首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Initial brooding temperature is critical for post-hatch growth of broiler chickens. A study was conducted to investigate the early age thermal manipulation (EATM) on the performance and physiological responses broiler chickens under hot humid tropical climate. A total of 260 unsexed day-old Arbor-acre broiler chicks were assigned to five thermal treatments of brooding temperature regimens having 4 replicates of thirteen birds each. The heat treatments were: initial brooding temperature of 35 °C for the first 2 days, and then decreased subsequently, gradually to 22 °C at 21 d of age (CT), initial temperature of 35 °C, sustained for the first 4 days and then decreased gradually (conventionally) (FD), initial temperature of 35 °C for the first 7 days (SD), the birds in CT, but the brooding temperature was raised to 35 °C again for another 3 days from day 7 (SD3), initial brooding temperature of 35 °C for the first 10 days (TD). Data were collected on daily feed intake and weekly body weights. Blood samples were collected from 8 birds per treatment weekly for the determination of plasma uric acid, triglycerides, triiodothyronine (T3) and creatinine kinase. Data obtained were laid out in a Completely Randomized Design (CRD). Results showed that the final weights of the birds in FD were higher (P < 0.05) than those of the other treatments at the finisher phase. Feed intake of the birds in FD was higher than those of SD3 and TD. FCR of broiler chickens in CT, SD, SD3 and TD was higher than that of FD. The rectal temperature, plasma MDA and blood glucose of the thermally challenged birds in FD was generally better (P < 0.05) than those of the other treatments. It was concluded that EATM can be used to improve performance and also protect broiler chickens from acute heat stress at market age.  相似文献   

2.
Acute heat stress induces oxidative stress in broiler chickens   总被引:3,自引:0,他引:3  
The stress responses and possible oxidative damage in plasma, liver and heart were investigated in broiler chickens acutely exposed to high temperature. Eighty 5-week old broiler chickens were exposed to 32 degrees C for 6h. The extent of lipid peroxidation, activities of superoxide dismutase and total antioxidant power in plasma, liver and heart tissues were investigated. Meanwhile, the blood metabolites such as glucose, urate, triiodothyronine, thyroxine, corticosterone, ceruloplasmin and creatine kinase were measured before and after 3 and 6h of heat exposure. The results showed that oxidative stress could be induced in 5-week old broiler chickens by acute heat exposure (32 degrees C, 6h). The results suggest that the elevated body temperature can induce the metabolic changes that are involved in the induction of oxidative stress. The liver is more susceptible to oxidative stress than heart during acute heat exposure in broiler chickens. The oxidative stress should be considered as part of the stress response of broiler chickens to heat exposure.  相似文献   

3.
The optimal temperature at which an organism grows and develops is commonly correlated with latitude and elevation; however, the maximum temperature for physiological performance often is not. This makes performance at temperatures between the optimum and the maximum of particular interest. Temperature can influence long‐term performance (growth and development), as well as short‐term performance (heat shock protein) responses differentially. In the present study, two populations of the clouded sulphur butterfly Colias eriphyle Edwards that differ in elevation, thermal regime and optimal and maximum temperatures are studied to quantify their responses to repeated, sub‐lethal heat treatments early in development (second instar). Heat treatments accelerate development during the second to fourth instars in both populations initially, although this effect disappears by pupation. Heat treatment decreases pupal mass in the lower elevation population, suggesting that repeated exposure to high temperatures early in development may reduce final size and fecundity in this population. Heat shock protein gene (hsp70) expression levels in the lower elevation (1633 m a.s.l.) population are highest 24 h after the start of the heat treatment and then the fall to pre‐exposure levels by 36–72 h, suggesting a rapid response to stressful temperatures. By contrast, heat treatment has no significant effect on pupal mass in the higher elevation (2347 m a.s.l.) population. This population has higher levels of hsp70 expression overall but constant expression levels, suggesting that the temperature treatments used are insufficient to elicit a heat stress response. Overall, the effects of repeated exposure to sub‐lethal high temperatures early in development on growth, final size and gene expression differ between populations that differ in thermal sensitivity.  相似文献   

