首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Standard entomological methods for evaluating the impact of vector control lack sensitivity in low-malaria-risk areas. The detection of human IgG specific to Anopheles gSG6-P1 salivary antigen reflects a direct measure of human–vector contact. This study aimed to assess the effectiveness of a range of vector control measures (VCMs) in urban settings by using this biomarker approach. The study was conducted from October to December 2008 on 2,774 residents of 45 districts of urban Dakar. IgG responses to gSG6-P1 and the use of malaria VCMs highly varied between districts. At the district level, specific IgG levels significantly increased with age and decreased with season and with VCM use. The use of insecticide-treated nets, by drastically reducing specific IgG levels, was by far the most efficient VCM regardless of age, season or exposure level to mosquito bites. The use of spray bombs was also associated with a significant reduction of specific IgG levels, whereas the use of mosquito coils or electric fans/air conditioning did not show a significant effect. Human IgG response to gSG6-P1 as biomarker of vector exposure represents a reliable alternative for accurately assessing the effectiveness of malaria VCM in low-malaria-risk areas. This biomarker tool could be especially relevant for malaria control monitoring and surveillance programmes in low-exposure/low-transmission settings.  相似文献   

2.
To optimize malaria control, WHO has prioritised the need for new indicators to evaluate the efficacy of malaria vector control strategies. The gSG6-P1 peptide from gSG6 protein of Anopheles gambiae salivary glands was previously designed as a specific salivary sequence of malaria vector species. It was shown that the quantification of human antibody (Ab) responses to Anopheles salivary proteins in general and especially to the gSG6-P1 peptide was a pertinent biomarker of human exposure to Anopheles. The present objective was to validate this indicator in the evaluation of the efficacy of Insecticide Treated Nets (ITNs). A longitudinal evaluation, including parasitological, entomological and immunological assessments, was conducted on children and adults from a malaria-endemic area before and after the introduction of ITNs. Significant decrease of anti-gSG6-P1 IgG response was observed just after the efficient ITNs use. Interestingly, specific IgG Ab level was especially pertinent to evaluate a short-time period of ITNs efficacy and at individual level. However, specific IgG rose back up within four months as correct ITN use waned. IgG responses to one salivary peptide could constitute a reliable biomarker for the evaluation of ITN efficacy, at short- and long-term use, and provide a valuable tool in malaria vector control based on a real measurement of human-vector contact.  相似文献   

3.
4.
We describe and develop a difference equation model for the dynamics of malaria in a mosquito population feeding on, infecting and getting infected from a heterogeneous population of hosts. Using the force of infection from different classes of humans to mosquitoes as parameters, we evaluate a number of entomological parameters, indicating malaria transmission levels, which can be compared to field data. By assigning different types of vector control interventions to different classes of humans and by evaluating the corresponding levels of malaria transmission, we can compare the effectiveness of these interventions. We show a numerical example of the effects of increasing coverage of insecticide-treated bed nets in a human population where the predominant malaria vector is Anopheles gambiae.  相似文献   

5.
We describe and develop a difference equation model for the dynamics of malaria in a mosquito population feeding on, infecting and getting infected from a heterogeneous population of hosts. Using the force of infection from different classes of humans to mosquitoes as parameters, we evaluate a number of entomological parameters, indicating malaria transmission levels, which can be compared to field data. By assigning different types of vector control interventions to different classes of humans and by evaluating the corresponding levels of malaria transmission, we can compare the effectiveness of these interventions. We show a numerical example of the effects of increasing coverage of insecticide-treated bed nets in a human population where the predominant malaria vector is Anopheles gambiae.  相似文献   

6.
Human antibody response to the Anopheles gambiae salivary protein gSG6 has recently emerged as a potentially useful tool for malaria epidemiological studies and for the evaluation of vector control interventions. However, the current understanding of the host immune response to mosquito salivary proteins and of the possible crosstalk with early response to Plasmodium parasites is still very limited. We report here the analysis of IgG1 and IgG4 subclasses among anti-gSG6 IgG responders belonging to Mossi and Fulani from Burkina Faso, two ethnic groups which are known for their differential humoral response to parasite antigens and for their different susceptibility to malaria. The IgG1 antibody response against the gSG6 protein was comparable in the two groups. On the contrary, IgG4 titers were significantly higher in the Fulani where, in addition, anti-gSG6 IgG4 antibodies appeared in younger children and the ratio IgG4/IgG1 stayed relatively stable throughout adulthood. Both gSG6-specific IgG1 and IgG4 antibodies showed a tendency to decrease with age whereas, as expected, the IgG response to the Plasmodium circumsporozoite protein (CSP) exhibited an opposite trend in the same individuals. These observations are in line with the idea that the An. gambiae gSG6 salivary protein induces immune tolerance, especially after intense and prolonged exposure as is the case for the area under study, suggesting that gSG6 may trigger in exposed individuals a Th2-oriented immune response.  相似文献   

7.

