   

18.
Mycobacterium tuberculosis causes a variety of host clinical outcomes. We previously showed that M. tuberculosis disrupted in an operon called mce1 proliferates unchecked in BALB/c mouse lungs. The observed outcome could be attributed either to the mutant bacterial burden or to the host immunopathologic response. To differentiate these possibilities, we studied the outcomes of infection in a mouse strain (C57BL/6) less susceptible to M. tuberculosis than BALB/c. We found that the mutant infection reached a plateau in the lungs at a rate similar to that of the wild type. All mice infected with the mutant, but only half of the groups of mice infected with the wild type or complemented strain, died by 40 weeks (p<0.05). At 12-21 weeks of infection, histological examination of the lungs of mice infected with the mutant showed a diffuse pattern of lymphocyte infiltration, while that of mice infected with the other strains exhibited a nodular cellular infiltration pattern. Surprisingly, the number of bacilli recovered from the lungs was similar in all three groups. These observations suggest that rather than the bacterial burden, products of the mce1 operon may directly or indirectly modulate the host immune response that is protective to both the tubercle bacilli and the host.  相似文献   

19.
20.
Several independent studies have recently converged upon the conclusion that the human bacterial pathogen Mycobacterium tuberculosis encounters copper during infections. At least three independently regulated pathways respond to excess copper and are required for the full virulence of M. tuberculosis in animals. In this review, I will discuss the functions of the best-characterized copper-responsive proteins in M. tuberculosis, the potential sources of copper during an infection, and remaining questions about the interface between copper and tuberculosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号