首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 400 毫秒
1.

Background

Many studies have provided evidence of the existence of genetic heterogeneity of environmental variance, suggesting that it could be exploited to improve robustness and uniformity of livestock by selection. However, little is known about the perspectives of such a selection strategy in beef cattle.

Methods

A two-step approach was applied to study the genetic heterogeneity of residual variance of weight gain from birth to weaning and long-yearling weight in a Nellore beef cattle population. First, an animal model was fitted to the data and second, the influence of additive and environmental effects on the residual variance of these traits was investigated with different models, in which the log squared estimated residuals for each phenotypic record were analyzed using the restricted maximum likelihood method. Monte Carlo simulation was performed to assess the reliability of variance component estimates from the second step and the accuracy of estimated breeding values for residual variation.

Results

The results suggest that both genetic and environmental factors have an effect on the residual variance of weight gain from birth to weaning and long-yearling in Nellore beef cattle and that uniformity of these traits could be improved by selecting for lower residual variance, when considering a large amount of information to predict genetic merit for this criterion. Simulations suggested that using the two-step approach would lead to biased estimates of variance components, such that more adequate methods are needed to study the genetic heterogeneity of residual variance in beef cattle.  相似文献   

2.
Temperament is an important trait for the management and welfare of animals and for reducing accidents involving people who work with cattle. The present study aimed to estimate the genetic parameters related to the temperament score (T) and weaning weight (WW) of Nellore cattle, reared in a beef cattle breeding program in Brazil. Data were analyzed using two different two-trait statistical models, both considering WW and T: (1) a linear-linear model in which variance components (VCs) were estimated using restricted maximum likelihood; and (2) a linear-threshold model in which VCs were estimated via Bayesian inference. WW was included in the analyses of T to minimize any possible effects of sequential selection and to allow for estimation of the genetic correlation between these two traits. The heritability estimates for T were 0.21±0.003 (model 1) and 0.26 (model 2, with a 95% credibility interval (95% CI) of 0.21 to 0.32). The estimated genetic correlations between WW and T were of a moderate magnitude (−0.33±0.01 (model 1) and −0.34 (95% CI: −0.40, −0.28, model 2). The genetic correlations between the estimated breeding values (EBVs) obtained for the animals based on the two models were high (>0.92). The use of different models had little influence on the classification of animals based on EBVs or the accuracy of the EBVs.  相似文献   

3.
We investigated genetic associations between mature cow weight (MW) and weaning weight (WW), yearling weight (YW), weight gain from birth to weaning (GBW), weight gain from weaning to yearling (GWY), weaning hip height (WHH), yearling hip height (YHH), scrotal circumference (SC), and age at first calving (AFC). Data from 127,104 Nellore animals born between 1993 and 2006, belonging to Agropecuária Jacarezinho Ltda., were analyzed. (Co)variance components were obtained by the restricted maximum likelihood method, applying an animal model in a multi-traits analysis. The model included direct genetic and residual effects as random effects, the fixed effects of contemporary group, and the linear and quadratic effects of animal age at recording (except for AFC, GBW, and GWY) and age of cow at calving as covariates (except for MW). The numbers of days from birth to weaning and from weaning to yearling were included as covariates for GBW and GWY, respectively. Estimated direct heritabilities were 0.43 ± 0.02 (MW), 0.33 ± 0.01 (WW), 0.36 ± 0.01 (YW), 0.28 ± 0.02 (GBW), 0.31 ± 0.01 (GWY), 0.44 ± 0.02 (WHH), 0.48 ± 0.02 (YHH), 0.44 ± 0.01 (SC), and 0.16 ± 0.03 (AFC). Genetic correlations between MW and productive traits were positive and of medium to high magnitude (ranging from 0.47 ± 0.03 to 0.71 ± 0.01). A positive and low genetic correlation was observed between MW and SC (0.24 ± 0.04). A negative genetic correlation (-0.19 ± 0.03) was estimated between MW and AFC. Selection to increase weight or weight gains at any age, as well as hip height, will change MW in the same direction. Selection for higher SC may lead to a long-term increase in MW. The AFC can be included in selection indices to improve the reproductive performance of beef cattle without significant changes in MW.  相似文献   

