首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Three recombinant influenza A viruses with different neuraminidases (NAs) in the background of A/PR/8/34 (PR8), named rPR8-H5N1NA, rPR8-H9N2NA, and rPR8-H1N1NA, derived from H5N1, H9N2, H1N1 (swine) viruses, respectively, were constructed. We performed a quantitative proteomics analysis to investigate differential protein expression in Madin-Darby canine kidney (MDCK) cells infected with recombinant and wild-type influenza viruses to determine whether NA replacement would alter host cell gene expression. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-TOF MS) and two-dimensional gel electrophoresis (2-DE), we identified 12 up-regulated and 49 down-regulated protein spots, including cytoskeletal proteins, molecular biosynthesis proteins, ubiquitin-proteasome pathway proteins, and heat shock proteins. The most significant changes in infected cells were observed for molecular biosynthesis proteins. We found more differentially expressed protein spots in cells infected with rPR8-H5N1NA or rPR8-H9N2NA viruses than cells infected with wild-type virus. Many of those proteins are postulated to be involved in cell-cell fusion, but the full mechanism remains to be explored. Meanwhile, our data demonstrate that the wild-type virus has evolutionary advantages over recombinant viruses.  相似文献   

2.
Protein ubiquitination is an essential post-translational modification regulating neurodevelopment, synaptic plasticity, learning, and memory, and its dysregulation contributes to the pathogenesis of neurological diseases. Here we report a systematic analysis of ubiquitinated proteome (ubiquitome) in rat brain using a newly developed monoclonal antibody that recognizes the diglycine tag on lysine residues in trypsinized peptides (K-GG peptides). Initial antibody specificity analysis showed that the antibody can distinguish K-GG peptides from linear GG peptides or pseudo K-GG peptides derived from iodoacetamide. To evaluate the false discovery rate of K-GG peptide matches during database search, we introduced a null experiment using bacterial lysate that contains no such peptides. The brain ubiquitome was then analyzed by this antibody enrichment with or without strong cation exchange (SCX) prefractionation. During SCX chromatography, although the vast majority of K-GG peptides were detected in the fractions containing at least three positive charged peptides, specific K-GG peptides with two positive charges (e.g., protein N-terminal acetylated and C-terminal non-K/R peptides) were also identified in early fractions. The reliability of C-terminal K-GG peptides was also extensively investigated. Finally, we collected a data set of 1786 K-GG sites on 2064 peptides in 921 proteins and estimated their abundance by spectral counting. The study reveals a wide range of ubiquitination events on key components in presynaptic region (e.g., Bassoon, NSF, SNAP25, synapsin, synaptotagmin, and syntaxin) and postsynaptic density (e.g., PSD-95, GKAP, CaMKII, as well as receptors for NMDA, AMPA, GABA, serotonin, and acetylcholine). We also determined ubiquitination sites on amyloid precursor protein and alpha synuclein that are thought to be causative agents in Alzhermer's and Parkinson's disorders, respectively. As K-GG peptides can also be produced from Nedd8 or ISG15 modified proteins, we quantified these proteins in the brain and found that their levels are less than 2% of ubiquitin. Together, this study demonstrates that a large number of neuronal proteins are modified by ubiquitination and provides a feasible method for profiling the ubiquitome in the brain.  相似文献   

3.

Introduction

Burst-suppression (BS) is an electroencephalography (EEG) pattern consisting of alternant periods of slow waves of high amplitude (burst) and periods of so called flat EEG (suppression). It is generally associated with coma of various etiologies (hypoxia, drug-related intoxication, hypothermia, and childhood encephalopathies, but also anesthesia). Animal studies suggest that both the cortex and the thalamus are involved in the generation of BS. However, very little is known about mechanisms of BS in humans. The aim of this study was to identify the neuronal network underlying both burst and suppression phases using source reconstruction and analysis of functional and effective connectivity in EEG.

Material/Methods

Dynamic imaging of coherent sources (DICS) was applied to EEG segments of 13 neonates and infants with burst and suppression EEG pattern. The brain area with the strongest power in the analyzed frequency (1–4 Hz) range was defined as the reference region. DICS was used to compute the coherence between this reference region and the entire brain. The renormalized partial directed coherence (RPDC) was used to describe the informational flow between the identified sources.

