首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anti neural antibodies are known to play a role in the immunopathogenesis of nerve damage in leprosy and HIV/AIDS. Myelin Protein zero (P0) and ceramide are two nerve components which maintain the integrity of the peripheral nerve. The present study was undertaken to identify antibodies to myelin P0 and ceramide in the sera of treated leprosy patients, HIV positive individuals and healthy subjects using enzyme linked immunosorbant assay (ELISA). The results revealed that treated leprosy patients continue to have significantly elevated myelin P0 and ceramide antibody levels as compared to healthy subjects (P??0.05) suggesting that these antibodies do not play a role in early HIV infection.  相似文献   

2.
Three antisera to myelin basic protein—a rabbit antiserum pool against rat myelin, a rabbit antiserum pool against rat myelin basic protein (MBP), and a monkey antiserum against bovine MBP—were found to contain detectable levels of antibodies that would bind radiolabeled S49 (GSLPQKAQRPQDENG). Strongly encephalitogenic in Lewis rat, S49 is a synthetic peptide representing residues 69–84 of bovine MBP with a deletion of glycine-76 and histidine-77 to make it analogous to rat and guinea pig MBPs. The rabbit antimyelin antiserum and the monkey anti-MBP antiserum contained antibodies directed against a non-sequential determinant that required asparagine 84, the glycine-histidine deletion, and residues 69–71 for maximal activity. S49-reactive antibodies from the rabbit anti-MBP antiserum were directed solely against a sequential determinant comprising residues 69–71. S49-reactive antibodies from all three antisera reacted in liquid phase with purified intact rat, guinea pig, and bovine MBP showing that the determinant is exposed for B cell recognition even in bovine MBP and can serve both as immunogen and reactant.This work supported at Duke University Medical Center by Research Grant NS-10237 from the National Institutes of Health of the U.S. Public Health Service and the Medical Scientist Training Program Grant #5-T32-OMO-7171-08; at St. Luke's Hospital Center by NS-15322 from the National Institutes of Health of the U.S. Public Health Service; and at Northwestern University by Research Grant NS-06262 from the National Institutes of Health of the U.S. Public Health Service.  相似文献   

3.
The major complication of reversal (or type 1) reactions in leprosy is peripheral nerve damage. The pathogenesis of nerve damage remains largely unresolved. In situ analyses suggest an important role for type 1 T cells. Mycobacterium leprae is known to have a remarkable tropism for Schwann cells that surround peripheral axons. Reversal reactions in leprosy are often accompanied by severe and irreversible nerve destruction and are associated with increased cellular immune reactivity against M. leprae. Thus, a likely immunopathogenic mechanism of Schwann cell and nerve damage in leprosy is that infected Schwann cells process and present antigens of M. Leprae to antigen-specific, inflammatory type 1 T cells and that these T cells subsequently damage and lyse infected Schwann cells. Previous studies using rodent CD8+ T cells and Schwann cells have revealed evidence for the existence of such a mechanism. Recently, a similar role has been suggested for human CD4+ T cells. These cells may be more important in causing leprosy nerve damage in vivo, given the predilection of M. leprae for Schwann cells and the dominant role of CD4+ serine esterase+ Th1 cells in leprosy lesions. Antagonism of molecular interactions between M. leprae, Schwann cells and inflammatory T cells may therefore provide a rational strategy to prevent Schwann cell and nerve damage in leprosy.  相似文献   

4.
Myelin-axolemmal interactions regulate many cellular and molecular events, including gene expression, oligodendrocyte survival and ion channel clustering. Here we report the biochemical fractionation and enrichment of distinct subcellular domains from myelinated nerve fibers. Using antibodies against proteins found in compact myelin, non-compact myelin and axolemma, we show that a rigorous procedure designed to purify myelin also results in the isolation of the myelin-axolemmal complex, a high-affinity protein complex consisting of axonal and oligodendroglial components. Further, the isolation of distinct subcellular domains from galactolipid-deficient mice with disrupted axoglial junctions is altered in a manner consistent with the delocalization of axolemmal proteins observed in these animals. These results suggest a paradigm for identification of proteins involved in neuroglial signaling.  相似文献   