4.
Records from 106,212 Nellore animals, born between 1998 and 2006, were used to estimate (co)variance components and genetic parameters for birth weight (BW), average weight gains from birth to weaning (GBW), average weight gains from weaning to after yearling (GWAY), weaning hip height (WHH), postweaning hip height (PHH) and scrotal circumferences at 9 (SC9), 12 (SC12) and 15 (SC15) months of age. (Co)variance components were estimated by an animal model using multi-trait analysis. Heritability estimates for BW, GBW, GWAY, WHH, PHH, SC9, SC12 and SC15 were 0.31 ± 0.01; 0.25 ± 0.02; 0.30 ± 0.04; 0.51 ± 0.04; 0.54 ± 0.04; 0.39 ± 0.01; 0.41 ± 0.01 and 0.44 ± 0.02, respectively. Genetic correlations between growth traits ranged from 0.09 ± 0.01 to 0.88 ± 0.01, thereby implying that, at any age, selection to increase average weight gains will also increase stature. Genetic correlations between BW and average weight gains with scrotal circumferences were all positive and moderate (0.15 ± 0.03 to 0.38 ± 0.01). On the other hand, positive and low genetic associations were estimated between hip height and scrotal circumference at different ages (0.09 ± 0.01 to 0.17 ± 0.02). The results of this study pointed out that selection to larger scrotal circumferences in males will promote changes in average weight gains. In order to obtain Nellore cattle with the stature and size suitable for the production system, both weight gain and hip height should be included in a selection index.  相似文献   

5.
Genomic selection has proven effective for advancing genetic gain for key profit traits in dairy cattle production systems. However, its impact to-date on genetic improvement programs for beef cattle has been less effective. Despite this, the technology is thought to be particularly useful for low heritability traits such as those associated with reproductive efficiency. The objective of this study was to identify genetic variants associated with key determinants of reproductive and overall productive efficiency in beef cows. The analysis employed a large dataset derived from the national genetic evaluation program in Ireland for two of the most predominant beef breeds, viz. Charolais (n = 5 244 cows) and Limousin (n = 7 304 cows). Single nucleotide polymorphisms (SNPs) were identified as being statistically significantly associated (adj. P < 0.05) with both reproductive and productive traits for both breed types. However, there was little across breed commonality, with only two SNPs (rs110240246 and rs110344317; adj. P < 0.05) located within the genomic regions of the LCORL and MSTN genes respectively, identified in both Charolais and Limousin populations, associated with traits including carcass weight, cull-cow weight and live-weight. Significant SNPs within the MSTN gene were also associated with both reproduction and production related traits within each breed. Finally, traits including calving difficulty, calf mortality and calving interval were associated with SNPs within genomic regions comprising genes involved in cellular growth and lipid metabolism. Genetic variants identified as associated with both important reproductive efficiency and production related traits from this study warrant further analyses for their potential incorporation into breeding programmes to support the sustainability of beef cattle production.  相似文献   

6.
A total of 5253 records obtained from 2081 Rubia Gallega beef cows managed using artificial insemination as the only reproduction system were analysed to estimate genetic parameters for days to first insemination (DFI), days from first insemination to conception (FIC), number of inseminations per conception (IN), days open (DO), gestation length (GL) and calving interval (CI) via multitrait Bayesian procedures. Estimates of the mean of posterior distribution of the heritability of DFI, FIC, IN, DO, GL and CI were, respectively, 0.050, 0.078, 0.071, 0.053, 0.037 and 0.085 and the corresponding estimates for repeatability of these traits were 0.116, 0.129, 0.147, 0.138, 0.082 and 0.132, respectively. No significant genetic correlations associated to DFI or GL were found. However, genetic correlations between the other four analysed traits were high and significant. Genetic correlations between FIC and IN, DO and CI were similar and higher than 0.85. Genetic correlations of IN-DO and IN-CI were over 0.65. The highest genetic correlation was estimated for the pair DO-CI (0.992) that can be considered the same trait in genetic terms. Results indicated that DFI can be highly affected by non-genetic factors thus limiting its usefulness to be used as an earlier indicator of reproductive performance in beef cattle. Moreover, GL could not be associated to the reproductive performance of the cow before conception. The other four analysed traits, FIC, IN, DO and CI, have close genetic relationships. The inclusion of IN as an earlier indicator of fertility in beef cattle improvement programs using artificial insemination as the main reproductive system can be advisable due to the low additional recording effort needed.  相似文献   