Results/Conclusion

Delta activity during the burst phases was associated with coherent sources in the thalamus and brainstem as well as bilateral sources in cortical regions mainly frontal and parietal, whereas suppression phases were associated with coherent sources only in cortical regions. Results of the RPDC analyses showed an upwards informational flow from the brainstem towards the thalamus and from the thalamus to cortical regions, which was absent during the suppression phases. These findings may support the theory that a “cortical deafferentiation” between the cortex and sub-cortical structures exists especially in suppression phases compared to burst phases in burst suppression EEGs. Such a deafferentiation may play a role in the poor neurological outcome of children with these encephalopathies.  相似文献   

4.
5.
The Golgi apparatus is the central organelle in the secretory pathway and plays key roles in glycosylation, protein sorting, and secretion in plants. Enzymes involved in the biosynthesis of complex polysaccharides, glycoproteins, and glycolipids are located in this organelle, but the majority of them remain uncharacterized. Here, we studied the Arabidopsis (Arabidopsis thaliana) membrane proteome with a focus on the Golgi apparatus using localization of organelle proteins by isotope tagging. By applying multivariate data analysis to a combined data set of two new and two previously published localization of organelle proteins by isotope tagging experiments, we identified the subcellular localization of 1,110 proteins with high confidence. These include 197 Golgi apparatus proteins, 79 of which have not been localized previously by a high-confidence method, as well as the localization of 304 endoplasmic reticulum and 208 plasma membrane proteins. Comparison of the hydrophobic domains of the localized proteins showed that the single-span transmembrane domains have unique properties in each organelle. Many of the novel Golgi-localized proteins belong to uncharacterized protein families. Structure-based homology analysis identified 12 putative Golgi glycosyltransferase (GT) families that have no functionally characterized members and, therefore, are not yet assigned to a Carbohydrate-Active Enzymes database GT family. The substantial numbers of these putative GTs lead us to estimate that the true number of plant Golgi GTs might be one-third above those currently annotated. Other newly identified proteins are likely to be involved in the transport and interconversion of nucleotide sugar substrates as well as polysaccharide and protein modification.The Golgi apparatus is the central organelle in the secretory pathway, and in higher plants it is involved in the biosynthesis and transport of cell wall matrix polysaccharides, glycoproteins, proteoglycans, and glycolipids as well as in protein trafficking to different subcellular compartments. The last decade has produced substantial findings on the function of the Golgi apparatus: insights into the protein trafficking at the endoplasmic reticulum (ER)/Golgi interface, Golgi structural maintenance, its involvement in endocytosis, and its behavior during cell division (for review, see Faso et al., 2009). However, despite its importance, only a small proportion of the Golgi proteome has been studied: relatively few Golgi proteins have been localized, and even fewer have been functionally characterized.The Golgi apparatus is thought to contain a large and diverse group of membrane-bound glycosyltransferases (GTs). The current view is that different GT activities are required for synthesis of the linkage between different donor and acceptor sugars. Having in mind the diversity of linkage types found in cell wall polysaccharides, the number of different GTs involved is likely to be very large. For instance, it has been estimated that for the biosynthesis of pectin alone, the action of 65 different enzymatic activities is needed (Caffall and Mohnen, 2009). By the end of the year 2011, 468 Arabidopsis (Arabidopsis thaliana) sequences had been annotated in the Carbohydrate-Active EnZymes (CAZy) GT database (Cantarel et al., 2009; http://www.cazy.org). We estimate that two-thirds of these CAZy-classified GTs may be targeted to the Golgi. The remaining one-third are cytosolic or plastidic enzymes involved in processes including, secondary metabolism or starch synthesis. The reported sequences are classified into 43 CAZy families based on amino acid sequence similarities within which at least one member has been biochemically characterized. Each family is likely to have a common structural fold, and three-dimensional (3-D) structures have been resolved for 20 of these 43 families. These are divided mostly into two structural classes, having either a GT-A fold or a GT-B fold (Unligil and Rini, 2000; Bourne and Henrissat, 2001). Moreover, most of the structurally uncharacterized GT families are predicted to adopt either the GT-A or GT-B fold based on 3-D structural homology modeling (Coutinho et al., 2003; Lairson et al., 2008). Despite this conserved 3-D structure, different GT families have very low or undetectable sequence similarities. Consequently, predicting novel GTs based solely on their amino acid sequence similarities is not always achievable, and structural homology searches have also proven useful (Hansen et al., 2009).The length and properties of the transmembrane domain (TMD) of endomembrane proteins appear to play a role in protein sorting and location within the secretory pathway and can be used to predict protein localization (Hanton et al., 2005; Sharpe et al., 2010). In order to perform such predictions, a high number of experimentally localized proteins is required, but only limited data sets have been available for plants to date.In order to identify the most abundant CAZy-classified GTs as well as novel putative GTs, in this work we rigorously extended our proteomic studies of the Golgi apparatus. We have previously developed a high-throughput mass spectrometry (MS)-based quantitative proteomics technique for localization of organelle proteins by isotope tagging (LOPIT; Dunkley et al., 2004, 2006). Here, we report new LOPIT data sets and apply a new method of combining them with published LOPIT data sets, localizing an unprecedented number of plant organelle proteins. We have analyzed the TMD properties of the proteins assigned to the ER, Golgi, and plasma membrane (PM) and determined the organelle-specific features. Structural prediction analysis of the Golgi-localized proteins with unknown functions assessed the protein sequences for the potential to fold similarly to known GT structures. We found that the Golgi contains a substantial number of candidate GT families that have no characterized functions. These results yield a broader understanding of the Golgi function and its biochemical properties.  相似文献   