5.
T helper cells reactive to myelin basic protein are clearly implicated in the pathogenesis of murine EAE. We have developed a T cell line, BML-1 that (1) is reactive to the encephalitogenic amino terminal nonapeptide (1-9NAC) of MBP, (2) is I-Au restricted, and (3) induces relapsing EAE in B10.PL (H-2u) mice. Measurement of the lymphokine profile of BML-1 revealed secretion of IL-2, interferon-gamma and lymphotoxin but not IL-4. This profile is consistent with the Th1/DTH subtype. Coculture of BML-1 with MBP-primed B cells shows that BML-1 does not provide significant helper function in vitro. In addition, BML-1 secretion of interferon-gamma was found to inhibit LPS-induced anti-MBP antibody responses. This suggested that anti-MBP antibodies may not be necessary for induction of EAE. Sera from mice, in which severe disease was induced with the 1-9NAC peptide and Bordetella pertussis, showed no development of serum antibodies to MBP. These data show that MBP-reactive Th cells of the Th-1/DTH subtype can induce EAE and do not provide Th function for anti-MBP responses and that serum anti-MBP antibodies are not found in peptide 1-9NAC-induced disease. T cell lines specific for encephalitogenic epitopes and characterized for lymphokine secretion will provide a useful tool for understanding the role of T cells in the induction of EAE.  相似文献   

6.
Monoclonal antibodies against myelin-associated glycoprotein were generated by fusing mouse myeloma cells with spleen lymphocytes from BALB/c mice immunized with human myelin-associated glycoprotein purified from CNS myelin. Three groups of antibodies were identified: IgG antibodies recognizing the polypeptide moiety and IgG and IgM antibodies recognizing the carbohydrate moiety of the intact molecule. Properties of these antibodies were examined with sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the immunostaining technique using human CNS and peripheral nerve myelin, and ganglioside fractions isolated from human brain and peripheral nerve, and with immunohistochemical staining of human peripheral nerves. Part of human peripheral blood mononuclear cells was stained with the antibodies against the carbohydrate moiety, but not with IgG antibodies recognizing the polypeptide moiety. Natural killer activity was partially reduced after treatment of human peripheral blood lymphocytes with an IgM antibody and complement in vitro. The possibility that anti-myelin-associated glycoprotein antibodies might play a role in the pathogenesis of demyelinating diseases through modification of natural killer activity is discussed.  相似文献   

7.
Urinary myelin basic protein-like material (MBPLM), so designated because of its immunoreactivity with a polyclonal antibody directed against a cryptic epitope located in residues 83-89 of myelin basic protein (MBP), exists in humans normally but increases in concentration in patients with multiple sclerosis who have progressive disease. Given its possible role in reflecting events of neural tissue destruction occurring in multiple sclerosis, urinary MBPLM is a candidate surrogate marker for this phase of the disease. Previously, it has been demonstrated that p-cresol sulfate (PCS) is the dominant component of MBPLM; however, another component(s) was essential in enabling p-cresol sulfate to have molecular mimicry with MBP peptide 83-89 detected by immunoreactivity. In the present investigation, this remaining component(s) was characterized by a combination of high performance size exclusion chromatography followed by nuclear magnetic resonance spectroscopy and shown to be ammonium. The monovalent cation ammonium could be substituted in vitro by several different monovalent and divalent cations, most notably zinc, in restoring to deprotonated p-cresol sulfate its immunoreactivity as MBPLM. These findings indicate the basis for the unexpected molecular mimicry between an epitope of an encephalitogenic protein and a complex containing a small organic molecule, p-cresol sulfate. Furthermore, the reaction of either ammonium or other cations with p-cresol sulfate may represent an in vivo process directly related to damage of axonal membranes.  相似文献   