7.
The objective of this study was to estimate (co)variance components using random regression on B-spline functions to weight records obtained from birth to adulthood. A total of 82 064 weight records of 8145 females obtained from the data bank of the Nellore Breeding Program (PMGRN/Nellore Brazil) which started in 1987, were used. The models included direct additive and maternal genetic effects and animal and maternal permanent environmental effects as random. Contemporary group and dam age at calving (linear and quadratic effect) were included as fixed effects, and orthogonal Legendre polynomials of age (cubic regression) were considered as random covariate. The random effects were modeled using B-spline functions considering linear, quadratic and cubic polynomials for each individual segment. Residual variances were grouped in five age classes. Direct additive genetic and animal permanent environmental effects were modeled using up to seven knots (six segments). A single segment with two knots at the end points of the curve was used for the estimation of maternal genetic and maternal permanent environmental effects. A total of 15 models were studied, with the number of parameters ranging from 17 to 81. The models that used B-splines were compared with multi-trait analyses with nine weight traits and to a random regression model that used orthogonal Legendre polynomials. A model fitting quadratic B-splines, with four knots or three segments for direct additive genetic effect and animal permanent environmental effect and two knots for maternal additive genetic effect and maternal permanent environmental effect, was the most appropriate and parsimonious model to describe the covariance structure of the data. Selection for higher weight, such as at young ages, should be performed taking into account an increase in mature cow weight. Particularly, this is important in most of Nellore beef cattle production systems, where the cow herd is maintained on range conditions. There is limited modification of the growth curve of Nellore cattle with respect to the aim of selecting them for rapid growth at young ages while maintaining constant adult weight.  相似文献   

8.
(Co)variance components and genetic parameters were estimated for body weights of a Romosinuano herd located in Sinú Valley, Cordoba, Colombia. Restricted maximum likelihood methods were used with a univariate animal model for birth weight, weaning weight (270 days), 16-month weight (480 days), weaning daily gain, and post-weaning daily gain. Models included random animal direct and maternal genetic effects, maternal permanent environmental effect (c2), and sex-year-month of birth and age of dam, as fixed effects. Estimates of direct effect for birth weight, weaning weight, 480-day weight, weaning daily gain, and post-weaning daily gain were: 0.25 +/- 0.0001, 0.34 +/- 0.063, 0.33 +/- 0.066, 0.32 +/- 0.062, and 0.17 +/- 0.052, respectively. Estimates of direct maternal genetic effects were low and ranged from 0.06 +/- 0.003 for birth weight to 0.20 +/- 0.054 for weaning daily gain. The genetic correlations between direct and maternal genetic effects were negative and low for 480-day weight (-0.05 +/- 0.219) and showed values of -0.37 +/- 0.007, -0.34 +/- 0.133, -0.33 +/- 0.135, and -0.38 +/- 0.232 for birth, weaning weight, weaning, and post-weaning daily gain, respectively. Permanent environmental maternal effects were not significant; the highest values were found for weaning weight, and weaning daily gain (0.086 +/- 0.031 and 0.078 +/- 0.031, respectively). We conclude that direct and maternal effects should be included in a selection program for all of these traits, and also that selection of weaning weights would be the most productive way to improve performance in Romosinuano cattle.  相似文献   

9.
Animal temperament is a trait of economic relevance and its use as a selection criterion requires the identification of environmental factors that influence this trait, as well as the estimation of its genetic variability and interrelationship with other traits. The objectives of this study were to evaluate the effect of the covariates dam age at calving (ADC), long yearling age (YA) and long yearling weight (YW) on temperament score (T) and to estimate genetic parameters for T, scrotal circumference (SC) at long YA and age at first calving (AFC) in Nellore cattle participating in a selection program. The traits were analyzed by the restricted maximum likelihood method under a multiple-trait animal model. For all traits, contemporary group was included as a fixed effect and additive genetic and residual as random effects. In addition to these effects, YA, YW and ADC were considered for analyzing T. In the case of SC and AFC, the effect of long YW was included as a covariate. Genetic parameters were estimated for and between traits. The three covariates significantly influenced T. The heritability estimates for T, SC and AFC were 0.18 ± 0.02, 0.53 ± 0.04 and 0.23 ± 0.08, respectively. The genetic correlations between T and SC, and T and AFC were -0.07 ± 0.17 and -0.06 ± 0.19, respectively. The genetic correlation estimated between SC and AFC was -0.57 ± 0.16. In conclusion, a response to selection for T, SC and AFC is expected and selection for T does not imply correlated responses with the other traits.  相似文献   