4.
Understanding the variations of muscle and plasma metabolites in response to high environmental temperature can provide important information on the molecular mechanisms related to body energy homeostasis in heat-stressed broiler chickens. In this study, we investigated the effect of chronic heat stress conditions on the breast muscle (Pectoralis major) and plasma metabolomics profile of broiler chickens by means of an innovative, high-throughput analytical approach such as the proton nuclear magnetic resonance (1H NMR) spectrometry. A total of 300 Ross 308 male chicks were split into two experimental groups and raised in either thermoneutral conditions for the entire rearing cycle (0–41 days) (TNT group; six replicates of 25 birds/each) or exposed to chronic heat stress conditions (30 °C for 24 h/day) from 35 to 41 days (CHS group; six replicates of 25 birds/each). At processing (41 days), plasma and breast muscle samples were obtained from 12 birds/experimental group and then subjected to 1H NMR analysis. The reduction of BW and feed intake as well as the increase in rectal temperature and heterophil: lymphocyte ratio confirmed that our experimental model was able to stimulate a thermal stress response without significantly affecting mortality. The 1H NMR analysis revealed that a total of 26 and 19 molecules, mostly related to energy and protein metabolism as well as antioxidant response, showed significantly different concentrations respectively in the breast muscle and plasma in response to the thermal challenge. In conclusion, the results obtained in this study indicated that chronic heat stress significantly modulates the breast muscle and plasma metabolome in fast-growing broiler chickens, allowing to delineate potential metabolic changes that can have important implications in terms of body energy homeostasis, growth performance and product quality.  相似文献   

5.
Summary Genetic improvement in growth of poultry has traditionally proceeded via selection for body weight at a fixed age. Due to increased maintenance costs and reproductive problems of adult broiler breeders, the potential for genetic manipulation of the growth curve has been receiving increased interest. Research of both male and female progeny of a three-way diallel cross was used to investigate the inheritance of growth curve parameters. The Laird form of the Gompertz equation was used to determine growth curve parameters, and was suited to the juvenile growth data frequently collected from meat-type chickens. Growth rate exhibited significant heterosis due to both autosomes and the sex chromosomes. Age at inflection point also exhibited significant average heterosis, though only among females. Growth rate was also influenced by average line effects, as was age at inflection point. Maternal effects had no influence on growth curve parameters, while additive sex linkage was observed for growth rate. Phenotypic and genetic correlations were calculated among the growth curve parameters and suggest that specific breeding programs could alter the growth trajectory of the contemporary broiler chicken. Moderate heritabilities were observed for the growth curve parameters and support the hypothesis that the growth curve could be altered via genetic manipulation of early postnatal growth, especially during the first 14 days post-hatch.  相似文献   

6.
An experiment was conducted to elucidate the influence of four constant ambient temperatures (20°, 25°, 30° and 35°C) on the performance and physiological reactions of male commercial broiler chicks from 3 to 7 weeks of age. A 12 h light-dark cycle was operated, while relative humidity and air circulation were not controlled. Exposure of broiler chickens to the 20°, 25°, 30° and 35°C treatments showed highly significant (P<0.0001) depression in growth rate, food intake and efficiency of food utilization, and a significant increase in water consumption for the 30° and 35°C groups. Mortality was, however, not affected by the temperature treatments. Changes in physiological status, such as increased rectal temperatures, decreased concentration of red blood cells, haemoglobin, haematocrit, and total plasma protein were observed in birds housed in the higher temperature (30° and 35°C) environments. Moreover, in these broiler chickens, there was an increased blood glucose concentration and a decreased thyroid gland weight. These results indicate that continuous exposure of broiler chickens to high ambient temperatures markedly affects their performance and physiological response.  相似文献   