6.
7.
8.
9.
10.
Many patients with pancreatic cancer have metastases to distant organs at the time of initial presentation. Recent studies examining the evolution of pancreatic cancer at the genetic level have shown that clonal complexity of metastatic pancreatic cancer is already initiated within primary tumors, and organ-specific metastases are derived from different subclones. However, we do not yet understand to what extent the evolution of pancreatic cancer contributes to proteomic and signaling alterations. We hypothesized that genetic heterogeneity of metastatic pancreatic cancer results in heterogeneity at the proteome level. To address this, we employed a model system in which cells isolated from three sites of metastasis (liver, lung, and peritoneum) from a single patient were compared. We used a SILAC-based accurate quantitative proteomic strategy combined with high-resolution mass spectrometry to analyze the total proteome and tyrosine phosphoproteome of each of the distal metastases. Our data revealed distinct patterns of both overall proteome expression and tyrosine kinase activities across the three different metastatic lesions. This heterogeneity was significant because it led to differential sensitivity of the neoplastic cells to small molecule inhibitors targeting various kinases and other pathways. For example, R428, a tyrosine kinase inhibitor that targets Axl receptor tyrosine kinase, was able to inhibit cells derived from lung and liver metastases much more effectively than cells from the peritoneal metastasis. Finally, we confirmed that administration of R428 in mice bearing xenografts of cells derived from the three different metastatic sites significantly diminished tumors formed from liver- and lung-metastasis-derived cell lines as compared with tumors derived from the peritoneal metastasis cell line. Overall, our data provide proof-of-principle support that personalized therapy of multiple organ metastases in a single patient should involve the administration of a combination of agents, with each agent targeted to the features of different subclones.Approximately half of the patients with pancreatic cancer are initially diagnosed with metastases to distal sites, with the commonest sites being the liver, lung, and peritoneum (1). Therapeutic strategies against metastases could help reduce the high mortality rates associated with this cancer (2). Understanding the nature of metastatic pancreatic cancer at a systems level can enable the discovery of potential targets for the development of targeted therapies.Pancreatic cancer has been shown to be a genetically evolving and heterogeneous disease (35). Clonal diversity and evolution of cancer genomes have also been demonstrated based on the isolation of distinct clonal populations purified directly from patient biopsies by means of flow cytometry followed by genomic characterization (6). A number of reports have documented the adoption of a proteomic approach for the discovery of potential biomarkers in pancreatic cancer (7, 8). However, these studies generally assume pancreatic cancers to be homogeneous, and the emphasis is placed on identifying molecules that are common across a broad array of tumors. There is a lack of studies systematically examining the proteomic changes or signaling pathways across pancreatic cancers to dissect the nature of the heterogeneity of each clone. An excellent setting in which the heterogeneity of tumors can be studied systematically is in a patient harboring metastases to several distant sites. To this end, we chose cells isolated from three metastatic pancreatic lesions of a single patient. The exomes of each tumor site were previously sequenced to study the progression of pancreatic cancer, and the results showed that all cell lines were identical for the genetic status of driver mutations (e.g. KRAS, TP53, and SMAD4) (9). Our hypothesis was that a better understanding of the proteomic consequences of the heterogeneity derived from genetic changes, and possibly other types of alterations, might provide additional opportunities to identify therapeutic targets.In order to precisely quantify differences across the proteomes of multiple metastatic pancreatic cancer lesions, we employed a SILAC-based1 quantitative proteomics strategy combined with high-resolution mass spectrometry (10, 11). Based on changes observed at the whole-proteome level, we found that a class of cell surface receptors showed significant enrichment with the highest alteration of their expression among the three metastatic pancreatic cancer cell lines examined (i.e. peritoneum, lung, and liver). Because the total protein levels provide information about the static levels of proteins and not their activity per se, we decided to examine the activation of phosphorylation-driven pathways, many of which are activated by cell surface receptors. To globally examine tyrosine phosphorylation-based signaling pathways, we carried out mass spectrometric analysis of purified tyrosine phosphorylated peptides enriched using anti-phosphotyrosine antibodies. As a result, we observed differential activation of tyrosine kinases in the three different sites of metastases. For example, Axl receptor tyrosine kinase was found to be hyperphosphorylated in lung and liver metastases relative to peritoneal metastasis. Expression of Axl receptor tyrosine kinase in primary and matched pancreatic cancers on tissue microarrays was validated by immunohistochemistry. Given such unique patterns of activation of pathways, it was possible that tumors derived from different sites could show differences in their sensitivity to pathway inhibitors. To test this, we performed experiments in which we screened cell lines derived from each metastatic site against a panel of small molecule inhibitors. We observed that the three metastatic pancreatic cancers had differential sensitivities to different inhibitors. For example, cells derived from the peritoneal metastasis were highly sensitive to lapatinib, whereas greater sensitivity to the Axl inhibitor R428 was observed in the lung metastasis cell line. Finally, we showed that treatment of mice bearing xenografts from these different pancreatic cancer cell lines with R428, an inhibitor of Axl receptor tyrosine kinase, led to reduction of tumors with evidence of activation of Axl.  相似文献   