10.
《Small Ruminant Research》2010,92(2-3):170-177
Genetic parameters were estimated for birth weight (BW), weaning weight (WW), yearling weight (YW), average daily gain from birth to weaning (ADG1) and average daily gain from weaning to yearling (ADG2) in Moghani sheep. Maximum number of data was 4237 at birth, but only 1389 records at yearling were investigated. The data was collected from 1995 to 2007 at the Breeding Station of Moghani sheep in Jafarabad, Moghan, Iran. (Co)Variance components and genetic parameters were estimated with different models which including direct effects, with and without maternal additive genetic effects as well as maternal permanent environmental effects using restricted maximum likelihood (REML) method. The most appropriate model for each trait was determined based on likelihood ratio tests and Akaike's Information Criterion (AIC). Maternal effects were important only for pre-weaning traits. Direct heritability estimates for BW, ADG1, WW, ADG2 and YW were 0.07, 0.08, 0.09, 0.09 and 0.17, respectively. Fractions of variance due to maternal permanent environmental effects on phenotypic variance were 0.08 for ADG1. Maternal heritability estimates for BW and WW were 0.18 and 0.06, respectively. Multivariate analysis was performed using the most appropriate models obtained in univariate analysis. Direct genetic correlations among studied traits were positive and ranged from 0.37 for BW–ADG2 to 0.85 for ADG1–YW. Maternal genetic correlation estimate between BW and WW was 0.33. Phenotypic and environmental correlation estimates were generally lower than those of genetic correlation. Low direct heritability estimates imply that mass selection for these traits results in slow genetic gain.  相似文献   

11.
In order to achieve improvements in production efficiency in livestock, herds of high sexual precocity and good fertility are needed. These traits increase the availability of animals in herd, either for sale or selection, allowing both greater selective intensity and greater genetic progress. This study aimed at estimating genetic parameters for reproductive traits measured directly in females in order to verify whether they could be used as selection criteria for genetic improvement in Nellore cows, as well as estimating the genetic relationship among these traits and scrotal circumference (SC), the traditional selection criterion for sexual precocity in cattle. In addition to SC, stayability (STAY), number of calvings at 53 months (NC53) and heifers rebreeding (HR) were studied. The (co)variances and genetic parameters were estimated using Bayesian inference. STAY, NC53 and HR were analyzed assuming a threshold model, whereas SC was analyzed with a linear model. Heritability estimated for NC53 was 0.22, and this trait was strongly and positively correlated with STAY, meaning selection for NC53 would improve productive longevity of Nellore cows. Correlations estimated between HR and STAY (≈0.97) and between HR and NC53 (≈0.99) allow an improvement on HR rates if selection was applied to traits related to longevity. Genetic correlations among SC and female reproductive traits were positive but weak, suggesting the need to use reproductive traits directly measured in females in order to obtain greater improvements in sexual precocity and longevity.  相似文献   

12.
Genetic parameter estimates for pre-weaning weight traits in Dorper sheep   总被引:2,自引:0,他引:2  
Genetic parameters were estimated for birth-, 42-day, and 100-day (weaning) weight in the Dorper flock of the Glen Agricultural Institute in South Africa. Direct heritability estimates of 0.11, 0.28 and 0.20 and maternal heritability estimates of 0.10, 0.10 and 0.10 were obtained for body weights at birth, 42 and 100 days, respectively. The corresponding genetic correlation estimates between direct and maternal effects were 0.35, −0.63 and −0.58, respectively. Both direct and maternal genetic correlation estimates among the traits were of moderate to high magnitude and positive. It is concluded that the traits can be improved by selection with no serious antagonisms among traits studied.  相似文献   