7.
 An investigation was carried out to verify whether the heat stress hyperthermia response of broilers is prostaglandin-dependent. Male broiler chickens of the Hubbard-Petterson strain, aged 35–49 days, were used. Chickens were injected with indomethacin (1 mg/kg intraperitoneally ) 15 min before or 2 h after heat exposure (at 35°C for 4 h), and rectal temperature was measured before injection and up to 4 h thereafter. Birds were separated into two groups with and without access to water during heat stress. The increase in rectal temperature was lower (P<0.05) in birds with access to drinking water during heat exposure. All birds injected with indomethacin exhibited an increase in rectal temperature, irrespective of whether indomethacin was administered before or in the course of the rise in temperature. The results revealed that the increase in rectal temperature during heat exposure is not prostaglandin-dependent, and that the use of cyclooxigenase inhibitors is not recommended to attenuate heat stress hyperthermia in broiler chickens. Received: 15 December 1997 / Revised: 29 June 1998 / Accepted: 31 July 1998  相似文献   

8.
Ecotherms adjust their physiology to environmental temperatures. Long‐term exposures to heat or cold typically induce acclimation responses that generate directional, but reversible shifts in thermal tolerance and performance. However, less is known about how short exposure in different life stages will affect the adult phenotype. In the present study, we compared the effects of long‐term temperature exposure to 15, 19 and 31 °C with that of brief (16 h) exposure periods at the same temperatures in Drosophila melanogaster eggs, larvae, pupae, or adults, respectively. The acclimation responses are evaluated using activity measurements at 11, 15, 19, 27, 31 and 33 °C and by measuring upper and lower thermal limits (CTmax and CTmin) in 5‐day‐old adult males. As expected, long‐term cold exposure reduces relative CTmin, whereas long‐term heat exposure increases relative CTmax. By contrast, we find little effect on thermal limits when using short‐term exposures at different life stages. Long‐term exposures to 31 and 15 °C both suppressed activity relative to the 19 °C control, suggesting that development at high and low temperatures may lead to reduced activity later in life. Short‐term cold exposure early in development reduces activity in the adult stage, whereas the effects of short‐term heat exposure on behaviour are dependent on life stage and test temperature. Together, our results highlight how the thermal sensitivity of the trait measured determines the ability to detect acclimation responses.  相似文献   

9.
Stress based on high temperature and humidity reduces the production performance of fast-growing broilers and causes high mortality. Temperatures higher than optimum have been applied to broilers in the embryonic period in order to overcome thermal stress. This study was conducted to investigate the effects of exposure to two long-term high-thermal environments on the developmental stability of embryonic growth, hatchability and chick quality. For this purpose, 600 broiler eggs were incubated. Treatments consisted of eggs incubated at 37.8°C at 55% relative humidity throughout (control), heated to 39.6°C at 60% relative humidity for 6 h daily from 0 to 8th day, and heated to 39.6°C at 60% relative humidity for 6 h daily from the 10 to 18th day. Embryo weights and lengths of face, wing, femur, tibia and metatarsus were measured daily between the 10th and 21st day of the experiment. Daily relative asymmetry values of bilateral traits were estimated. The hatchability, the weight of the 1-day-old chicks and chick quality were determined. In conclusion, no negative effects of the treatments of the long-term high-thermal environment in the early and late stages of incubation for epigenetic adaptation were determined on the embryo morphology, development stability and weight of the chick. Moreover, regressed hatchability of embryos that were exposed to a long-term high-thermal environment was detected. Especially between the 10 and 18th day, the thermal manipulation considerably reduced the quality of the chicks. Acclimation treatments of high temperature on the eggs from cross-breeding flocks should not be made long term; instead, short-term treatments should be made by determining the stage that generates epigenetic adaptation.  相似文献   