Background

Much effort is being devoted for developing new indicators to evaluate the human exposure to Aedes mosquito bites and the risk of arbovirus transmission. Human antibody (Ab) responses to mosquito salivary components could represent a promising tool for evaluating the human-vector contact.

Methodology/Principal findings

To develop a specific biomarker of human exposure to Aedes aegypti bites, we measured IgG Ab response to Ae. aegypti Nterm-34 kDa salivary peptide in exposed children in 7 villages of Southern Benin (West Africa). Results showed that specific IgG response presented high inter-individual heterogeneity between villages. IgG response was associated with rainfall and IgG level increased from dry (low exposure) to rainy (high exposure) seasons. These findings indicate that IgG Ab to Nterm-34 kDa salivary peptide may represent a reliable biomarker to detect variation in human exposure to Ae. aegypti bites.

Conclusion/Significance

This preliminary study highlights the potential use of Ab response to this salivary peptide for evaluating human exposure to Ae. aegypti. This biomarker could represent a new promising tool for assessing the risk of arbovirus transmission and for evaluating the efficacy of vector control interventions.  相似文献   

8.
Human antibody (Ab) response to Anopheles whole saliva, used as biomarker of Anopheles exposure, was investigated over a period of two years (2008–2009), in children between 2 to 9 years old, before and after the introduction of three different malaria vector control methods; deltamethrin treated long lasting impregnated nets (LLIN) and insecticide treated plastic sheeting (ITPS) - Zero Fly®) (ITPS-ZF), deltamethrin impregnated Durable (Wall) Lining (ITPS-DL – Zerovector®) alone, and indoor residual spraying (IRS) with lambdacyhalothrin alone. These different vector control methods resulted in considerable decreases in all three entomological (82.4%), parasitological (54.8%) and immunological criteria analyzed. The highest reductions in the number of Anopheles collected and number of positive blood smears, respectively 82.1% and 58.3%, were found in Capango and Canjala where LLIN and ITPS-ZF were implemented. The immunological data based on the level of anti-saliva IgG Ab in children of all villages dropped significantly from 2008 to 2009, except in Chissequele. These results indicated that these three vector control methods significantly reduced malaria infections amongst the children studied and IRS significantly reduced the human-Anopheles contact. The number of Anopheles, positive blood smears, and the levels of anti-saliva IgG Ab were most reduced when LLIN and ITPS-ZF were used in combination, compared to the use of one vector control method alone, either ITPS-DL or IRS. Therefore, as a combination of two vector control methods is significantly more effective than one control method only, this control strategy should be further developed at a more global scale.  相似文献   

9.
Insecticide-treated nets provide a reduction in human-vector contact through physical barrier, mortality and/or repellent effects that protect both users and non-users, thereby protecting the wider community from vector-borne diseases like malaria. Long-lasting insecticide-treated nets (LLINs) are the best alternative. This study evaluated the bioefficacy of LLINs PermaNet? 2.0 and Olyset? under laboratory conditions with Anopheles albimanus. The laboratory strain was evaluated for insecticide susceptibility with selected insecticides used for malarial control. Regeneration time and wash resistance were evaluated with the standard bioassay cone technique following WHO guidelines. Heat assistance was used for Olyset? nets; the nets were exposed to four different temperatures to speed the regeneration process. The regeneration study of PermaNet? 2.0 showed that efficacy was fully recovered by 24 h after one and three washes and wash resistance persisted for 15 washes. Regeneration of Olyset? nets was not observed for nets washed three times, even with the different temperature exposures for up to seven days. Thus, for Olyset? the wash resistance evaluation could not proceed. Differences in response between the two LLINs may be associated with differences in manufacturing procedures and species response to the evaluated LLINs. PermaNet? 2.0 showed higher and continuous efficacy against An. albimanus.  相似文献   