13.
Improvements in feed efficiency of beef cattle have the potential to increase producer profitability and simultaneously lower the environmental footprint of beef production. Although there are many different approaches to measuring feed efficiency, residual feed intake (RFI) has increasingly become the measure of choice. Defined as the difference between an animal’s actual and predicted feed intake (based on weight and growth), RFI is conceptually independent of growth and body size. In addition, other measurable traits related to energy expenditure such as estimates of body composition can be included in the calculation of RFI to also force independence from these traits. Feed efficiency is a multifactorial and complex trait in beef cattle and inter-animal variation stems from the interaction of many biological processes influenced, in turn, by physiological status and management regimen. Thus, the purpose of this review was to summarise and interpret current published knowledge and provide insight into research areas worthy of further investigation. Indeed, where sufficient suitable reports exist, meta-analyses were conducted in order to mitigate ambiguity between studies in particular. We have identified a paucity of information on the contribution of key biological processes, including appetite regulation, post-ruminal nutrient absorption, and cellular energetics and metabolism to the efficiency of feed utilisation in cattle. In addition, insufficient information exists on the relationship between RFI status and productivity-related traits at pasture, a concept critical to the overall lifecycle of beef production systems. Overall, published data on the effect of RFI status on both terminal and maternal traits, coupled with the moderate repeatability and heritability of the trait, suggest that breeding for improved RFI, as part of a multi-trait selection index, is both possible and cumulative, with benefits evident throughout the production cycle. Although the advent of genomic selection, with associated improved prediction accuracy, will expedite the introgression of elite genetics for feed efficiency within beef cattle populations, there are challenges associated with this approach which may, in the long-term, be overcome by increased international collaborative effort but, in the short term, will not obviate the on-going requirement for accurate measurement of the primary phenotype.  相似文献   

14.
Models for estimation of frame scores in Nellore beef cattle (FRAME_GMA) were developed, comparing them with frame scores estimated using equations proposed by the Beef Improvement Federation (FRAME_BIF, USA). Correlation among frame scores obtained by these two methodologies, along with the independent variables considered in the estimation models, were also studied. A data set with 12,728 animals, with ages between 490 and 610 days, was used. The models that best adjusted to FRAME_GMA included hip height, weight and interaction between height and weight. Estimates of heritability for FRAME_GMA and FRAME_BIF were 0.26 +/- 0.03 and 0.23 +/- 0.03, respectively, in single trait analysis, and 0.28 and 0.24, respectively, in multi-trait analysis. Phenotypic Pearson and Spearman correlation coefficients between FRAME_GMA and FRAME_BIF for males were 0.87 and 0.83, respectively, being lower than those found for females (0.92 for both coefficients). Genetic correlation between the frame scores did not differ between genders, with values of 0.92 for the Pearson coefficient and 0.91 for the Spearman coefficient. We concluded that FRAME_GMA was better adapted to this data set than FRAME_BIF. Other studies need to be made to evaluate the applicability of this proposed model to other populations of Nellore beef cattle and for other age groups.  相似文献   

15.
The aim of this study was to estimate genetic parameters for feed intake recorded as farmers’ perception of young sows’ appetite for the first 3 weeks of lactation (APP) and feed intake recorded for one day in the 3rd week of lactation (FEED), litter weight (LW) at 3 weeks, sow body condition at weaning (BC) and the following five reproduction traits: weaning-to-service interval of 1 to 7 days (WSI7), weaning-to-service interval of 1 to 50 days (WSI50), delayed service or not (DELAYED), pregnant on first service or not (PREGNANT) and litter size in 2nd parity (NBT2). The analyses included data on 4606 Norwegian Landrace 1st-parity sows and their litters. The Gibbs sampling method was used. The traits DELAYED and PREGNANT were analysed as threshold traits and APP, FEED, LW, BC, WSI7, WSI50 and NBT2 were analysed as linear traits. The heritability estimates for APP and FEED were low (<0.1), whereas the estimates for DELAYED and PREGNANT were rather high (0.4 and 0.3). The heritability estimate for BC was 0.2. The genetic correlations confirmed the complexity of breeding for sow performance; selection for heavy 1st litters may lead to lower body condition at weaning, which in turn leads to lower reproductive performance and smaller litters in 2nd parity. Selection for higher sow feed intake would improve body condition, but the simple way of measuring feed intake tested in this study (APP and FEED) cannot be recommended because of the low heritability obtained for these traits.  相似文献   