10.
The embryonic modal value of heart rate (MHR) differs between broiler and White Leghorn chickens, but the initial development of cholinergic chronotropic control of embryonic heart rate (HR) does not. Thus, we hypothesized that hatchling MHR should also differ between broiler and White Leghorn strains, while the development of a physiological regulation, such as the endothermic HR response, should not be different between hatchlings of the two strains. To test this, we measured the response of HR and cloaca temperature (Tb) to alteration of ambient temperature (Ta); i.e., 35 degrees C-25 degrees C-35 degrees C, in four groups of hatchlings on Days 0 and 1 post-hatch. Fertile eggs of both strains with similar mass were incubated simultaneously in the same incubator. Eggs of broiler chickens hatched approximately 7 h earlier than White Leghorn chicken eggs. Chick mass at hatching was identical in both strains, but diverged during 2 days after hatching. Tb measured at the initial Ta of 35 degrees C was identical in both strains. MHR at the same Ta was approximately 30 bpm lower in broiler chicks than in White Leghorn chicks, but the difference was reversed to that observed in the embryos. The endothermic HR response was advanced by approximately 1 day in broiler chicks compared with White Leghorn chicks. As a result, eggs of similar mass in both strains produced chicks with similar mass and Tb at hatching, but during 2 days of post-hatch life their masses diverged and regulation of the endothermic HR response developed earlier in broiler than in White Leghorn hatchlings. This physiological heterochrony between strains is most likely due to genetic selection for fast growth in broiler chickens.  相似文献   

11.
Broiler chickens are selected to undergo a rapid six-week hatch-to-slaughter growth phase to attain large body and muscle mass. Broilers have relatively high resting and locomotor metabolic costs suggesting that adaptive thermoregulatory mechanisms are required to dissipate excess heat. Using thermal imaging in the growing broiler we characterised the trajectory of radiative and convective cooling in still air across broiler development. Scaling of head, tarsus and toe surface area did not deviate from body mass2/3 while torso area increased with positive allometry, body mass0.82, reflecting increased feather coverage and/or disproportionate abdominal/thoracic growth. Despite relatively increased area, the body became less effective for heat transfer presumably due to increasing feather coverage. Conversely, the magnitude of heat exchange from the distal hindlimbs was improved in larger birds. Overall capacity to transfer heat by convection and radiation in still air was attenuated over development, since the proportion of resting metabolic rate accounted for decreased in standing and sitting postures. This physiological constraint could be ameliorated by increased latent heat transfer or provision of environmental ventilation, which we modelled according to industrial guidelines. Based on models, higher airspeeds coincided with improved convective cooling that assisted in maintaining the proportion of RMR accounted for by convective and radiative heat transfer. These data highlight the potentially adverse thermoregulatory effects of rapid growth rate and body mass increases, which may contribute to the increased sedentary resting and decreased locomotor behaviour observed in large broilers.  相似文献   

12.
The objective of this study was to determine if a diet supplemented simultaneously with vitamins C and E would alleviate the negative effects of heat stress, applied between 28 and 42 days of age, on performance, carcass and meat quality traits of broiler chickens. A total of 384 male broiler chickens were assigned to a completely randomized design, with a 2×3 factorial arrangement (diet with or without vitamin supplementation and two ambient temperatures plus a pair-feeding group) and 16 replicates. Chickens were kept in thermoneutral conditions up to 28 days of age. They were then housed in groups of four per cage, in three environmentally controlled chambers: two thermoneutral (22.5 and 22.6°C) and one for heat stress (32°C). Half the chickens were fed a diet supplemented with vitamins C (257 to 288 mg/kg) and E (93 to 109 mg/kg). In the thermoneutral chambers, half of the chickens were pair-fed to heat stressed chickens, receiving each day the average feed intake recorded in the heat stress chamber in the previous day. Meat physical quality analyses were performed on the pectoralis major muscle. No ambient temperature×diet supplementation interaction effects were detected on performance, carcass, or meat quality traits. The supplemented diet resulted in lower growth performance, attributed either to a carry-over effect of the lower initial BW, or to a possible catabolic effect of vitamins C and E when supplemented simultaneously at high levels. Heat stress reduced slaughter and carcass weights, average daily gain and feed intake, and increased feed conversion. Growth performance of pair-fed chickens was similar to that of heat stressed chickens. Exposure to heat stress increased carcass and abdominal fat percentages, but reduced breast, liver and heart percentages. Pair-fed chickens showed the lowest fat percentage and their breast percentage was similar to controls. Heat stress increased meat pH and negatively affected meat color and cooking loss. In pair-fed chickens, meat color was similar to the heat stressed group. Shear force was not influenced by heat stress, but pair-fed chickens showed the tenderest meat. In conclusion, reduction in growth performance and negative changes in meat color in heat stressed chickens were attributed to depression in feed intake, whereas negative changes in body composition, higher meat pH and cooking loss were credited to high ambient temperature per se. Diet supplementation with vitamins C and E as antioxidants did not mitigate any of these negative effects.  相似文献   