8.
Molecular mimicry is the process by which T cells activated in response to determinants on an infecting microorganism cross-react with self epitopes, leading to an autoimmune disease. Normally, infection of SJL/J mice with the BeAn strain of Theiler's murine encephalomyelitis virus (TMEV) results in a persistent CNS infection, leading to a chronic progressive, CD4(+) T cell-mediated demyelinating disease. Myelin damage is initiated by T cell responses to virus persisting in CNS APCs, and progressive demyelinating disease (50 days postinfection) is perpetuated by myelin epitope-specific CD4(+) T cells activated by epitope spreading. We developed an infectious model of molecular mimicry by inserting a sequence encompassing the immunodominant myelin epitope, proteolipid protein (PLP) 139-151, into the coding region of a nonpathogenic TMEV variant. PLP139-TMEV-infected mice developed a rapid onset paralytic inflammatory, demyelinating disease paralleled by the activation of PLP139-151-specific CD4(+) Th1 responses within 10-14 days postinfection. The current studies demonstrate that the early onset demyelinating disease induced by PLP139-TMEV is the direct result of autoreactive PLP139-151-specific CD4(+) T cell responses. PLP139-151-specific CD4(+) T cells from PLP139-TMEV-infected mice transferred demyelinating disease to naive recipients and PLP139-151-specific tolerance before infection prevented clinical disease. Finally, infection with the mimic virus at sites peripheral to the CNS induced early demyelinating disease, suggesting that the PLP139-151-specific CD4(+) T cells could be activated in the periphery and traffic to the CNS. Collectively, infection with PLP139-151 mimic encoding TMEV serves as an excellent model for molecular mimicry by inducing pathologic myelin-specific CD4(+) T cells via a natural virus infection.  相似文献   

9.
Age-related hearing loss (presbyacusis) is the most common type of hearing impairment. One of the most consistent pathological changes seen in presbyacusis is the loss of spiral ganglion neurons (SGNs). Defining the cellular and molecular basis of SGN degeneration in the human inner ear is critical to gaining a better understanding of the pathophysiology of presbyacusis. However, information on age-related cellular and molecular alterations in the human spiral ganglion remains scant, owing to the very limited availably of human specimens suitable for high resolution morphological and molecular analysis. This study aimed at defining age-related alterations in the auditory nerve in human temporal bones and determining if immunostaining for myelin basic protein (MBP) can be used as an alternative approach to electron microscopy for evaluating myelin degeneration. For comparative purposes, we evaluated ultrastructural alternations and changes in MBP immunostaining in aging CBA/CaJ mice. We then examined 13 temporal bones from 10 human donors, including 4 adults aged 38-46 years (middle-aged group) and 6 adults aged 63-91 years (older group). Similar to the mouse, intense immunostaining of MBP was present throughout the auditory nerve of the middle-aged human donors. Significant declines in MBP immunoreactivity and losses of MBP(+) auditory nerve fibers were observed in the spiral ganglia of both the older human and aged mouse ears. This study demonstrates that immunostaining for MBP in combination with confocal microscopy provides a sensitive, reliable, and efficient method for assessing alterations of myelin sheaths in the auditory nerve. The results also suggest that myelin degeneration may play a critical role in the SGN loss and the subsequent decline of the auditory nerve function in presbyacusis.  相似文献   

10.
11.
A few reports suggest that molecular mimicry can have a role in determining the more severe and deadly forms of COVID-19, inducing endothelial damage, disseminated intravascular coagulation, and multiorgan failure. Heat shock proteins/molecular chaperones can be involved in these molecular mimicry phenomena. However, tumor cells can display on their surface heat shock proteins/molecular chaperones that are mimicked by SARS-CoV-2 molecules (including the Spike protein), similarly to what happens in other bacterial or viral infections. Since molecular mimicry between SARS-CoV-2 and tumoral proteins can elicit an immune reaction in which antibodies or cytotoxic cells produced against the virus cross-react with the tumor cells, we want to prompt clinical studies to evaluate the impact of SARS-CoV-2 infection on prognosis and follow up of various forms of tumors. These topics, including a brief historical overview, are discussed in this paper.  相似文献   