10.
BackgroundCulex mosquitoes are vectors for a variety of pathogens of public health concern. New indicators of exposure to Culex bites are needed to evaluate the risk of transmission of associated pathogens and to assess the efficacy of vector control strategies. An alternative to entomological indices is the serological measure of antibodies specific to mosquito salivary antigens. This study investigated whether the human IgG response to both the salivary gland extract and the 30 kDa salivary protein of Culex quinquefasciatus may represent a proxy of human exposure to Culex bites.Methodology/Principal findingsA multidisciplinary survey was conducted with children aged 1 to 14 years living in neighborhoods with varying exposure to Culex quinquefasciatus in the city of Bouaké, Côte d’Ivoire. Children living in sites with high exposure to Cx quinquefasciatus had a significantly higher IgG response to both salivary antigens compared with children living in the control site where only very few Culex were recorded. Moreover, children from any Culex-high exposed sites had significantly higher IgG responses only to the salivary gland extract compared with children from the control village, whereas no difference was noted in the anti-30 kDa IgG response. No significant differences were noted in the specific IgG responses between age and gender. Sites and the use of a bed net were associated with the level of IgG response to the salivary gland extract and to the 30 kDa antigen, respectively.Conclusions/SignificanceThese findings suggest that the IgG response to Culex salivary gland extracts is suitable as proxy of exposure; however, the specificity to the Culex genus needs further investigation. The lower antigenicity of the 30 kDa recombinant protein represents a limitation to its use. The high specificity of this protein to the Culex genus makes it an attractive candidate and other specific antibody responses might be more relevant as a biomarker of exposure. These epidemiological observations may form a starting point for additional work on developing serological biomarkers of Culex exposure.  相似文献   

11.
Salivary proteins injected by blood feeding arthropods into their hosts evoke a saliva-specific humoral response which can be useful to evaluate exposure to bites of disease vectors. However, saliva of hematophagous arthropods is a complex cocktail of bioactive factors and its use in immunoassays can be misleading because of potential cross-reactivity to other antigens. Toward the development of a serological marker of exposure to Afrotropical malaria vectors we expressed the Anopheles gambiae gSG6, a small anopheline-specific salivary protein, and we measured the anti-gSG6 IgG response in individuals from a malaria hyperendemic area of Burkina Faso, West Africa. The gSG6 protein was immunogenic and anti-gSG6 IgG levels and/or prevalence increased in exposed individuals during the malaria transmission/rainy season. Moreover, this response dropped during the intervening low transmission/dry season, suggesting it is sensitive enough to detect variation in vector density. Members of the Fulani ethnic group showed higher anti-gSG6 IgG response as compared to Mossi, a result consistent with the stronger immune reactivity reported in this group. Remarkably, anti-gSG6 IgG levels among responders were high in children and gradually declined with age. This unusual pattern, opposite to the one observed with Plasmodium antigens, is compatible with a progressive desensitization to mosquito saliva and may be linked to the continued exposure to bites of anopheline mosquitoes. Overall, the humoral anti-gSG6 IgG response appears a reliable serological indicator of exposure to bites of the main African malaria vectors (An. gambiae, Anopheles arabiensis and, possibly, Anopheles funestus) and it may be exploited for malaria epidemiological studies, development of risk maps and evaluation of anti-vector measures. In addition, the gSG6 protein may represent a powerful model system to get a deeper understanding of molecular and cellular mechanisms underlying the immune tolerance and progressive desensitization to insect salivary allergens.  相似文献   

12.
A shift towards early morning biting behavior of the major malaria vector Anopheles funestus have been observed in two villages in south Benin following distribution of long-lasting insecticidal nets (LLINs), but the impact of these changes on the personal protection efficacy of LLINs was not evaluated. Data from human and An. funestus behavioral surveys were used to measure the human exposure to An. funestus bites through previously described mathematical models. We estimated the personal protection efficacy provided by LLINs and the proportions of exposure to bite occurring indoors and/or in the early morning. Average personal protection provided by using of LLIN was high (≥80% of the total exposure to bite), but for LLIN users, a large part of remaining exposure occurred outdoors (45.1% in Tokoli-V and 68.7% in Lokohoué) and/or in the early morning (38.5% in Tokoli-V and 69.4% in Lokohoué). This study highlights the crucial role of LLIN use and the possible need to develop new vector control strategies targeting malaria vectors with outdoor and early morning biting behavior. This multidisciplinary approach that supplements entomology with social science and mathematical modeling illustrates just how important it is to assess where and when humans are actually exposed to malaria vectors before vector control program managers, policy-makers and funders conclude what entomological observations imply.  相似文献   