13.
A completely randomized design study with a 3 × 2 factorial arrangement was conducted to evaluate the effects of three different fat sources (soybean oil, tallow, and poultry fat) with or without emulsifier supplementation on performance, coefficient of total tract apparent digestibility (CTTAD) of fatty acids, and apparent metabolizable energy (AME) content in broiler chickens. Two hundred and fifty-two one-day-old male Arbor Acres broiler chickens were randomly divided into 6 different treatments: (T1) basal diet containing soybean oil without lysophosphatidylcholine (LPC) supplementation, (T2) basal diet containing soybean oil with LPC supplementation, (T3) basal diet containing tallow without LPC supplementation, (T4) basal diet containing tallow with LPC supplementation, (T5) basal diet containing poultry fat without LPC supplementation, and (T6) basal diet containing poultry fat with LPC supplementation. Body weight gains from broiler chicks fed diets containing tallow were lower (P<0.05) than the body weight gains from chicks that were fed diets containing soybean oil or poultry fat in both the starter and grower periods. Birds fed diets containing tallow had the highest FCR (P<0.05), followed by the birds that were fed diets containing poultry fat, and soybean oil. The CTTAD of C16:0, C18:2, and C18:3n3 was greater (P<0.05) for broilers fed diets containing soybean oil than for those fed diets containing tallow or poultry fat in the starter period. The addition of LPC increased (P<0.05) body weight gain of broiler chickens in the starter period and the AME of the diets in the grower period, and tended to reduce FCR (P=0.072) in the starter period. LPC supplementation increased (P<0.05) the CTTAD of C16:0, C18:1n7 and C18:1n9 in the starter period, and of C18:2, and C18:3n3 in the grower period (P<0.05). There were no significant interactions between fat sources and the addition of LPC. These data indicated that LPC supplementation can improve body weight gain of broiler chickens in the starter period. This effect may be associated with an increase of CTTAD of FA due to LPC activity.  相似文献   

14.
Previously, we reported that thermal conditioning at 39°C on days 13–17 of incubation of broiler eggs enabled thermotolerance during post-hatch growth (J. Therm. Biol. 28 (2003) 133). Tolerance to a temperature of 30°C was accompanied by changes in thyroid hormones and metabolic parameters. In the current study, we determined the mechanism of epigenetic heat adaptation during embryonic age by measuring blood physiological parameters that may be associated with the ultimate effects of thermal conditioning. Hatching eggs from Ross breeders were subjected to heat treatment of 39°C at days 13, 14, 15, 16 and 17 of incubation for 2 h per day. Control eggs were incubated at 37.6°C. Samples of eggs were withdrawn on each day of thermal conditioning and at internal pipping (IP) to obtain blood samples from embryos. The remaining eggs were weighed at day 18 and transferred to hatchers. The timing of IP, external pipping (EP) and hatching were monitored every 2 h. At hatch, chicks were weighed and hatchability was determined. Blood samples were obtained from samples of day-old chicks. T3, T4, corticosterone, pCO2, pO2 levels were determined in the blood. Blood pH was measured and T3/T4 ratios were calculated. Heat conditioning significantly increased corticosterone and pO2 levels and blood pH but depressed pCO2 at day 14. These were followed by a significant depression of T4 level on day 15. Remarkably, at day 16, all these parameters were back to normal as in the control embryos. Hatching was delayed by thermal conditioning probably as a result of the depressed corticosterone levels at IP. Hatchability was also lower in the heat-treated group but 1-day old chick weights were comparable to those of the controls. The result suggests that epigenetic thermal conditioning involves changes in these physiological parameters and probably serve as a method for epigenetic temperature adaptation since the same mechanisms are employed for coping with heat during post-embryonic growth. It also suggests that days 14–15 may be the optimal and most sensitive timing for evoking this mechanism during embryonic development. The adverse effects of heat treatment observed in this study may have been due to the continued exposure to heat until day 17. Fine-tuning thermal conditioning to days 14–15 only may improve these production parameters.  相似文献   