16.
The objective of this study was to estimate the genetic–quantitative relationships between the beef fatty acid profile with the carcass and meat traits of Nellore cattle. A total of 1826 bulls finished in feedlot conditions and slaughtered at 24 months of age on average were used. The following carcass and meat traits were analysed: subcutaneous fat thickness (BF), shear force (SF) and total intramuscular fat (IMF). The fatty acid (FA) profile of the Longissimus thoracis samples was determined. Twenty-five FAs (18 individuals and seven groups of FAs) were selected due to their importance for human health. The animals were genotyped with the BovineHD BeadChip and, after quality control for single nucleotide polymorphisms (SNPs), only 470,007 SNPs from 1556 samples remained. The model included the random genetic additive direct effect, the fixed effect of the contemporary group and the animal’s slaughter age as a covariable. The (co)variances and genetic parameters were estimated using the REML method, considering an animal model (single-step GBLUP). A total of 25 multi-trait analyses, with four traits, were performed considering SF, BF and IMF plus each individual FA. The heritability estimates for individual saturated fatty acids (SFA) varied from 0.06 to 0.65, for monounsaturated fatty acids (MUFA) it varied from 0.02 to 0.14 and for polyunsaturated fatty acids (PUFA) it ranged from 0.05 to 0.68. The heritability estimates for Omega 3, Omega 6, SFA, MUFA and PUFA sum were low to moderate, varying from 0.09 to 0.20. The carcass and meat traits, SF (0.06) and IMF (0.07), had low heritability estimates, while BF (0.17) was moderate. The genetic correlation estimates between SFA sum, MUFA sum and PUFA sum with BF were 0.04, 0.64 and ?0.41, respectively. The genetic correlation estimates between SFA sum, MUFA sum and PUFA sum with SF were 0.29, ?0.06 and ?0.04, respectively. The genetic correlation estimates between SFA sum, MUFA sum and PUFA sum with IMF were 0.24, 0.90 and ?0.67, respectively. The selection to improve meat tenderness in Nellore cattle should not change the fatty acid composition in beef, so it is possible to improve this attribute without affecting the nutritional beef quality in zebu breeds. However, selection for increased deposition of subcutaneous fat thickness and especially the percentage of intramuscular fat should lead to changes in the fat composition, highlighting a genetic antagonism between meat nutritional value and acceptability by the consumer.  相似文献   

17.
The genetic parameters for growth, reproductive and maternal traits in a multibreed meat sheep population were estimated by applying the Average Information Restricted Maximum Likelihood method to an animal model. Data from a flock supported by the Programa de Melhoramento Genético de Caprinos e Ovinos de Corte (GENECOC) were used. The traits studied included birth weight (BW), weaning weight (WW), slaughter weight (SW), yearling weight (YW), weight gain from birth to weaning (GBW), weight gain from weaning to slaughter (GWS), weight gain from weaning to yearling (GWY), age at first lambing (AFL), lambing interval (LI), gestation length (GL), lambing date (LD - number of days between the start of breeding season and lambing), litter weight at birth (LWB) and litter weight at weaning (LWW). The direct heritabilities were 0.35, 0.81, 0.65, 0.49, 0.20, 0.15 and 0.39 for BW, WW, SW, YW, GBW, GWS and GWY, respectively, and 0.04, 0.06, 0.10, 0.05, 0.15 and 0.11 for AFL, LI, GL, LD, LWB and LWW, respectively. Positive genetic correlations were observed among body weights. In contrast, there was a negative genetic correlation between GBW and GWS (-0.49) and GBW and GWY (-0.56). Positive genetic correlations were observed between AFL and LI, LI and GL, and LWB and LWW. These results indicate a strong maternal influence in this herd and the presence of sufficient genetic variation to allow mass selection for growth traits. Additive effects were of little importance for reproductive traits, and other strategies are necessary to improve the performance of these animals.  相似文献   