13.
In Kenya, insecticide-treated mosquito nets (ITNs) distributed to pregnant women and children under 5 years old through various programs have resulted in a significant reduction in malaria deaths. All of the World Health Organization-recommended insecticides for mosquito nets are pyrethroids, and vector mosquito resistance to these insecticides is one of the major obstacles to an effective malaria control program. Anopheles gambiae s.s. and Anopheles arabiensis are major malaria vectors that are widely distributed in Kenya. Two point mutations in the voltage-gated sodium channel (L1014F and L1014S) are associated with knockdown resistance (kdr) to DDT and pyrethroids in An. gambiae s.s. While the same point mutations have been reported to be rare in An. arabiensis, some evidence of metabolic resistance has been reported in this species. In order to determine the distribution of the point mutation L1014S in An. gambiae s.s. and An. arabiensis in southern and western Kenya, we collected larvae and screened for the mutation by DNA sequencing. We found high allelic and homozygous frequencies of the L1014S mutation in An. gambiae s.s. The L1014S mutation was also widely distributed in An. arabiensis, although the allelic frequency was lower than in An. gambiae s.s. The same intron sequence (length: 57 base) found in both species indicated that the mutation was introgressed by hybridization. The allelic frequency of L1014S was higher in both species in western regions, demonstrating the strong selection pressure imposed by long-lasting insecticide-treated nets (LLITN)/ITN on the An. gambiae s.s. and An. arabiensis populations in those areas. The present contribution of the L1014S mutation to pyrethroid resistance in An. arabiensis may be negligible. However, the homozygous frequency could increase with continuing selection pressure due to expanded LLITN coverage in the future.  相似文献   

14.
ABSTRACT: BACKGROUND: The current target of universal access to long-lasting, insecticide-treated nets (LLIN) is 80% coverage to reduce malaria deaths by 75% by 2015. So far, campaigns have been the main channel for large-scale delivery of LLINs, however the World Health Organization has recommended that equal priority should be given to delivery via routine antenatal care (ANC) and immunization systems (EPI) to target pregnant women and children from birth. These various channels of LLIN delivery are targeted to children of different ages. Since risk of mortality varies with child age and LLIN effectiveness declines with net age, it was hypothesized that the age at which a child receives a new LLIN, and therefore the delivery channel, is important in optimizing the health impact of a net. METHODS: A simple dynamic mathematical model was developed of delivery and impact of LLINs among children under five years of age and their household members, incorporating data on age-specific malaria death rates, net use by household structure, and net efficacy over time. RESULTS: The presented analysis finds that supplementing a universal mass campaign with extra ANC delivery would achieve a 1.4 times higher mortality reduction than campaign delivery alone, reflecting that children born in the years between campaigns would otherwise have access to old nets or no nets at an age of high risk. The relative advantage of supplementary ANC delivery is still present though smaller if malaria transmission levels are lower or if there is a strong mass effect achieved by mass campaigns. CONCLUSION: These results indicate that LLIN delivery policies must take into account the age of greatest malaria risk. Emphasis should be placed on supporting routine delivery of LLINs to young children as well as campaigns. Lucy C Okell and Lucy Smith Paintain contributed equally.  相似文献   

15.

Background

The persistence of malaria as an endemic infection and one of the major causes of childhood death in most parts of Africa has lead to a radical new call for a global effort towards eradication. With the deployment of a highly effective vaccine still some years away, there has been an increased focus on interventions which reduce exposure to infection in the individual and –by reducing onward transmission-at the population level. The development of appropriate monitoring of these interventions requires an understanding of the timescales of their effect.

Methods & Findings

Using a mathematical model for malaria transmission which incorporates the acquisition and loss of both clinical and parasite immunity, we explore the impact of the trade-off between reduction in exposure and decreased development of immunity on the dynamics of disease following a transmission-reducing intervention such as insecticide-treated nets. Our model predicts that initially rapid reductions in clinical disease incidence will be observed as transmission is reduced in a highly immune population. However, these benefits in the first 5–10 years after the intervention may be offset by a greater burden of disease decades later as immunity at the population level is gradually lost. The negative impact of having fewer immune individuals in the population can be counterbalanced either by the implementation of highly-effective transmission-reducing interventions (such as the combined use of insecticide-treated nets and insecticide residual sprays) for an indefinite period or the concurrent use of a pre-erythrocytic stage vaccine or prophylactic therapy in children to protect those at risk from disease as immunity is lost in the population.