12.
A Yersinia pseudotuberculosis protein which cross-reacts with HLA-B27   总被引:10,自引:0,他引:10  
The most-debated question in the investigation of the spondyloarthropathies has been whether there is molecular mimicry between host HLA-B27 antigens and the arthritis-causing pathogens. We have generated a monoclonal anti-HLA-B27 antibody in our laboratory and have used a radioimmunoassay to screen a panel of bacterial species. Two strains of Yersinia pseudotuberculosis were found to be highly reactive. The cross-reactive Yersinia component was identified by Western blot to be a 19,000 component. A preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis chromatography apparatus was constructed to isolate milligram quantities of this component. To verify that the component carried the HLA-B27-specific epitope, rabbits were hyperimmunized with the purified materials. Affinity-purified antibodies from one of the immunized rabbits indeed carried anti-HLA-B27 activity. Last, antibodies generated against synthetic peptides derived from the HLA-B27.1 amino acid sequence were tested against the Yersinia component. Positive reactivity was found with antibodies generated against a peptide spanning residues 69-83 of the HLA-B27.1 protein. Since this resides in the segment responsible for the allotypic specificity of the antigen, these experiments establish the presence of molecular mimicry to a high degree of confidence.  相似文献   

13.
B cells, plasma cells, and antibodies are commonly found in active central nervous system (CNS) lesions in patients with multiple sclerosis (MS). B cells isolated from CNS lesions as well as from the cerebrospinal fluid (CSF) show signs of clonal expansion and hypermutation, suggesting their local activation. Plasma blasts and plasma cells maturating from these B cells were recently identified to contribute to the development of oligoclonal antibodies produced within the CSF, which remain a diagnostic hallmark finding in MS. Within the CNS, antibody deposition is associated with complement activation and demyelination, indicating antigen recognition-associated effector function. While some studies indeed implied a disease-intrinsic and possibly pathogenic role of antibodies directed against components of the myelin sheath, no unequivocal results on a decisive target antigen within the CNS persisted to date. The notion of a pathogenic role for antibodies in MS is nevertheless empirically supported by the clinical benefit of plasma exchange in patients with histologic signs of antibody deposition within the CNS. Further, such evidence derives from the animal model of MS, experimental autoimmune encephalomyelitis (EAE). In transgenic mice endogenously producing myelin-specific antibodies, EAE severity was substantially increased accompanied by enhanced CNS demyelination. Further, genetic engineering in mice adding T cells that recognize the same myelin antigen resulted in spontaneous EAE development, indicating that the coexistence of myelin-specific B cells, T cells, and antibodies was sufficient to trigger CNS autoimmune disease. In conclusion, various pathological, clinical, immunological, and experimental findings collectively indicate a pathogenic role of antibodies in MS, whereas several conceptual challenges, above all uncovering potential target antigens of the antibody response within the CNS, remain to be overcome.  相似文献   

14.
A monoclonal antibody (8-18C5) directed against myelin/oligodendrocyte glycoprotein (MOG) induced demyelination in aggregating brain cell cultures. With increasing doses of anti-MOG antibody in the presence of complement, myelin basic protein (MBP) concentration decreased in a dose-related manner. A similar, albeit less pronounced, effect was observed on specific activity of 2',3'-cyclic nucleotide 3'-phosphohydrolase. In the absence of complement, anti-MOG antibody did not induce detectable demyelination. In contrast to the effect of anti-MOG antibody and as expected, anti-MBP antibody did not demyelinate aggregating brain cell cultures in the presence of complement. These results provide additional support to the suggestion that MOG, a quantitatively minor myelin component located on the external side of the myelin membrane, is a good target antigen for antibody-induced demyelination. Indeed, they show that a purified anti-MOG antibody directed against a single epitope on the glycoprotein can produce demyelination, not only in vivo as previously shown, but also in cultures. Such an observation has not been made with polyclonal antisera raised against purified myelin proteins like MBP and proteolipid protein, the major protein components of the myelin membrane, or myelin-associated glycoprotein. These observations may have important implications regarding the possible role of anti-MOG antibodies in demyelinating diseases.  相似文献   