15.
This study evaluated the expression of heat shock protein 70 kD (hsp70) in broiler chicken embryos subjected to cold (Experiment I) or high incubation temperature (Experiment II). In each experiment, fertile eggs were distributed in three incubators kept at 37.8 degrees C. At day 13 (D13), D16, and D19 of incubation, the embryos were subjected to acute cold (32 degrees C) or heat (40 degrees C) for 4-6 hr. Immediately after cold or heat exposure, samples from the liver, heart, breast muscle, brain, and lungs of 40 embryos were taken per age and treatment (control or stressed embryos). A tissue pool from 10 embryos was used as 1 replication. The levels of hsp70 in each tissue sample was quantified by Western blot analysis. The data were analyzed in a 3 x 2 factorial arrangement of treatments with four replications. hsp70 was detected in all embryo tissues, and the brain contained 2- to 5-times more hsp70 protein compared to the other tissues in either cold or heat stressed embryos. hsp70 increases were observed in the heart and breast muscle of cold stressed embryos at D16 and D19, respectively. Heat stressed embryos showed an increase of hsp70 in the heart at D13 and D19, and in the lung at D19 of incubation. Younger embryos had higher hsp70 synthesis than older embryos, irrespective of the type of thermal stressor. The results indicate that the expression of hsp70 in broiler chicken embryos is affected by cold and heat distress, and is tissue- and age-dependent.  相似文献   

16.
17.
The physiological mechanisms of thermogenesis, energy balance and energy expenditure are poorly understood in poultry. The aim of this study was designed to investigate the physiological roles of avian uncoupling protein (avUCP) regulating in energy balance and thermogenesis by using three chicken breeds of existence striking genetic difference and feeding with different dietary protein levels. Three chicken breeds including broilers, hybrid chickens, and non-selection Wuding chickens were used in this study. Total 150 chicks of 1 day of age, with 50 from each breed were reared under standard conditions on starter diets to 30 days. At 30 days of age, forty chicks from each breed chicks were divided into two groups. One group was fed low protein diet (LP, 17.0 %), and the other group was fed high protein diet (HP, 19.5 %) for 60 days. Wuding chickens showed the lowest feed conversion efficiency (FCE) and the highest expressions of avUCP mRNA association with high plasma T3 and insulin concentrations. Hybrid chickens showed the lowest expressions of avUCP mRNA association with high FCE and energy efficiency. Expressions of avUCP mRNA association with diet-induced thermogenesis (DIT) were only observed in broiler and hybrid chickens. The expressions of avUCP mRNA were positive association with plasma insulin, T3 and NEFA concentrations. Age influence on the expression of avUCP mRNA were observed only for hybrid and broiler chickens. It seems that both roles of avUCP regulation thermogenesis and lipid utilisation as fuel were observed in the present study response to variation in dietary protein and breeds.  相似文献   