Conclusions

Effective interventions will result in rapid decreases in clinical disease across all transmission settings while population-level immunity is maintained but may subsequently result in increases in clinical disease many years later as population-level immunity is lost. A dynamic, evolving intervention programme will therefore be necessary to secure substantial, stable reductions in malaria transmission.  相似文献   

16.

Introduction

Insecticide-treated nets (ITNs) are one of the main interventions used for malaria control. However, these nets may also be effective against other vector borne diseases (VBDs). We conducted a systematic review and meta-analysis to estimate the efficacy of ITNs, insecticide-treated curtains (ITCs) and insecticide-treated house screening (ITS) against Chagas disease, cutaneous and visceral leishmaniasis, dengue, human African trypanosomiasis, Japanese encephalitis, lymphatic filariasis and onchocerciasis.

Methods

MEDLINE, EMBASE, LILACS and Tropical Disease Bulletin databases were searched using intervention, vector- and disease-specific search terms. Cluster or individually randomised controlled trials, non-randomised trials with pre- and post-intervention data and rotational design studies were included. Analysis assessed the efficacy of ITNs, ITCs or ITS versus no intervention. Meta-analysis of clinical data was performed and percentage reduction in vector density calculated.

Results

Twenty-one studies were identified which met the inclusion criteria. Meta-analysis of clinical data could only be performed for four cutaneous leishmaniasis studies which together showed a protective efficacy of ITNs of 77% (95%CI: 39%–91%). Studies of ITC and ITS against cutaneous leishmaniasis also reported significant reductions in disease incidence. Single studies reported a high protective efficacy of ITS against dengue and ITNs against Japanese encephalitis. No studies of Chagas disease, human African trypanosomiasis or onchocerciasis were identified.

Conclusion

There are likely to be considerable collateral benefits of ITN roll out on cutaneous leishmaniasis where this disease is co-endemic with malaria. Due to the low number of studies identified, issues with reporting of entomological outcomes, and few studies reporting clinical outcomes, it is difficult to make strong conclusions on the effect of ITNs, ITCs or ITS on other VBDs and therefore further studies be conducted. Nonetheless, it is clear that insecticide-treated materials such as ITNs have the potential to reduce pathogen transmission and morbidity from VBDs where vectors enter houses.  相似文献   

17.
Insecticide-treated bed nets are the preeminent malaria control means; though there is no consensus as to a best practice for large-scale insecticide-treated bed net distribution. In order to determine the paramount distribution method, this review assessed literature on recent insecticide treated bed net distribution programmes throughout sub-Saharan Eastern Africa. Inclusion criteria were that the study had taken place in sub-Saharan Eastern Africa, targeted malaria prevention and control, and occurred between 1996 and 2007. Forty-two studies were identified and reviewed. The results indicate that distribution frameworks varied greatly; and consequently so did outcomes of insecticide-treated bed net use. Studies revealed consistent inequities between urban and rural populations; which were most effectively alleviated through a free insecticide-treated bed net delivery and distribution framework. However, cost sharing through subsidies was shown to increase programme sustainability, which may lead to more long-term coverage. Thus, distribution should employ a catch up/keep up programme strategy. The catch-up programme rapidly scales up coverage, while the keep-up programme maintains coverage levels. Future directions for malaria should include progress toward distribution of long-lasting insecticide-treated nets.  相似文献   