15.
Chronic inflammatory demyelinating polyneuropathy is a debilitating autoimmune disease characterized by peripheral nerve demyelination and dysfunction. How the autoimmune response is initiated, identity of provoking Ags, and pathogenic effector mechanisms are not well defined. The autoimmune regulator (Aire) plays a critical role in central tolerance by promoting thymic expression of self-Ags and deletion of self-reactive T cells. In this study, we used mice with hypomorphic Aire function and two patients with Aire mutations to define how Aire deficiency results in spontaneous autoimmune peripheral neuropathy. Autoimmunity against peripheral nerves in both mice and humans targets myelin protein zero, an Ag for which expression is Aire-regulated in the thymus. Consistent with a defect in thymic tolerance, CD4(+) T cells are sufficient to transfer disease in mice and produce IFN-γ in infiltrated peripheral nerves. Our findings suggest that defective Aire-mediated central tolerance to myelin protein zero initiates an autoimmune Th1 effector response toward peripheral nerves.  相似文献   

16.
Leprosy neuropathy is a chronic degenerative infectious disorder of the peripheral nerve caused by the intracellular obligate pathogen Mycobacterium leprae (M. leprae). Among all nonneuronal cells that constitute the nerve, Schwann cells are remarkable in supporting M. leprae persistence intracellularly. Notably, the success of leprosy infection has been attributed to its ability in inducing the demyelination phenotype after contacting myelinated fibres. However, the exact role M. leprae plays during the ongoing process of myelin breakdown is entirely unknown. Here, we provided evidence showing an unexpected predilection of leprosy pathogen for degenerating myelin ovoids inside Schwann cells. In addition, M. leprae infection accelerated the rate of myelin breakdown and clearance leading to increased formation of lipid droplets, by modulating a set of regulatory genes involved in myelin maintenance, autophagy, and lipid storage. Remarkably, the blockage of myelin breakdown significantly reduced M. leprae content, demonstrating a new unpredictable role of myelin dismantling favouring M. leprae physiology. Collectively, our study provides novel evidence that may explain the demyelination phenotype as an evolutionarily conserved mechanism used by leprosy pathogen to persist longer in the peripheral nerve.  相似文献   

17.
Multiple sclerosis (MS) is a severe autoimmune neurodegenerative disease. It attacks mainly young people. The development of new approaches to MS treatment is a challenge to modern immunology and pharmacology. In the present study, a high therapeutic efficacy of immunodominant peptides of myelin basic protein (MBP) incorporated into unilamellar mannosylated liposomes in the development of experimental autoimmune encephalomyelitis (EAE) is demonstrated in DA rats. MBP is a component of the oligodendrocyte membrane, which forms the axonal sheath. This protein is among the major autoantigens in MS. We have analyzed the binding pattern of anti-MBP autoantibodies from MS patients using a previously designed MBP epitope library. Utilizing the same approach, we have investigated the pool of anti-MBP antibodies from SJL/J and C57BL/6mice and DA rats with EAE. According to the autoantibody binding patterns, the rodent model most closely mimicking MS is EAE in DA rats. We have chosen three immunodominant MBP fragments encapsulated in unilamellar mannosylated liposomes for the treatment of the verified DA rodent model. MBP fragment 46?C62 is the most efficient in mitigating the first EAE attack, whereas MBP 124?C139 and 147?C160 inhibit the development of pathology at the regression stage. Simultaneous administration of these peptides in liposomes significantly reduces the level of antibodies against MBP. The synergistic therapeutic effect of MBP fragments reduces the integral disease score by inhibiting the first EAE attack and mitigating the subsequent relapse. Thus, our findings offer new opportunities for the efficient treatment of multiple sclerosis.  相似文献   