18.
The objective of the present study was to quantify the extent of genetic variation in three health-related traits namely dagginess, lameness and mastitis, in an Irish sheep population. Each of the health traits investigated pose substantial welfare implications as well as considerable economic costs to producers. Data were also available on four body-related traits, namely body condition score (BCS), live weight, muscle depth and fat depth. Animals were categorised as lambs (<365 days old) or ewes (⩾365 days old) and were analysed both separately and combined. After edits, 39 315 records from 264 flocks between the years 2009 and 2015 inclusive were analysed. Variance components were estimated using animal linear mixed models. Fixed effects included contemporary group, represented as a three-way interaction between flock, date of inspection and animal type (i.e. lamb, yearling ewe (i.e. females ⩾365 days but <730 days old that have not yet had a recorded lambing) or ewe), animal breed proportion, coefficients of heterosis and recombination, animal gender (lambs only), animal parity (ewes only; lambs were assigned a separate ‘parity’) and the difference in age of the animal from the median of the respective parity/age group. An additive genetic effect and residual effect were both fitted as random terms with maternal genetic and non-genetic components also considered for traits of the lambs. The direct heritability of dagginess was similar across age groups (0.14 to 0.15), whereas the direct heritability of lameness ranged from 0.06 (ewes) to 0.12 (lambs). The direct heritability of mastitis was 0.04. For dagginess, 13% of the phenotypic variation was explained by dam litter, whereas the maternal heritability of dagginess was 0.05. The genetic correlation between ewe and lamb dagginess was 0.38; the correlation between ewe and lamb lameness was close to zero but was associated with a large standard error. Direct genetic correlations were evident between dagginess and BCS in ewes and between lameness and BCS in lambs. The present study has demonstrated that ample genetic variation exists for all three health traits investigated indicating that genetic improvement is indeed possible.  相似文献   

19.
Genetic correlations between performance traits with meat quality and carcass traits were estimated on 6,408 commercial crossbred pigs with performance traits recorded in production systems with 2,100 of them having meat quality and carcass measurements. Significant fixed effects (company, sex and batch), covariates (birth weight, cold carcass weight, and age), random effects (additive, litter and maternal) were fitted in the statistical models. A series of pairwise bivariate analyses were implemented in ASREML to estimate heritability, phenotypic, and genetic correlations between performance traits (n = 9) with meat quality (n = 25) and carcass (n = 19) traits. The animals had a pedigree compromised of 9,439 animals over 15 generations. Performance traits had low-to-moderate heritabilities (±SE), ranged from 0.07±0.13 to 0.45±0.07 for weaning weight, and ultrasound backfat depth, respectively. Genetic correlations between performance and carcass traits were moderate to high. The results indicate that: (a) selection for birth weight may increase drip loss, lightness of longissimus dorsi, and gluteus medius muscles but may reduce fat depth; (b) selection for nursery weight can be valuable for increasing both quantity and quality traits; (c) selection for increased daily gain may increase the carcass weight and most of the primal cuts. These findings suggest that deterioration of pork quality may have occurred over many generations through the selection for less backfat thickness, and feed efficiency, but selection for growth had no adverse effects on pork quality. Low-to-moderate heritabilities for performance traits indicate that they could be improved using traditional selection or genomic selection. The estimated genetic parameters for performance, carcass and meat quality traits may be incorporated into the breeding programs that emphasize product quality in these Canadian swine populations.  相似文献   

20.
The genetic analysis of composite data is very complicated, mainly because it is necessary to adjust data to the effects of heterosis and breed complementarity, and because there is usually considerable confounding of these data with several other effects, such as contemporary group effects, breed composition of the animal and maternal breed composition, among others. Data on birth weight (n = 151,083), weaning weight adjusted to 205 days (n = 137,257), yearling weight adjusted to 390 days (n = 61,410), weight gain from weaning to yearling (n = 56,653), and scrotum circumference (n = 23,323) and muscle score (n = 54,770), both adjusted to 390 days, from Bos taurus x Bos indicus composite beef calves born from 1994 to 2003 were analyzed to estimate (co)variance components and genetic parameters of growth traits. The animals belonged to the Montana Tropical program. Estimation was made by three models that approach adjustment to heterozygosis in order to suggest the best model. The RM model included contemporary groups, class of age of dam, outcrossing percentages for direct and maternal effects, and direct and maternal additive genetic breed effects as covariates; the R model was the same as RM, but without additive maternal breed effects, and H was the same as RM, but not considering any additive breed effect. Both R2 values and consistency of genetic parameters indicate that the more complex model (RM), which considers maternal and individual additive genetic breed effect, produces the best estimates when compared to other models. The R model seems to overestimate (co)variance components. The magnitudes of direct and maternal heritability estimates, obtained in this study, would permit genetic improvement for weight and growth traits, as much by selection of direct genetic effects for weight and growth as for the improvement of maternal performance, but in different lineages. Therefore, the correlations between these effects were unfavorable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号