18.
ABSTRACT: BACKGROUND: In Savannakhet province, Laos and Quang Tri province, Vietnam, malaria is still an important health problem and most cases are found in the mountainous, forested border areas where ethnic minority groups live. The objectives of this study were to obtain a better joint understanding of the malaria situation along the border and, on the basis of that, improve malaria control methods through better cooperation between the two countries. METHODS: Fourteen villages in Savannakhet and 22 villages in Quang Tri were randomly selected within 5 km from the border where a blood survey for microscopic diagnosis (n = 1256 and n = 1803, respectively), household interviews (n = 400, both sides) and vector surveys were conducted between August and October 2010. Satellite images were used to examine the forest density around the study villages. RESULTS: Malaria prevalence was significantly higher in Laos (5.2%) than in Vietnam (1.8%) and many other differences were found over the short distance across the border. Bed net coverage was high (> 90%) in both Laos and Vietnam but, while in Laos more than 60% of the nets were long-lasting insecticide-treated, Vietnam used indoor residual spraying in this area and the nets were untreated. Anopheles mosquitoes were more abundant in Laos than in Vietnam, especially many Anopheles dirus were captured in indoor light traps while none were collected in Vietnam. The forest cover was higher around the Lao than the Vietnamese villages. After this study routine exchange of malaria surveillance data was institutionalized and for the first time indoor residual spraying was applied in some Lao villages. CONCLUSIONS: The abundance of indoor-collected An. dirus on the Laos side raises doubts about the effectiveness of a sole reliance on long-lasting insecticide-treated net in this area. Next to strengthening the early detection, correct diagnosis and prompt, adequate treatment of malaria infections, it is recommended to test focal indoor residual spraying and the promotion of insect repellent use in the early evening as additional vector interventions. Conducting joint malaria surveys by staff of two countries proved to be effective in stimulating better collaboration and improve cross-border malaria control.  相似文献   

19.
Classic vector control strategies target mosquitoes indoors as the main transmitters of malaria are indoor-biting and –resting mosquitoes. However, the intensive use of insecticide-treated bed-nets (ITNs) and indoor residual spraying have put selective pressure on mosquitoes to adapt in order to obtain human blood meals. Thus, early-evening and outdoor vector activity is becoming an increasing concern. This study assessed the effect of a deltamethrin-treated net (100 mg/m2) attached to a one-meter high fence around outdoor cattle enclosures on the number of mosquitoes landing on humans. Mosquitoes were collected from four cattle enclosures: Pen A – with cattle and no net; B – with cattle and protected by an untreated net; C – with cattle and protected by a deltamethrin-treated net; D – no cattle and no net. A total of 3217 culicines and 1017 anophelines were collected, of which 388 were Anopheles gambiae and 629 An. ziemanni. In the absence of cattle nearly 3 times more An. gambiae (p<0.0001) landed on humans. The deltamethrin-treated net significantly reduced (nearly three-fold, p<0.0001) culicine landings inside enclosures. The sporozoite rate of the zoophilic An. ziemanni, known to be a secondary malaria vector, was as high as that of the most competent vector An. gambiae; raising the potential of zoophilic species as secondary malaria vectors. After deployment of the ITNs a deltamethrin persistence of 9 months was observed despite exposure to African weather conditions. The outdoor use of ITNs resulted in a significant reduction of host-seeking culicines inside enclosures. Further studies investigating the effectiveness and spatial repellence of ITNs around other outdoor sites, such as bars and cooking areas, as well as their direct effect on vector-borne disease transmission are needed to evaluate its potential as an appropriate outdoor vector control tool for rural Africa.  相似文献   

20.

Background

Malaria remains a major public health problem in Ethiopia. Pyrethroid-treated mosquito nets are one of the major tools available for the prevention and control of malaria transmission. PermaNet® is a long-lasting insecticide-treated net (LLIN) recommended by WHO for malaria control.

Objective

The objective of the study was to assess utilization and retention of PermaNet® nets distributed for malaria control in Buie and Fentalie districts and monitor the bio-efficacy of the nets using the WHO cone bioassay test procedures.

Methods

A cross sectional study was carried out by interviewing household heads or their representative in Buie and Fentalie districts. The two districts were selected based on a priori knowledge of variations on ethnic background and housing construction. Clusters of houses were chosen within each of the study villages for selection of households. 20 households that had received one or more PermaNet® nets were chosen randomly from the clusters in each village. A total of eight used PermaNet® nets were collected for the bio-efficacy test. The bio-efficacy of PermaNet® nets was monitored according to the standard WHO procedures using a susceptible colony of Anopheles arabiensis to deltamethrin.

Results

A total of 119 household heads were interviewed during the study. The retention rate of nets that were distributed in 2005 and 2006 season was 72%. A total of 62.2% of the interviewees claimed children under five years of age slept under LLIN, while only 50.7% of the nets were observed to be hanged inside houses when used as a proxy indicator of usage of LLIN. For the bio-efficacy test the mean knock-down was 94% and 100%, while the mean mortality rate observed after 24 hr holding period was 72.2% and 67% for Buie and Fentalie districts respectively.

Conclusion

The study revealed a moderately high retention of PermaNet® in the study villages and effectiveness of the nets when tested according to the standard WHO procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号