18.
The transmission and evolution of leprosy depends on several aspects, including immunological and genetic factors of the host, as well as genetic factors of Mycobacterium leprae. The present study evaluated the association of single nucleotide polymorphisms (SNPs) on the FokI (rs2228570), TaqI (rs731236), ApaI (rs7975232) regions of the vitamin D receptor (VDR) gene with leprosy. A total of 405 individuals were evaluated, composed by groups of 100 multibacillary (MB) and 57 paucibacillary (PB) patients, and 248 healthy contacts. Blood samples were collected from patients and contacts. The genotyping was performed by sequencing of the interest regions. The alleles of the studied SNPs, and SNP FokI genotypes, were not associated with leprosy. For the SNP on TaqI region, the relationship between the tt genotype, and for the SNP ApaI, the AA genotype, revealed an association with susceptibility to MB form, while Aa genotype with protection. The extended genotypes AaTT and AaTt of ApaI and TaqI were associated with protection against MB form. Further studies analyzing the expression of the VDR gene and the correlation with its SNPs might help to clarify the role of polymorphisms on the immune response in leprosy.  相似文献   

19.
Rats primed with bovine myelin (BM) in complete Freunds adjuvant, develop acute experimental autoimmune encephalomyelitis (EAE). We have previously described that intraperitoneal administration prior to the active induction of the disease of a bovine synaptosomal fraction (BSF) and BM were effective ways of suppressing EAE. We found that both treatments diminish the incidence of the disease and reduced biochemical and histological alterations of the central nervous system (CNS). To characterize this suppression process, in this study we examined the antigen-specific immune response in animals protected from EAE. Lymph node mononuclear cells derived from sick EAE rats, as well as from those protected by BM and BSF, showed strong myelin basic protein (MBP) proliferation. Analysis of the humoral response against MBP showed a significant diminution of IgG2b anti-MBP titres in protected BM and BSF rats in contrast to sick EAE rats whose condition could be related to a diminished anti-MBP Th1 response. Finally, cells from rats protected by BSF and BM reduced the incidence of EAE when they were adoptively transferred into animals prior to active induction of the disease. These results suggest that a mechanism based on the generation of regulatory cells and immune deviation could account for the EAE suppression mediated by myelin as well as synaptosomal antigens.  相似文献   

20.
Neural vascular insufficiency plays an important role in diabetic peripheral neuropathy (DPN). Peroxisome proliferative-activated receptor (PPAR)α has an endothelial protective effect related to activation of PPARγ coactivator (PGC)-1α and vascular endothelial growth factor (VEGF), but its role in DPN is unknown. We investigated whether fenofibrate would improve DPN associated with endothelial survival through AMPK-PGC-1α-eNOS pathway. Fenofibrate was given to db/db mice in combination with anti-flt-1 hexamer and anti-flk-1 heptamer (VEGFR inhibition) for 12 weeks. The db/db mice displayed sensory-motor impairment, nerve fibrosis and inflammation, increased apoptotic cells, disorganized myelin with axonal shrinkage and degeneration, fewer unmyelinated fibers, and endoneural vascular rarefaction in the sciatic nerve compared to db/m mice. These findings were exacerbated with VEGFR inhibition in db/db mice. Increased apoptotic cell death and endothelial dysfunction via inactivation of the PPARα-AMPK-PGC-1α pathway and their downstream PI3K-Akt-eNOS-NO pathway were noted in db/db mice, human umbilical vein endothelial cells (HUVECs) and human Schwann cells (HSCs) in high-glucose media. The effects were more prominent in response to VEGFR inhibition. In contrast, fenofibrate treatment ameliorated neural and endothelial damage by activating the PPARα-AMPK-PGC-1α-eNOS pathway in db/db mice, HUVECs and HSCs. Fenofibrate could be a promising therapy to prevent DPN by protecting endothelial cells through VEGF-independent activation of the PPARα-AMPK-PGC-1α-eNOS-NO pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号