11.
12.
13.
14.
15.
16.
17.
Episodic memory retrieval most often recruits multiple separate processes that are thought to involve different temporal regions. Previous studies suggest dissociable regions in the left lateral parietal cortex that are associated with the retrieval processes. Moreover, studies using resting-state functional connectivity (RSFC) have provided evidence for the temporo-parietal memory networks that may support the retrieval processes. In this functional MRI study, we tested functional significance of the memory networks by examining functional connectivity of brain activity during episodic retrieval in the temporal and parietal regions of the memory networks. Recency judgments, judgments of the temporal order of past events, can be achieved by at least two retrieval processes, relational and item-based. Neuroimaging results revealed several temporal and parietal activations associated with relational/item-based recency judgments. Significant RSFC was observed between one parahippocampal region and one left lateral parietal region associated with relational recency judgments, and between four lateral temporal regions and another left lateral parietal region associated with item-based recency judgments. Functional connectivity during task was found to be significant between the parahippocampal region and the parietal region in the RSFC network associated with relational recency judgments. However, out of the four tempo-parietal RSFC networks associated with item-based recency judgments, only one of them (between the left posterior lateral temporal region and the left lateral parietal region) showed significant functional connectivity during task. These results highlight the contrasting roles of the parahippocampal and the lateral temporal regions in recency judgments, and suggest that only a part of the tempo-parietal RSFC networks are recruited to support particular retrieval processes.  相似文献   

18.
19.
Amyloid-β and tau protein are the two most prominent factors in the pathology of Alzheimer disease. Recent studies indicate that phosphorylated tau might affect synaptic function. We now show that endogenous tau is found at postsynaptic sites where it interacts with the PSD95-NMDA receptor complex. NMDA receptor activation leads to a selective phosphorylation of specific sites in tau, regulating the interaction of tau with Fyn and the PSD95-NMDA receptor complex. Based on our results, we propose that the physiologically occurring phosphorylation of tau could serve as a regulatory mechanism to prevent NMDA receptor overexcitation.  相似文献   

20.
Synaptic plasticity is widely believed to constitute a key mechanism for modifying functional properties of neuronal networks. This belief implicitly implies, however, that synapses, when not driven to change their characteristics by physiologically relevant stimuli, will maintain these characteristics over time. How tenacious are synapses over behaviorally relevant time scales? To begin to address this question, we developed a system for continuously imaging the structural dynamics of individual synapses over many days, while recording network activity in the same preparations. We found that in spontaneously active networks, distributions of synaptic sizes were generally stable over days. Following individual synapses revealed, however, that the apparently static distributions were actually steady states of synapses exhibiting continual and extensive remodeling. In active networks, large synapses tended to grow smaller, whereas small synapses tended to grow larger, mainly during periods of particularly synchronous activity. Suppression of network activity only mildly affected the magnitude of synaptic remodeling, but dependence on synaptic size was lost, leading to the broadening of synaptic size distributions and increases in mean synaptic size. From the perspective of individual neurons, activity drove changes in the relative sizes of their excitatory inputs, but such changes continued, albeit at lower rates, even when network activity was blocked. Our findings show that activity strongly drives synaptic remodeling, but they also show that significant remodeling occurs spontaneously. Whereas such spontaneous remodeling provides an explanation for “synaptic homeostasis” like processes, it also raises significant questions concerning the reliability of individual synapses as sites for persistently modifying network function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号