18.
Mycotoxins pose an important danger to human and animal health. Poultry feeds are frequently contaminated with deoxynivalenol (DON) mycotoxin. It is thus of great importance to evaluate the effects of DON on the welfare related parameters in poultry industry. In the present study, the effects of contamination of broiler diet with 10 mg DON/kg feed on plasma corticosterone and heterophil to lymphocyte (H/L) ratio as indicators of stress, tonic immobility duration as an index for fear response and growth performance of broiler chickens were studied. In addition, the effect of a microbial feed additive either alone or in combination with DON contamination on these different aspects was also evaluated. The results showed that DON feeding significantly affected the welfare related parameters of broiler chickens. The feeding of DON contaminated diet resulted in an elevation of plasma corticosterone, higher H/L ratio and increased the fear levels as indicated by longer duration of tonic immobility reaction. Furthermore, DON reduced the body weight and body weight gain during the starter phase definitely at the second and third week. However, during grower phase, feeding of DON decreased the body weight at the fourth week and reduced the body gain at the fifth week. Addition of the microbial feed additive, a commercial antidote for DON mycotoxin, was able to overcome DON effects on stress index (H/L ratio), fearfulness and growth parameters of broilers. In conclusion, we showed for the first time that the DON feeding increased the underlying fearfulness and physiological stress responses of broilers and resulted in a reduction in the welfare status as indicated by higher plasma corticosterone, higher H/L ratio and higher fearfulness. Additionally, feeding the microbial feed additive was effective in reducing the adverse effects of DON on the bird''s welfare and can improve the performance of broiler chickens.  相似文献   

19.
Increased activity improves broiler leg health, but also increases the heat production of the bird. This experiment investigated the effects of early open-field activity and ambient temperature on the growth and feed intake of two strains of broiler chickens. On the basis of the level of activity in an open-field test on day 3 after hatching, fast-growing Ross 208 and slow-growing i657 chickens were allocated on day 13 to one of the 48 groups. Each group included either six active or six passive birds from each strain and the groups were housed in floor-pens littered with wood chips and fitted with two heat lamps. Each group was fed ad libitum and subjected to one of the three temperature treatments: two (HH; 26°C), one (HC; 16°C to 26°C) or no (CC; 16°C) heat lamps turned on. Production and behavioural data were collected every 2 weeks until day 57. For both strains, early open-field activity had no significant effects on their subsequent behaviour or on any of the production parameters measured, and overall, the slow-growing strain was more active than the fast-growing strain. Ambient temperature had significant effects on production measures for i657 broilers, with CC chickens eating and weighing more, and with a less efficient feed conversion than HH chickens, with HC birds intermediate. A similar effect was found for Ross 208 only for feed intake from 27 to 41 days of age. Ross 208 chickens distributed themselves in the pen with a preference for cooler areas in the hottest ambient temperature treatments. In contrast, the behaviour of the slow-growing strain appeared to be relatively unaffected by the ambient temperature. In conclusion, fast-growing broilers use behavioural changes when trying to adapt to warm environments, whereas slow-growing broilers use metabolic changes to adapt to cooler ambient temperatures.  相似文献   

20.
Changes were examined in the intestinal microflora in broiler chickens fed a diet containing antibiotics to obtain fundamental information on the mechanisms of beneficial effect of the antibiotics upon livestock production. Three antibiotics (colistin, bacitracin, and enramycin) were employed as feed additives. Experiments were conducted with broiler chickens in two ways. In one way dietary antibiotics were fed continually at levels approved for use as feed additives for a long term. In the other they were fed the same antibiotics for a short term. Significant changes in microflora were observed mainly in such bacterial groups as aerobic bacteria and Lactobacillus. In the long term administration, three possible modes of variance in the bacterial flora were postulated: Changes directly related to the antibacterial spectrum of antibiotics. Antagonistic changes related to an ecological balance in the bacterial flora. Changes in quantitative balance of bacteria constituting each bacterial group. The change in the intestinal microflora during administration of the antibiotic diet was expressed as a complex form of these transition modes. In the short term administration, it was demonstrated that the effect of the antibiotic diet lingered even 7 days after administration. This suggests that antibiotics used as feed additives may possibly affect the stability of the intestinal microflora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号